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Abstract. One-dimensional piecewise-smooth discontinuous maps (maps with gaps) are known
to have surprisingly rich dynamics, including periodic orbits with very high period and bifurcation
diagrams showing period-adding or period-incrementing behavour. In this paper we study a new class
of maps, which we refer to as regularised one-dimensional discontinuous maps, because they give very
similar dynamics to discontinuous maps and closely approximate them, but are yet continuous. We
show that regularised discontinuous maps arise naturally as limits of higher dimensional continuous
maps when we study the global dynamics of two non-smooth mechanical applications: the cam-
follower system and the impact oscillator. We review the dynamics of discontinuous maps, study the
dynamics of regularised discontinuous maps and compare this to the behaviour of the two mechanical
applications which we model. We show that we observe period-adding and period-incrementing
behaviour in these two systems respectively but that the effect of the regularisation is to lead to a
progressive loss of the higher period orbits.

Key words. regularised discontinuous map, period-adding, period-incrementing, grazing bifur-
cation, corner-collision bifurcation, impact-oscillator, cam-follower system, border-collision bifurca-
tion

AMS subject classifications. 34C23, 34K07, 37G15, 37G25, 37G35, 37M05, 70F35, 70K40,
70K50.

1. Introduction. Many problems in electronics [14] [15], and other applications
which have discrete switching behaviour, for example neuron-firing models [16], can
give rise to one-dimensional discontinuous piecewise-smooth maps. In the special case
of piecewise-linear discontinuous maps these can be written in the generic form

x 7→ F (x) ≡
{

λ1x + µ if x− c < 0
λ2x + µ− l if x− c ≥ 0 (1.1)

(where l can be scaled to equal ±1). An example of a discontinuous piecewise-linear
map, often referred to as a ‘map with a gap’ [14], is illustrated in Figure (1.1). The
existence of the discontinuity at x− c = 0 and its interaction with the ω-limit sets of
the dynamics in border-collision bifurcations gives rise to surprisingly rich dynamics.
Jain and Banerjee [15] showed numerically the that this can lead to the creation of a
very large number of periodic orbits and that the associated bifurcation diagrams for
these orbits can be very complex with subtle transitions between the orbits, sudden
jumps to chaos and the sudden destruction of invariant sets for maps of the form (1.1).
Further analytical results for the dynamics of the one-dimensional discontinuous map
are presented in the papers by Hogan et. al. [14] and Avrutin and Schanz [3] [4], with
additional references in [16], [5], [7] and [10]. Key results include the existence of high
period period orbits described by bifurcation diagrams with period-adding or period-
incrementing sequences occuring as a parameter µ varies. Period-adding describes a
situation where a period n + m orbit arises for a parameter value between those for
which two separate orbits of period n and m occur and is seen when λ1 > 0, λ2 > 0.
We also see the period of the observed orbits described in terms of Farey-sequences
and the winding number of the orbits behaving like Cantor functions. In contrast,
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Fig. 1.1: A plot of the map (1.1) for parameters µ = 0.5, l = 1, λ1 = 0.8, λ2 = 0.8 and
c = 0.

period-incrementing describes a situation in which a period n + 1 orbit follows from
a period n orbit as µ is increased (or decreased) and this case arises when λ1λ2 < 0.
The maps with λ1 > 0, λ2 > 0 and λ1λ2 < 0 will be referred to as period-adding
maps and period-incrementing maps respectively, and we will give two examples of
mechanical systems showing each type of behaviour.

In contrast to such one-dimensional discontinous maps, many piecewise-smooth dy-
namical systems, such as impact oscillators, cam-follower systems, friction oscillators
or many of the systems studied in [10], have dynamics which can be studied exactly by
using two-dimensional continuous maps. Such maps may themselves be non-smooth
and have (for example) locally square-root behaviour. The analysis of such systems
has generally been rather local in nature, for example we now have a fairly complete
understanding of the dynamics of impact oscillators very close to a grazing bifurcation
where the local square-root form of the map dominates. However, this analysis has of-
ten not considered the broader global behaviour of such oscillators. A purpose of this
paper is to show that over a broad range of parameters, a good ‘outer’ approximation
to such two-dimensional continuous maps is given by a regularised one-dimensional
map with a gap and that the analysis of the dynamics of such maps gives very useful
insights into the global dynamics of the more general (physical) system. In particu-
lar, in this paper we consider two mechanical systems which generate two-dimensional
Poincaré maps which are closely approximated in a certain limit by regularised maps
with gaps that can then in turn be approximated by maps of the form (1.1).

