
Algorithms 

without a computer

Cécile Mailler and Sarah Penington

(University of Bath)



What is an algorithm?

Muhammad Ibn 
Mūsā al-Khuwārizmī


(800 AD)

input

Sequence of 
operations

output



What is an algorithm?

ingredients

Recipe

cake

meter reading

The gas company 
pricing formula

bill

input

Sequence of 
operations

output



What is an algorithm?

integer n

Sequence of

operations

“yes” if n is divisible by 37

“no” otherwise

input

Sequence of 
operations

output



What is an algorithm?

integer n

Sequence of

operations

“yes” if n is divisible by 37

“no” otherwise

n is divisible by 37

if there exists an integer k 
such that

n = 37 x k

  = 37 + … + 37    (k times)

To see whether n is divisible by 37, we can:

subtract 37 from it several times until what 
remains is less than 37, and look at what 
remains:

- if nothing remains, then “yes”

- otherwise, “no” (n = 37 + … + 37 + sthg) 



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Name of the algorithm

and input(s)

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Output

Name of the algorithm

and input(s)

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Output

Name of the algorithm

and input(s)

Only use basic operations:


basic calculus: + - x


tests: “aux is at least 37”            

       “aux=0”


assignations: aux <- n

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Output

Name of the algorithm

and input(s)

aux <- n

creates a memory cell

and puts the value n in it


aux <- aux - 37

takes the current value in 
the cell “aux” removes 37 
from it and places this 
new value in “aux”.

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Output

Name of the algorithm

and input(s)

if “test” then:

     “action 1”

else:

     “action 2”


If the “test” is true then 
execute “action 1”, otherwise 
execute “action 2”.

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Output

Name of the algorithm

and input(s)

while “test” do:

     “action”

next instruction


1- If “test” is true then 
execute “action” and do 1 
again.

2- If “test” is false, then 
execute “next instruction”.

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(112):Execute Algorithm Div37(112):

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(112):

112
aux

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(112):

112
aux

75
aux

38
aux

1
aux

The algorithm Div37



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(112):

112
aux

75
aux

38
aux

1
aux

return “no"

The algorithm Div37



Complexity of an algorithm

Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

How efficient is this 
algorithm?

One possible measure is the 
“complexity” = number of 
elementary operations 


(+, -, x, assignations, tests).


The complexity is a 
function of the input.



Complexity of an algorithm

Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(112):

112
aux

75
aux

38
aux

1
aux

return “no"

+3+3+3 (test+ subtraction 
+ assignation)

Complexity = 12

if n = 112

+1 (assignation)

+1 (test)

+1 (last test)



Algorithm Div37(n):

aux <- n


While aux is at least 37 do:

     aux <- aux-37


if aux = 0 then: 

     return “yes”

else:

     return “no”

Execute Algorithm Div37(n):

n-37
aux

n-72
aux

n-109
aux

return “no"

+3 times 

Complexity 

= 3 + 3 x n/37 

= 3 x (1 + n/37)

n
aux

+1 (assignation)

+1 (test)

…

n/37

Complexity of an algorithm

+1 (last test)



Exercise 1
1- Write the algorithm Div11(n) that outputs “yes”  if n is 
divisible by 11 and “no” otherwise. What is the complexity of 
Div11(n)?


2- Did you know that a number is divisible by 11 if and 
only if the alternating sum of its digits is divisible by 11? 


For example, 41527 is not divisible by 11 because 4-1+5-2+7 
= 13, but 50457 is divisible by 11 because 5-0+4-5+7 = 11.


Knowing this, check whether 145 379 is divisible by 11. How 
many elementary operations have you executed? How many 
would Div11(145 379) would execute to get the same 
answer?



Exercise 2

Write an algorithm Div(n,k) that takes as an input two 
integers n and k and gives the result of the division of n 
by k and its remainder term.


For example, 

๏ Div(17,5) gives (3,2) as an output because 17 = 3 x 5 + 2.

๏ Div(3,5) gives (0,3) because 3 = 0 x 5 + 3

๏ Div(18,3) gives (6,0) because 18 = 6 x 3 + 0


What is the complexity of this algorithm as a function of n 
and k?



Finding the minimum

12 47 8 22 3 10 88

7 integers

(n1,…,n7) Min7 their minimum


(and its index)

3

n1 n2 n4n3 n5 n6 n7

n5



Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

12 47 8 22 3 10 88

min <- 12

index <- 1

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

(i = 2)

min <- 12

index <- 1

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

(i = 3)

min <- 12

index <- 1

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

(i = 3)

min <- 8

index <- 3

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

(i = 4)

min <- 8

index <- 3

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

(i = 5)

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

min <- 3

index <- 5

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

(i = 5) (i = 6) (i = 7)

n1 n2 n4n3 n5 n6 n7
Finding the minimum



12 47 8 22 3 10 88

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

n1 n2 n4n3 n5 n6 n7

The complexity of this 
algorithm is at most:+1

+1

+1
+1

x6

2+6x3 = 7x3-1 = 20

(Finding the minimum out 
of a list of n integers would 

have complexity  ???)

