Emergent Scaling Laws in Complex Dielectric Materials

Chris Budd, Nick McCullen
Darryl Almond and the BICS team

Bath Institute for Complex Systems
University of Bath

Leiden
27th August 2010
Outline

1. Modelling Complex Dielectric Materials
2. Origin of Power-Law Emergent Response
3. Results of Analytical and Numerical Approaches
Conductor-dielectric composites display *anomalous power-law* scaling in bulk AC conductivity – “Universal Dielectric Response.”

’Jonscher power law’

Emergent property of a complex system resulting from component interaction (not a resultant property)
Microstructure of a Composite

- $\text{Al}_2\text{O}_3 - \text{TiO}_2$
- Variable conductivity ratio (with AC driving frequency ω).

R. Uppal & R. Stevens
Modelling of Complex Composites

- $\text{Al}_2\text{O}_3 - \text{TiO}_2$
- Associate conducting phase with R and dielectric with C.

![Diagram showing the composition of the composite material with labels for R_{TiO_2} and $C_{\text{Al}_2\text{O}_3}$ at 10 μm scale.]}
Modelling of Complex Composites

- Model using resistor-capacitor network:
 - Randomly assign bonds on square lattice as either $R \left(y_R = R^{-1} \right)$ or $C \left(y_C = i\omega C \right)$.

 \begin{align*}
 N & \text{: Total number of components} \\
 p & \text{: proportion of } C \\
 h & \text{: } i\omega CR \text{ conductivity ratio}
 \end{align*}

Vainas and Almond, 1999
Response of Networks

- Random percolation
- \[\text{conductivity} \approx \text{frequency}^p \]
Response of Networks

Conductivity

Frequency

Random percolation

\[\text{conductivity} \approx \text{frequency}^\beta \]
Response of Networks

Frequency

conductivity \approx \text{frequency}^p

Random percolation
Response of Networks

Frequency

conductivity \approx \text{frequency}^p

Random percolation
Response of Networks

Frequency

conductivity \approx frequency^p

Random percolation
Related to Percolation Theory\(^1\)

Critical system, as \(p \to p_c \):

- Infinite system;
 - Correlation length:
 \[\xi(p) \propto |p - p_c|^{-\nu}. \]
 - Average cluster size:
 \[\chi(p) \propto |p - p_c|^{-\gamma}. \]

Phase transition at \(p = p_c \).

In 2D square lattice: \(p_c = 0.5, \ldots \)

Response of Networks

- Power $n \approx p$, proportion of variable components (capacitors).

Experimentally verified.

See: Almond and Bowen, 2004
Scaling with the network size at $\rho = 0.5 = \rho_c$
Scaling with the network size at $\rho = 0.4 < \rho_c$
Scale variation as a function of p and N

- If $p = p_c = 0.5$ then $\max |Y| / \min |Y| \sim N$
- If $p < p_c$ then
 - $\max |Y| / \min |Y| \sim N$ for small N
 - $\max |Y| / \min |Y| \sim C(p)$ for large N
 - $C(p) \rightarrow \infty$ as $p \rightarrow p_c$.
Analytic Explanation for the Origin of the Power-Law Emergent Response

Features of PLER:

1. Admittance $|Y| \propto \omega^n$, $n \approx p$ over several orders of magnitude.

2. $|Y(\omega)|$ independent of details (statistical properties).

3. Percolation limits & width of region can depend strongly on network size N if $p = p_c$ and weakly otherwise.
Matrix Representation of Electrical Networks

Using Kirchhoff’s laws:

\[
\begin{pmatrix}
\Sigma_2 & -y_{2,3} \\
-y_{2,3} & \Sigma_3
\end{pmatrix}
\begin{pmatrix}
v_2 \\
v_3
\end{pmatrix}
=
\begin{pmatrix}
y_{1,2} \\
y_{1,3}
\end{pmatrix}
V
\]

\[
\Sigma_2 = y_{1,2} + y_{2,3} + y_{2,4}
\]

\[
\Sigma_3 = y_{1,3} + y_{2,3} + y_{3,4}
\]

\[
v_1 = V, \quad v_4 = 0, \quad y_{m,n} = 1/z_{m,n}
\]

- Problem reduces to solving:

\[
Kv = bV
\]

- **K** sparse banded (Laplacian) matrix of admittances,
- **v** vector of node voltages,
- **b** vector of boundary elements.
- **V** applied boundary potential.
The Power-Law Emergent Response

- Admittance $Y(\omega) = b^T K^{-1} b$
- $K = K_R + i\omega K_C$

Emergent power-law response over wide range of ω.
Poles and Zeroes of the Transfer Function

- Admittance $Y(\omega) = b^T K^{-1} b$
- $K = K_R + i\omega K_C$
Poles and Zeroes of the Transfer Function

- Admittance $Y(\omega) = b^T K^{-1} b$
 - $K = K_R + i\omega K_C$

- Rational function: $Y(\omega) = \frac{N(\omega)}{D(\omega)} = \frac{F}{(\omega - \omega_z,1)(\omega - \omega_z,2)(\omega - \omega_z,3)\ldots}{(\omega - \omega_p,1)(\omega - \omega_p,2)(\omega - \omega_p,3)\ldots}$
Poles and Zeroes of the Transfer Function