To make sense of the above, we shall refer to a regularised discontinuous map or a
regularised map with a gap as a one-dimensional map which is continuous for all x but
which varies very rapidly over a narrow interval of width proportional to ε � 1 and
that away from this interval it takes the form of (1.1). The regularised discontinuous
maps which we study in this paper arise when we study (i) corner-collision impacts
of a cam-follower system and (ii) the single-degree-of-freedom impact oscillator. The
difference between this paper and other studies on the cam-follower and impact oscil-
lator is that we take a global approach to deriving the stroboscopic map for each of
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these systems rather than deriving the local nonlinear effects close to a discontinuity
bifurcation.

In particular, for the cam-follower system we study the stroboscopic maps related to
impacts of a cam follower with a rotating cam with a corner which is smooth but
has very large curvature κ. We show that globally such stroboscopic maps can be
closely approximated by one dimensional continuous maps, which vary rapidly over
an interval inversely proportional to κ and which can, in turn be approximated by
discontinous maps of the form (1.1) for which λ1 > 0, λ2 > 0 (leading to period-
adding). For the impact oscillator we study the grazing dynamics associated with
large dissipation systems for which, under a change in parameters, a non-impacting
orbit (which has linear dynamics) evolves to an orbit with a high-velocity impact
(which we also show has close to linear dynamics) via a grazing impact. Very close
to the grazing impact it is known [18] that the (two-dimensional) stroboscopic map
for this system is locally of square-root form. However, we will show that away from
this local region the outer form of the map is closely approximated by (1.1) with
λ1λ2 < 0 (leading to period-incrementing). In this case the local effects of the rapid
change in the square-root terms in the map (including the locally infinite gradient)
are well approximated by the discontinuity in the map (1.1) giving an outer linear
approximation of the stroboscopic map.

We show that the bifurcation diagrams of the dynamics of the two mechanical systems
can be understood by studying the bifurcation diagrams of the two cases of the dis-
continuous maps (1.1) resulting in respectively period-adding or period-incrementing
behaviour. We also consider carefully the effects of increasing the regularisation pa-
rameter ε from zero and obtain estimates in terms of ε for the regions of existence
of the period-N orbits. We show that an increase in ε leads to a progressive loss
of existence of the higher period orbits, which are replaced by intervals of chaotic
behaviour.

The layout of the remainder of this paper is as follows. In §2 we introduce and
then study the dynamics of the two mechanical systems described above. In §3.1 and
§3.2 we derive the stroboscopic map and the approximate one-dimensional regularised
discontinuous map for the cam-follower and impact oscillator systems respectively. In
§4 we study the regularised discontinuous map obtained for the cam-follower system
(leading to period-adding) and in §5 we study the regularised discontinuous map which
is obtained when we consider an alternative approach to deriving the stroboscopic map
for the impact oscillator (leading to period-incrementing).

2. Two examples of mechanical systems leading to regularised maps
with gaps. In this section we consider in more detail the two mechanical systems
that we will study, namely the cam-follower and the damped impact oscillator near
grazing. We demonstrate numerically that the Poincaré map for each system takes
the form of a regularised map with a gap and that the two cases lead to period-adding
and period-incrementing type maps respectively. In each case we give the computed
bifurcation diagram for each mechanical system and these will be compared in §4 and
§5 with the corresponding bifurcation diagrams for the associated maps.

