RI Masterclass 11th March 2023

Permutations Workshop

Permutations of 1, 2, 3 There are 6 permutations of the numbers 1, 2, 3, listed below.

$$\iota = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
This is the same as σ^2 .
$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
This is the same as $\sigma \tau$.
$$\tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
This is the same as $\sigma^2 \tau$.

WORKED EXAMPLE

Suppose we want to work out what $\sigma \tau$ looks like. This means we are calculating

$\sigma \tau =$	(1)	2	3)	(1)	2	3)
	$\backslash 2$	3	1)	$\backslash 2$	1	3).

To do this, we work **from right to left**. First we see what happens to the number 1.

First, the permutation τ sends 1 to 2. Then the permutation σ sends 2 to 3. Overall $\sigma\tau$ sends 1 to 3.

Next, the permutation τ sends 2 to 1. Then the permutation σ sends 1 to 2. Overall $\sigma\tau$ sends 2 to 2. It stays fixed.

Finally, the permutation τ sends 3 to 3. Then the permutation σ sends 3 to 1. Overall $\sigma\tau$ sends 3 to 1. So we can see that $\sigma\tau$ is the same thing as τ_2 !

TASK. Fill out the 'multiplication' table on your worksheets for the permutations listed above. Write all entries as one of the following forms,

i if the permutation is *i*, σ^m for m=1 or m=2 if the permutation is one of σ or σ^2 , τ if the permutation is τ ,

Write any other entry as $\sigma^m \tau^n$ in **this order**. For example **don't** write $\tau \sigma$, you will be able to write this as $\sigma^m \tau^n$ instead but you will need to find m and n.

A good place to start is to work out what $\tau\sigma$ is! Remember we work right to left, so $\tau\sigma$ means to do σ first, then τ .

	σ
τ	στ

When filling an entry in your table, it should look like this. If τ is on the side row and σ is on the top row, the entry will be $\sigma\tau$.

We worked out that this was the same as τ_2 , but we prefer to denote τ_2 as $\sigma \tau$ as described above.

CAREFUL! This means 'do τ first, then do σ '.