- Admittance \(Y(\omega) = b^T K^{-1} b \)
 - \(K = K_R + i\omega K_C \)

- Rational function: \(Y(\omega) = \frac{N(\omega)}{D(\omega)} = \frac{F(\omega-\omega_{z,1})(\omega-\omega_{z,2})(\omega-\omega_{z,3})\ldots}{(\omega-\omega_{p,1})(\omega-\omega_{p,2})(\omega-\omega_{p,3})\ldots} \)

- Poles \(\omega_{p,k} \) are the finite generalised eigenvalues of \(K \).
- Zeros \(\omega_{z,k} \) are the finite generalised eigenvalues of a symmetric block-bordered extension of \(K \).
Poles and Zeroes of the Transfer Function

- Admittance $Y(\omega) = b^T K^{-1} b$
 - $K = K_R + i\omega K_C$

- Rational function: $Y(\omega) = \frac{N(\omega)}{D(\omega)} = F_{\frac{\omega-\omega_{z,1}}{(\omega-\omega_{p,1})(\omega-\omega_{p,2})(\omega-\omega_{p,3})...}}$

- Poles $\omega_{p,k}$ are the finite generalised eigenvalues of K.
- Zeros $\omega_{z,k}$ are the finite generalised eigenvalues of a symmetric block-bordered extension of K.

- Study distributions of Zeroes, Poles and statistics of spacings between them.
Large RC Electrical Networks.

Mathematically it can be shown that:

1. Poles at $iW_{p,k}$ and Zeroes at $iW_{z,k}$ are pure imaginary.
2. $W_{p,k}, W_{z,k} > 0.$
Large RC Electrical Networks.

Mathematically it can be shown that:

1. Poles at $iW_{p,k}$ and Zeroes at $iW_{z,k}$ are pure imaginary.
2. $W_{p,k}, W_{z,k} > 0$.
3. Poles and Zeroes interlace: $\times o \times o \times o \ldots$
Large RC Electrical Networks.

Mathematically it can be shown that:

1. Poles at $iW_{p,k}$ and Zeroes at $iW_{z,k}$ are pure imaginary.
2. $W_{p,k}, W_{z,k} > 0$.
3. Poles and Zeroes interlace: $\times o \times o \times o \ldots$
Boundaries of PLER
Observations on P,Z Distributions

From analysis of large number of networks:

- Poles and Zeroes interlace, as predicted.
- Find a symmetric log-Normal distribution of the Zeroes & Poles.
Observations on Pole-Zero Spacings

• Spacings are statistically regular

• For $p = 0.5$:

→ Mean (over i) spacings equal

$$W_{p,i} - W_{z,i} = W_{z,i} - W_{p,(i-1)}$$
Observations on Pole-Zero Spacings

- Spacings are statistically regular

- For $p = 0.5$:

- For $p \neq 0.5$ ($p = 0.4$):

\rightarrow Mean (over i) spacings equal

\[W_{p,i} - W_{Z,i} = W_{Z,i} - W_{p,(i-1)} \]
Regularity of the pole-zero spacings over several realisations

Let

$$\bar{\delta}_i(p) = \frac{W_{z,i} - W_{p,i}}{W_{p,i+1} - W_{p,i}}$$

averaged over many network realisations.

Observe

- $\bar{\delta}_i(0.5) \approx 0.5$
- $\bar{\delta}_i(p) \approx \bar{\delta}_{N-i}(p)$
- $\bar{\delta}_i(p) + \bar{\delta}_i(1 - p) \approx 1$
- $\text{mean}_i \bar{\delta}_i(p) \approx p$
Range of Pole-Zero Values

- Smallest and Largest Value:
 - For the $p = p_c = 0.5$ case:
 - $W_{p/z, 1} \sim 1/NCR$,
 - $W_{p/z, N} \sim N/CR$
Range of Pole-Zero Values

- **Smallest and Largest Value:**
 - For the $p = p_c = 0.5$ case:
 - $W_{p/z,1} \sim 1/NCR$, $W_{p/z,N} \sim N/CR$
 - Slopes over range of p:
 - $W_{p/z,1} \sim 1/N^\alpha CR$, $W_{p/z,N} \sim N^\alpha/CR$, $\alpha \leq 1$
Derivation for Random RC Networks

\[|Y(\omega, N)| = |g(N)| \frac{\prod_{k=1}^{N} |\omega - iW_{z,k}|}{\prod_{k=1}^{N} |\omega - iW_{p,k}|} \]
Derivation for Random RC Networks

\[|Y(\omega, N)| = |g(N)| \frac{\prod_{k=1}^{N} |\omega - iW_{z,k}|}{\prod_{k=1}^{N} |\omega - iW_{p,k}|} \]

but: \[|\omega - iW_{[p,z],k}| = \sqrt{Re(\omega)^2 + W_{[p,z],k}^2} \]
Assuming equal numbers of finite P,Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}}$$
Assuming equal numbers of finite P,Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}}$$

using previous observations of distribution of P,Z:

$W_{p,k} \sim f(k), W_{z,k} \sim f(k) - \bar{\delta}_k f'(k)$
Derivation for Random RC Networks

- Assuming equal numbers of finite P, Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}}$$

- using previous observations of distribution of P, Z:

$$W_{p,k} \sim f(k), W_{z,k} \sim f(k) - \bar{\delta}_k f'(k)$$

- we obtain:

$$\log (|Y(\omega, N)|) = \log (|g(N)|) + \frac{1}{2} \sum_{k=1}^{N} \log \left(\frac{\omega^2 + (f(k) - \bar{\delta}_k f'(k))^2}{\omega^2 + (f(k))^2} \right)$$
Derivation for Random RC Networks

- Assuming equal numbers of finite P, Z:
 \[|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}} \]

- using previous observations of distribution of P, Z:
 \[W_{p,k} \sim f(k), W_{z,k} \sim f(k) - \bar{\delta}_k f'(k) \]

- we obtain:
 \[\log(|Y(\omega, N)|) = \log(|g(N)|) + \frac{1}{2} \sum_{k=1}^{N} \log \left(\frac{\omega^2 + (f(k) - \bar{\delta}_k f'(k))^2}{\omega^2 + f(k)^2} \right) \]

- and a few approximations later...
Results for Random RC Networks.

Obtain following expressions with

\[\bar{\delta} = \text{mean}_{\log(w_i)}(\delta_i). \]

1. Percolation path in R but not C:

\[|Y(\omega)| = \frac{1}{R} \left(\frac{1 + N^2 C^2 R^2 \omega^2}{N^2 + C^2 R^2 \omega^2} \right)^{\frac{\bar{\delta}}{2}} \]

2. Percolation path in C but not R:

\[|Y(\omega)| = \omega C \left(\frac{N^2 + C^2 R^2 \omega^2}{1 + N^2 C^2 R^2 \omega^2} \right)^{\frac{1 - \bar{\delta}}{2}} \]

Numerical results for \(p = 0.5 \) for which \(\bar{\delta} = 0.5 \)
Results for Random RC Networks.

- Obtain following expressions with $\bar{\delta} = \text{mean}_{\log(W_i)}(\bar{\delta}_i)$.

 1. Percolation path in R but not C:

 $$|Y(\omega)| = \frac{1}{R} \left(\frac{1 + N^2 C^2 R^2 \omega^2}{N^2 + C^2 R^2 \omega^2} \right)^{\frac{\bar{\delta}}{2}}$$

 2. Percolation path in C but not R:

 $$|Y(\omega)| = \omega C \left(\frac{N^2 + C^2 R^2 \omega^2}{1 + N^2 C^2 R^2 \omega^2} \right)^{\frac{1-\bar{\delta}}{2}}$$

Numerical results for $\rho = 0.5$ for which $\bar{\delta} = 0.5$

- Small Networks:

![Graph showing the relationship between $\bar{\delta}$ and ω for small networks.](image)
Results for Random RC Networks.

- Obtain following expressions with \(\bar{\delta} = \text{mean}_{\log(w)}(\bar{\delta_i}) \).

1. Percolation path in R but not C:

\[
|Y(\omega)| = \frac{1}{R} \left(\frac{1 + N^2 C^2 R^2 \omega^2}{N^2 + C^2 R^2 \omega^2} \right)^{\frac{\bar{\delta}}{2}}
\]

2. Percolation path in C but not R:

\[
|Y(\omega)| = \omega C \left(\frac{N^2 + C^2 R^2 \omega^2}{1 + N^2 C^2 R^2 \omega^2} \right)^{\frac{1-\bar{\delta}}{2}}
\]

Numerical results for \(\rho = 0.5 \) for which \(\bar{\delta} = 0.5 \)

- Small Networks:
- Large Networks:
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)

- Can use analytical approach to obtain formulae for bulk properties.
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)

- Can use analytical approach to obtain formulae for bulk properties.

- Continuous distribution of Poles-Zeroes results in power-law scaling.
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)
- Can use analytical approach to obtain formulae for bulk properties.
- Continuous distribution of Poles-Zeroes results in power-law scaling.
- Power determined by mean spacing of Poles-Zeroes.
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)

- Can use analytical approach to obtain formulae for bulk properties.

- Continuous distribution of Poles-Zeroes results in power-law scaling.

- Power determined by mean spacing of Poles-Zeroes.

- Agrees amazingly well with simulations over a range of parameters using few assumptions.
Summary

- Binary random systems show Power-Law Emergent Response. (Models UDR in solids)

- Can use analytical approach to obtain formulae for bulk properties.

- Continuous distribution of Poles-Zeroes results in power-law scaling.

- Power determined by mean spacing of Poles-Zeroes.

- Agrees amazingly well with simulations over a range of parameters using few assumptions.

- Response model give continuous distribution of RC relaxation rates.
 - Possible links to models of relaxation processes.