2.1. Example 1 - The Cam-follower system. The cam-follower system is
used in many mechanical applications, most notably in internal combustion engines.
It is an example of a system where impacts take place and comprises of a follower,
which can move in the vertical direction only, lying on top of and impacting with a
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cam rotating at a fixed angular velocity ω about a fixed axis. The shape of the cam
at time t is described in radial coordinates (r, θ) by the 2π periodic function

r = G(θ − ωt). (2.1)

The height of the cam (defined to arise when θ = 0) is given by the periodic function

g(t) ≡ G(−ωt)

with period T = 2π/ω . The follower is assumed to have location u(t) and to initially
lie on top of (and be in contact with) the rotating cam so that u(t) = g(t); however,
the follower and cam can lose contact at sufficiently high enough rotation speeds ω so
that u(t) > g(t) for a interval of time until it comes back into contact. At contact the
follower impacts with the cam and repeated impacts are expected to occur at later
times. To model this system we assume that when out of contact with the cam the
follower has its motion governed by the ordinary differential equation

d2u

dt2
+ α

du

dt
+ u = 0 for u(t) > g(t). (2.2)

An impact then occurs when u(t) = g(t) and we assume this to be instantaneous and
modelled by the impact restitution law

ṽ+ = −rṽ−, (2.3)

where ṽ = du/dt − dg/dt is the relative velocity of the follower with respect to the
cam and ṽ− and ṽ+ are the relative velocities immediately before and after impact
respectively.

di Bernardo et al. [1] [21] have studied certain aspects of the dynamics of such systems
and it has been shown that ‘corners’ in the cam, which are defined to be those points at
which the function G(φ) loses smoothness in some manner, can have a significant effect
on the dynamics of the follower when impacts occur close to the corners. The paper
[21] studied the case when the ‘corner’ was a discontinuity in the second-derivative
of the cam-profile so that the function g(θ) had a continuous first derivative but
contained a small finite number of points at which it had a discontinuity in the second
derivative. In [21] an analysis was carried out of the resulting stroboscopic map related
to the impact dynamics. This was shown to be piecewise-linear continuous and an
analysis based on Feigin’s theory [11] of such can then be applied to determine the
resulting dynamics of the follower system.

In this paper we consider the profile of the cam G to either have discontinuous first
derivative at a discrete set of values of θ∗, such as a square cam, or for which the
derivative of the function G changes very rapidly in a small neighbourhood of θ∗, such
as a square cam with corners with high curvature. The curvature of the smoothed
corners which we consider is κ(t∗) = η2/δ with 0 < δ � 1, see the form of g(t) below.
In contrast to the earlier analysis of [21], we will show that the dynamics of orbits
in the case where the follower impacts close to the (smoothed) corner is described
by a stroboscopic map which takes the form of a (regularised) one-dimensional map
with a gap. This is profoundly different from dynamics of the systems described by a
continuous map.
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(a) (b)

Fig. 2.1: A square-cam and a square-cam with smoothed corners, the follower is
represented by a mass attached to a damped spring.

For a square-cam, see Figure (2.1a), the height of the cam g(t) is given by the function

g(t) = d +
β

cos(ωt̂) + sin(ωt̂)
with t̂ = mod

(
t + π

4ω , 2π
)

(2.4)

and a plot of the cam-profile g(t) and the impacting follower is given in Figure (2.2).
The corners of the cam occur at values of time equal to π

2 + nπ
2ω for n ∈ N and impacts
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Fig. 2.2: A plot of the follower periodically impacting the cam for the system (2.2)-
(2.3) with g(t) given by equation (2.4) with parameter values ω = 0.5002, d =
−1.99, β = 2, α = 0 and r = 0.8.

occur local to these corners. If we now smooth out the corners of the square-cam and
assume that a corner of the cam exists at times t = t∗ then locally about t = t∗ we
approximate the cam profile g(t) by the function

g(t) = h− η2(t− t∗)2

2δ
if |t− t∗| < δ/η (2.5)
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and

g(t) =
{

η(t− t∗) + h + δ
2 if t < t∗ − δ/η

−η(t− t∗) + h + δ
2 if t > t∗ + δ/η.

(2.6)

This local approximation of the corner corresponds to the square-cam profile (2.4)
provided h = d + α and η = αω.