Finding the minimum

+1



12 47 8 22 3 10 88

Min7(n1,…,n7):

min <- n1

index <- 1

For i = 2 to 7 do:

     if ni < min then:

          min <- ni

          index <- i

return min and index

n1 n2 n4n3 n5 n6 n7

The complexity of this 
algorithm is:+1

+1

+1
+1

(Finding the minimum out 
of a list of n integers would 

have complexity 3xn-1)

Finding the minimum

2+6x3 = 7x3-1 = 20
+1 x6



Sorting a list of numbers

12 47 8 22 3 10 88

7 integers Sort7
the 7 integers 

sorted in 
increasing order

3 8 10 12 22 47 88



SelectSort

https://www.youtube.com/watch?v=Ns4TPTC8whw


Sorting a list of numbers

7 integers Sort7
the 7 integers 

sorted in 
increasing order

Sort7(n1,…,n7):

For i = 1 to 7 do:

    min, k <- Min(ni,…, n7)

    ni <-> nk (“exchange ni and nk”)

return (n1,…,n7)



Sorting a list of numbers

7 integers Sort7
the 7 integers 

sorted in 
increasing order

Sort7(n1,…,n7):

For i = 1 to 7 do:

    min, k <- Min(ni,…, n7)

    ni <-> nk (“exchange ni and nk”)

return (n1,…,n7)

+ 3 x (8 - i)
+1

Complexity 

  = 7 + 3 x (7 + 6 + … + 1) = 91

To sort n integers: 

                 complexity cst x n x n 



Sorting a list of numbers

This algorithm is called

SelectSort

Sorting is used every day (think of big data!): people have 
worked a lot on writing efficient algorithms for it.

One of the best algorithms is QuickSort, for which it is best to 
first shuffle your list of integers at random! 


(to avoid rare bad configurations)



RSA algorithm

Message

Message

Encrypted message

Encrypted message

Public key

Private key



RSA algorithm

Message

Message

Encrypted message

Encrypted message

Public key

Private key

RSA stands for Rivest-Shamir-Adleman (invented the 
algorithm in 1978) 

Clifford Cox (GCHQ) developed a similar algorithm 

in 1973 (declassified in 1997) 



RSA algorithm

Message

Message

Encrypted message

Encrypted message

Public key

Private key



RSA algorithm

Message

Message

Encrypted message

Encrypted message

Public key

Private key

n = p x q

Public Private

large prime numbers



RSA algorithm

Message

Message

Encrypted message

Encrypted message

Public key

Private key

n = p x q

Public Private

large prime numbers

Factorising a large 

number is hard!



Prime factorisation
Prime number - a number that is only divisible by 

itself and 1, e.g. 2, 3, 5, 7, 11, …

Every number can be written as a product of its

prime factors, e.g.

40

10 4

5 2 2 2

40=5x2x2x2

35

57

35=7x5

To crack RSA, need 

a factorisation

algorithm that finds 

factors of big numbers 

quickly



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

Want an algorithm 

that finds a factor p



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

to try as a factor



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

to try as a factor

only try factors 

less than n



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

to try as a factor

if n is divisible 

by aux then we’ve 

found a factor



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

to try as a factor

if n is not divisible 

by aux then we 

add 1 to aux and 

try again



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Use algorithm from 

earlier - Div(a,b)=yes if 

a is divisible by b.

to try as a factor

if we have tried all

the possible factors

less than n, then n

must be prime



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Execute Factor(15):

2
aux

3
Return 3



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


Execute Factor(5):

2
aux

3

Return “n is prime”

4

5



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


How fast is this 

algorithm?
n = p x q
p, q prime numbers, p q≤

Algorithm keeps going

until aux = p.



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


How fast is this 

algorithm?
n = p x q
p, q prime numbers, p q≤

Algorithm keeps going

until aux = p.

+1

+1

+2



Factorisation algorithm
Algorithm Factor(n):

aux <- 2

While aux is less than n do:

     if Div(n,aux)=yes then:

         return aux

       else:

         aux <- aux + 1

If aux=n then:

     return “n is prime”


How fast is this 

algorithm?
n = p x q
p, q prime numbers, p q≤

Algorithm keeps going

until aux = p.

Complexity is at least

2 + (p-2) x 3.

Can we make the

algorithm faster?

+1

+1

+2



RSA algorithm
When RSA is used, the public key is n = p x q where

p and q are 2048-bit prime numbers.

This means that p and q are about

22048 = 28 x (210)204       ≈

Useful trick: 210 = 1024  1000 = 103  ≈



RSA algorithm
When RSA is used, the public key is n = p x q where

p and q are 2048-bit prime numbers.

This means that p and q are about

22048 = 28 x (210)204  256 x (103)204  10614       ≈ ≈

Useful trick: 210 = 1024  1000 = 103  ≈



RSA algorithm
When RSA is used, the public key is n = p x q where

p and q are 2048-bit prime numbers.

This means that p and q are about

22048 = 28 x (210)204  256 x (103)204  10614       ≈ ≈



RSA algorithm
When RSA is used, the public key is n = p x q where

p and q are 2048-bit prime numbers.

This means that p and q are about

22048 = 28 x (210)204  256 x (103)204  10614       ≈ ≈
… which is a VERY big number.

Our factorisation algorithm would take a very very 

long time to find p and q.

But there is an algorithm which could (in theory) be 
much faster.



Shor’s algorithm
Shor’s algorithm is a much faster algorithm for 

factorising large numbers, but it needs a quantum

computer.
Conventional computer:

Bit 0 or 1
Quantum computer:
Qubit 0 or 1 or a ‘mixture’

In our factorisation algorithm, the complexity was 

more than (p-2) x 3. 
In Shor’s algorithm, the complexity is 

    (number of digits of p)2 x (a constant).
If p 10614, this is MUCH faster.≈



Shor’s algorithm
So why is RSA still a safe way to send and receive 
encrypted messages?

Making quantum computers is hard!

The record for the largest number factorised using 

Shor’s algorithm on a quantum computer is …



Shor’s algorithm
So why is RSA still a safe way to send and receive 
encrypted messages?

Making quantum computers is hard!

The record for the largest number factorised using 

Shor’s algorithm on a quantum computer is 21.

In 2019, a team tried (and failed) to factorise 35 

using Shor’s algorithm on an IBM quantum computer.


