MULTIPLICATION TABLE FOR PERMUTATIONS OF 1, 2, 3

	l	σ	σ^2	τ	στ	$\sigma^2 \tau$
l						
σ						
σ^2						
τ						
στ						
$\sigma^2 au$						

Write all entries as one of the following forms,

 ι if the permutation is ι ,

 σ^m for m=1 or m=2 if the permutation is one of σ or σ^2 ,

au if the permutation is au,

Write any other entry as $\sigma^m \tau^n$ in **this order**. For example **don't** write $\tau \sigma$, you will be able to write this as $\sigma^m \tau^n$ instead but you will need to find m and n.

A good place to start is to work out what $\tau\sigma$ is! Remember we work right to left, so $\tau\sigma$ means to do σ first, then τ .

QUESTIONS TO THINK ABOUT.

Are these tables symmetric? What does this tell us? Do any rows/columns remain unchanged? Can we always get do something to stay where we are? Can we undo each symmetry (i.e. get back to where we started before we applied it)?