In this paper we study the interesting dynamics which occurs when impacts between
the follower and the cam occur repeatedly close to the corners and in Figure (2.2) we
have plotted an example of an orbit with precisely this property. An analysis of the
motion of the follower can be obtained by considering a stroboscopic map P and we
assume that a single impact occurs between the Poincaré surfaces of the stroboscopic
map. The time period that we sample over is the interval [nπ

2ω , (n+1)π
2ω ) and if we let

T = π
2ω then the stroboscopic map is

P : (u(nT ), v(nT )) → (u(n + 1)T, v((n + 1)T )), n = 0, 1, 2, . . . (2.7)

where u(nT ) and v(nT ) denote the position and velocity of the follower at time
t = nT = nπ/2ω. To construct such a map P we have to determine the trajectory
of the follower before it hits the cam, the impact with the cam, and the subsequent
trajectory. Of particular interest in this paper is the form that this map takes when
the resulting trajectory impacts with the cam close to a corner in the cam profile g(t)
at times t = nT + T/2. For simplicity, we assume that during each sampling period
[nT, (n + 1)T ] only one such impact occurs and such behaviour will occur when the
follower starts well above the cam and the time at which the follower impacts the cam
is close to nT +T/2. If v(nT ) is close to zero and α is also small then the free motion
of the follower is given approximately by u(t) = u(nT ) cos(t− nT ) if

h � 1 and ω ≈ 1
2
.

This implies that at t = nT+T/2 ≈ nπ
2ω +π/2 the position of the follower u(nT+T/2) ≈

h and the height of the cam is at t = nT + T/2 is g(nT + T/2) = h. Therefore, it
is for such values that we expect to see the trajectory impacting close to the corner
and we study the stroboscopic map P . A numerical plot of the image (u(T ), v(T ))
of the resulting stroboscopic map P , taking fixed v(0) = −0.005 and varying u(0),
is given in Figure (2.3). This figure displays a number of key features of the map.
Firstly, we see that whilst the map is continuous there is a sharp transition in its form
around the point u(0) ≡ uc ≈ 19 where uc corresponds to the initial value of position
which leads to an impact at the corner at time T/2. Trajectories which have initial
position either side of uc impact either side of the corner and this leads to the sharp
change in the form of the stroboscopic map. The second observation that we make
is that away from orbits which impact close to the corner, the stroboscopic map is
very closely approximated by a piecewise-linear map with a gap of the form (1.1) with
λ1 ≈ λ2 > 0. Indeed, an approximation for this stroboscopic map is derived in §3.1
and we show that a regularised discontinuous map is a good approximation to this
stroboscopic map. In Figure (2.3) we overlay the following discontinuous piecewise-
linear approximation

un+1 =
{

run + η(1 + r) if un < uc

run − η(1 + r) if un ≥ uc.
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Fig. 2.3: The stroboscopic map for a smoothed corner cam system given by equations
(2.2)-(2.3) with g(t) given by equations (2.5) and (2.6) with constant initial velocity
v(0) = −0.005 and initial position 10 ≤ u(0) ≤ 30. The parameters are ω = 2.001, r =
0.8, h = 0.01, η = 2 and δ = 10−5. The discontinuous piecewise-linear approximation
is shown by the dashed line in the left-hand figure.

A derivation of this map is given in §3.1 and the regularised version of this map is
given in equation (3.2) and a normal-form version in equation (3.3). We note that the
discontinuous piecewise-linear approximation, which is denoted by the dashed-lines in
Figure (2.3), agrees well with the numerically obtained map for a large set of initial
values.

