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    In numerical weather prediction and other PDE based
computations often need to locally refine a mesh to capture
small scales

(i)  To resolve local geometry eg. orography

(ii)  For accurate numerical computation of evolving features

 eg. storms, fronts

(i)  For accurate assimilation of observed data to avoid spurious
correlations in data assimilation procedures



r-adaptive moving mesh methods aim to do this by the
‘optimal placement’ of a fixed number of mesh points which
move during the computation

There are many advantages with r-adaptivity

• Constant data structures and mesh topology

• Ease of coupling to CFD solvers and DA codes

• Capturing dynamical physics of the solution

eg. Lagrangian behaviour, symmetries, conservation laws,
self-similarity

• Global and Local control of mesh regularity

eg. Good alignment properties

Traditional problems with r-adaptivity:

Mesh tangling, mesh skewness, implementation in 3D



eg. Shallow water test problem



Talk will describe an r-adaptive moving mesh method
for doing this based upon geometrical ideas: optimal
transport theory and Monge Ampere equations

Will demonstrate that this leads to a fast, robust and
effective moving mesh method for adaptive NWP

• Which avoids mesh tangling and extreme skewness

• Works well in 1D, 2D and 3D

• Can be coupled to CFD solvers and DA codes
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Geometrical strategy

Have a computational domain

Physical domain

Identify a map ! 
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r-adaptive methods are equivalent to MAPS



Determine F by Equidistribution

Introduce a positive unit measure  M(x,y,z,t)  in the
physical domain which controls the mesh density

A:  unit set in computational domain

F(A,t) :  image  set
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Equidistribute integral with respect to this measure

Equidistribution minimises the maximum value of this integral
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Differentiate to give:

Basic, nonlinear, equidistribution mesh equation

Choose M to concentrate points where needed without
depleting points elsewhere: error/physics/scaling



Choice of the monitor function M(X)

• Physical reasoning

eg. Potential vorticity, arc-length, curvature

• A-priori mathematical arguments

eg. Scaling, symmetry, error estimates (interpolation)

• A-posteriori error estimates (primal-dual)

 eg. Residuals, super-convergence

• Data correlation estimates



Mesh construction

Problem: in two/three -dimensions equidistribution
does NOT uniquely define a mesh!

                 All have the same area

Need additional conditions to define the mesh:

Want to avoid mesh tangling and long thin regions

Argue: A good mesh for solving a pde is often one
which is as close as possible to a uniform mesh
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Minimise

Subject to

Also used in image registration,meteorology
(rearrangement of vorticity)

Optimal transport helps to prevent small angles,
reduce mesh skewness and prevent mesh tangling.

Optimally transported meshes  (Monge-Kantorovich)



Key results which makes everything work

Theorem: [Brenier]

(a)There exists a unique optimally transported mesh

(b) For such a mesh the map F is the gradient of a
convex function
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Monge-Ampere equation: fully nonlinear elliptic PDE
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It follows immediately in 2D that

Hence the mesh equidistribution equation becomes

(MA)

Global and local properties of the mesh can be deduced
from the regularity of the solution of the MA equation



Solve using relaxation in n Dimensions: [Russell]
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Spatial smoothing
[Hou]

(Invert operator
using a spectral
method)

Smoothed
monitor

Ensures right-
hand-side scales
like Q in nD to give
global existence

Parabolic Monge-Ampere equation (PMA)



Solution Procedure

If M is prescribed then the PMA equation can be
discretised in the computational domain and
solved using an explicit forward Euler method.

This is a fast procedure: 5 mins for a full 3D
meteorological mesh

Applications

• Image processing and image registration

• Mesh generation for meteorological Data
assimilation [Browne, CJB, Cullen, Piccolo]

•Implemented in Met Office Operational Code





Can be coupled to DA procedure   [Piccolo & Cullen]

Take M to be a scaled approximation of the
Potential Vorticity of the 3D flow





Because PMA is based on a geometric approach, it
has a set of useful regularity properties

1. System invariant under translations, rotations,
periodicity



Lemma 1:  CJB, EJW [2012]

The solutions of the MA equation exactly align with
global linear and radial features

Alignment follows from a close coupling between the local structure
of the solution and the global structure. This is NOT a property of
other mesh generation methods
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O: rotation of the linear
feature



Exact solution of the MA equation
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2. Convergence properties of PMA

Lemma 2: [Budd,Williams 2006]

(a) If M(x,t) = M(x) then  PMA admits the
solution

 (b) This solution is locally stable/convergent and
the mesh evolves to an equidistributed state
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Proof:  Follows from the convexity of P which
ensures that PMA behaves locally like the heat
equation



Lemma 3: [B,W 2006]

    If M(x,t) is slowly varying then the grid given
by PMA is epsilon close to that given by
solving the Monge Ampere equation.

 Lemma 4: [B,W 2006]

The mapping is 1-1 and convex for all times:

No mesh tangling or points crossing the
boundary



                                Coupling to a PDE

   In a PDE calculation M is a function of the solution of
the  PDE and we must couple mesh generation to the
calculation of the solution

Two methods:
1.Use the generated mesh in the physical domain and

discretise the PDE in this domain using a finite
element/finite volume solver.

2.  Discretise PDE & PMA in the computational domain
taking advantage of the simple mesh geometry

! 

u
t
= N(u,"u,#u)



Jacobian J given by the mesh calculation

Other derivatives easy to find using finite difference
methods

Computational Domain Scaling



Solve the coupled mesh and PDE system  either

Method One: Simultaneous Solve

Mesh and PDE as one large system  (stiff!)

Lagrangian type approach.

Advantages:

No need for interpolation

Mesh and solution become one large dynamical
system and can be studied as such eg. symmetries

Disadvantage: Equations are very hard to solve
especially when the PDE is strongly advective (CFL
condition problems)



Method 2: More suitable for PDEs with convection

By alternating between evolving the PDE and mesh

1.  Time march the PDE on given mesh

2.  Evolve to new mesh by solving PMA to steady
state

3.  Interpolate PDE solution onto the new mesh

4.  Repeat from 1.

Advantages:

Very flexible, can build in conservation laws and
incompressibility at stage 2

Disadvantage: Interpolation is difficult and expensive



Example 1: Buckley-Leverett equation (gas dynamics)
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Solve using simultaneous Method 1,   M = arc-length



Conjectured discontinuity singularity after t = 6.3 days

Example 2: Eady Problem  [Cullen]



Solve using alternating Method 2:

• Finite difference method on a 60x60 Charney-
Phillips mesh with pressure correction

• 2nd order interpolation [Tang] with conservation
law and geostrophic balancing

• Update solution initially every 10 mins

• Update mesh every hour

• Reduce time step as singularity is approached
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M : Maximum eigenvalue R     (PV = det R )









        Moving mesh gives good solution profiles



Refining uniform mesh leads to solution oscillations



                   Mesh profile



             Local mesh regularity is good



            Mesh Skewness is very good
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Conclusions

• Optimal transport is a natural way to determine
moving meshes

• It can be implemented using a fast relaxation
process by using the PMA algorithm

• Method works well for a variety of problems, and
there are rigorous estimates about its behaviour

• Looking good on meteorological problems

• Lots of work to do to compare its effectiveness
with tried and tested AMR procedures on standard
test problems