A bifurcation diagram for the cam-follower system is given in Figure (2.4) in which
we plot the ω-limit sets of the system for a range of values of the maximum height
h of the cam. We can see a number of important features in this diagram which are
quite different from that obtained by di Bernardo et. al. [21] for the smoother cam
profile which they study. In particular a period-1 orbit which is stable for h > 0.013
dramatically loses stability as h decreases and trajectories intersect the corner of the
cam. At h ≈ 0.013 a very large number of periodic orbits are created and as h
decreases the period of these orbits decreases monotonically in general. However, we
also see intervals of period-adding where higher period orbits of period n1 + n2 exist
for values of the parameter h which lie between between the intervals of existence for
orbits of (lower) periods n1 and n2 of lower period and are in fact are a concatenation of
these periodic orbits. As an example, in Figure (2.4) we see at h ≈ 0.0095 a period-11
orbit which lies between a period-5 orbit arising when h ≈ 0.009 and a period-6 orbit
when h ≈ 0.006. Close to the higher periodic orbits we also see evidence of chaotic
behaviour. Such behaviour, as we shall see later, is exactly that expected from a
corresponding regularised one-dimensional map with a gap, see equations (3.2) and
(3.3).

2.2. Example 2: The impact oscillator. The single-degree-of-freedom im-
pact oscillator has received much attention in the nonsmooth literature due to its rich
dynamics and references include [9] [17] [18] [19]. For completeness, we give a short
description of the impact oscillator here and more details can be found in [10]. We
consider a particle which has position u(t) and assume that if u(t) > 0 the particle
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Fig. 2.4: The bifurcation diagram for the cam-follower system (2.2)-(2.3) with
smoothed corners given by height profile equations (2.5) and (2.6) where the pa-
rameters are η = 2, ω = 0.501, α = 0, r = 0.8 and δ = 10−5. The curvature at a
corner is κ = 8× 104. Note the existence of period-adding behaviour of the periodic
orbits.

moves under the action of a smooth, parameterised, periodic forcing function f(t) in
a damped system which is described by the second-order differential equation

d2u

dt2
+ α

du

dt
+ u = f(t) if u(t) > 0. (2.8)

In contrast to the cam-follower system we will be considering the case of moderately
large values of the damping coefficient α. When u(t) = 0 we assume an impact occurs
with an impact wall and that the particle instantaneously changes direction. As in
the case of the cam-follower system, we model this using the restitution law

v+ = −rv− if u(t) = 0, (2.9)

with 0 < r < 1 and v− and v+ denoting the particle velocity immediately before and
after impact. To analyse the system (2.8) and (2.9), which is commonly referred to
as the impact oscillator system, we construct a strobscopic map which maps the flow
from a suitable Poincaré surface in phase space back to itself. However, we restrict
our attention to the specific smooth forcing function

f(t;ω, d, t0) = d + cos(ω(t + t0)) (2.10)

which has period T = 2π/ω but the analysis in this paper is applicable to any smooth
periodic forcing function f(t). As for the cam-follower system, a suitable Poincaré sur-
face samples the position u(t) and velocity du/dt = v(t) at times t = 0, T, 2T, 3T . . ..
A numerically calculated image(u(T ), v(T )) of the stroboscopic map is denoted by the
solid line in Figure (2.5) for the case of u(0) ≡ u0 fixed and with v(0) ≡ v0 varying
and fixed parameters α = 3, ω = 2.1, r = 0.8, d = 0.08 and t0 = 2.1. In this figure we
have plotted the stroboscopic map for a large range of initial impact velocities and if
v0 > −0.1868 no impact occurs and if v0 < −0.1868 one impact occurs in the time
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Fig. 2.5: The solid line denotes the stroboscopic map for the impact oscillator system
(2.8)-(2.10) for parameter values α = 3, ω = 2.1, r = 0.8, d = 0.08 and t0 = 2.1 with
initial position u0 = 0.04. The dash-dot line denotes the linear approximation of
the stroboscopic map, see (3.10) and (3.11). The grazing orbit occurs at vg ≡ v0 =
−0.1868 when u0 = 0.04.

interval [0, T ]. Figure (2.5) displays a number of key features of the stroboscopic map
for an impact oscillator and for v0 < −0.4 or for v0 > −0.1868 the map is very close to
being linear, although with different signs for the slope. For −0.4 < v0 < −0.1868 the
stroboscopic map has a short region over which it takes a (well-known) square-root
form due to a grazing (zero velocity) impact when v0 = −0.1868. The conventional
analysis of the impact oscillator [6] [12] [17] [18] [19] [20] involves considering the lo-
cal dynamics of impacting orbits close to this transition point, known as the grazing
bifurcation. However, we can see immediately from Figure (2.5) that the global form
of the stroboscopic map is close to that of a map with a gap with the square-root part
of the map acting as a smooth regularisation of the discontinuity. Indeed a piecewise-
linear discontinuous approximation to the stroboscop map is given in Figure (2.5)
and it is denoted by a dashed line. The piecewise-linear discontinuous approximation
which we have plotted is

(
un+1

vn+1

)
=


D

(
un

vn

)
+ g for v0 > vg (non-impacting orbits)

−rD

(
un

vn

)
+ g for v0 ≤ vg (impacting orbits)

where vg denotes the initial velocity at which a grazing bifurcation occurs. The matrix
D and the vector g are defined in §3.2 by equation (3.7). In the next section we make
the derivation of this map more precise by considering a regularisation of this map
and show that for the values of α considered, i.e. large values of α corresponding
to heavy damping, the dynamics of the system are well described by a regularised
one-dimensional map with a gap.

A bifurcation diagram for the impact oscillator when the parameter d of the forcing
function f(t) in equation (2.10) is varied is plotted in Figure (2.6) with the vertical
coordinate denoting the position of the impact oscillator at periodic intervals of time
T . The effect of varying parameter d is to bring the impact oscillator closer to the
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impacting wall at position u = 0. If d is sufficiently large enough i.e. the impact
oscillator is sufficiently far enough away from the impact wall, and α the damping
parameter is large enough then no impacts occur. This behaviour can be seen in
Figure (2.6) where for d > 0.14 a non-impacting period-1 orbit exists and as d passes
through d = 0.14 (approximately) a grazing bifurcation occurs. The result of which
is the generation of a number of impacting periodic orbits and as d is decreased a
reverse period-incrementing sequence exists with the period of the orbits decreasing
monotonically by one as d decreases. Unlike the case of the cam-follower, we do
not see windows of higher periodicity and the periodic orbits overlap rather than
concatenate and for d ≈ 0.095 we see coexistence of orbits of periods one and two.
In §4 we compare the bifurcation diagram generated by the regularised discontinuous
map with Figure (2.6) which is computed directly from simulations of the impact
oscillator.
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Fig. 2.6: The bifurcation diagram for the impact oscillator (2.8)-(2.10) with param-
eters ω = 2.1, r = 0.8, t0 = 2.1 and α = 3. The vertical coordinate is a nonlinear
coordinate transformation of the position un and velocity vn at times t = nT , this is
discussed in §3.2.4.

3. Derivation of regularised discontinuous maps for the mechanical sys-
tems. In sections §3.1 and §3.2 we look at the two mechanical examples in more
detail and show how the stroboscopic map of each can be approximated by a reg-
ularised map with a gap, which has period-adding form for the cam-follower and
period-incrementing form for the impact oscillator.

3.1. Stroboscopic map for the cam-follower system. We firstly derive a
stroboscopic map which describes the dynamics of the cam-follower system as illus-
trated in Figure (2.2) and we aim to approximate the stroboscopic map by a one-
dimensional regularised discontinuous map. As discussed in §2, we consider a strobo-
scopic map P which evolves the position u(t) and velocity v(t) of the follower from time
t = nT to time t = (n+1)T . We can, without loss of generality, restrict our attention
to the time interval [0, T ] and let (u0, v0) = (u(0), v(0)) and (u1, v1) = (u(T ), v(T ))
such that the stroboscopic map we consider is (u0, v0) 7→ (u1, v1). Our interest is the
form of the stroboscopic maps for which the trajectory impacts close to the corner of
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the function g(t) which arise for example if ω ≈ 0.5 and h, α, v0 ≈ 0.

We firstly consider the general form of a stroboscopic map and to construct it we
consider a trajectory starting from (u0, v0) and assume that this impacts close to the
corner at some time ti ≈ T/2. The trajectory will then rebound and we can determine
(u1, v1) by evaluating the flow following the rebound. In Figure 3.1 we illustrate this
by plotting two trajectories, one of which impacts before the corner and the other of
which impacts after the corner. To ensure that such impacts occur we require that
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t)

,g
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Fig. 3.1: Two trajectories which impact either side of a corner of the cam-follower
system (2.2)-(2.3) with the height profile of the cam given by function (2.4). The
parameters for the cam-follower system are ω = 0.501, r = 0.8, d = −1.99, α = 0, β = 1
and the initial position in both trajectories is u(0) = 17 and the initial velocities are
v(0) = −0.06 and v(0) = −0.01.

the orbits intersect the surface g(t) transversally close to the corner, this implies that
v(t) < dg/dt just before the impact. This condition prevents the occurrence of grazing
impacts with zero relative velocity. It then follows from the results in [10] Chapter
2 that the smoothness of the map P is at least as good as that of the function g(t).
Thus in this case we guarantee that overall P is continuous in its arguments and also
has continuous first derivatives. If v0 ≈ 0, α ≈ 0 and ω ≈ 0.5, then as u ≈ u0 cos(t)
we have u(T/2) ≈ 0 and v(T/2) ≈ −u0. As −η < dg/dt < η then a transverse
impact close to the corner is guaranteed provided that u0 > η. We shall insist on this
condition which also guarantees that there will be no further impacts with g(t) for t
close to T/2.

The corner impact we consider has close similarities with the corner impact studied
in [7] and we can make use of the two-dimensional stroboscopic maps derived in
paper [7]. If we let ti denote the time at which an impact occurs then we have
the condition u(ti) = g(ti) and we consider impacts such that ti is close to T/2. If
ti < t− ≡ T/2 − δ/η or ti > t+ ≡ T/2 + δ/η then the follower impacts the linearly
approximated region of g(t) which takes the form of an inverted V. A similar situation
to this was studied in [7] which considered the impacts of a trajectory with a surface
of exact V-shape arising in a multi-component collision. It was shown in [7] that if
v0 is small, then provided ω is close to 1/2 that v1 is also small (as are subsequent
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iterates vn) and the map from u0 to u1 is (to leading order) one-dimensional. To
derive this map we set v0 equal to zero and consider the map u0 to u1. Following [7],
this is given as

u1 = ru0 + η(1 + r) if ti < t−, u1 = ru0 − η(1 + r) for ti > t+. (3.1)

We note that the first derivative of both maps depends on the restitution coefficient
r and not on the gradient ±η of the linear sections of the cam-profile. Note also that
this map takes the form of (1.1) with λ1 = λ2 = r. It is hence of the general form
of a period-incrementing map with a gap. As u0 is increased the time of impact ti
also increases so that (at least locally) if u0 < uα, t < t−, and if u > uγ then t > t+.
Indeed

uα = (h− δ/2)/ cos(T/2− δ/η) and uγ = (h− δ/2)/ cos(T/2 + δ/η).

Observe that in general uγ−uα = O(δ). Intermediate to these two values is the point
u0 = uc such that if u0 = uc then ti = T/2 and uc = h/ cos(T/2). If the corner is not
smoothed then uα = uc = uγ and the map from u0 to u1 has a discontinuity of size
−2η(1 + r).

We now consider the case of a square-cam with smoothed corners such that δ > 0.
To derive an approximation to the stroboscopic map for the interval uα < u0 < uγ ,
we use the previous result that such a map must be globally C1 and in this interval
of width δ, where the trajectory impacts with the smooth corner of the cam, the map
itself will be smooth. Rather than attempting to derive a precise form for the map,
it is thus reasonable to use a smooth spline to approximate it, enforcing continuity
of first derivatives at the points uα and uγ . The simplest such spline with sufficient
degrees of freedom to do this is a Hermite cubic interpolant. However, it is somewhat
easier to analyse a continously differentiable piecewise quadratic spline approximation
and we do this in §5. Accordingly, if we set uβ = (uα +uγ)/2 then this takes the form

u1 =


ru0 + η(1 + r) if u0 < uα

−η(1+r)
(uβ−uα)2 (u0 − uβ)2 +

(
r − 2η(1+r)

(uβ−uα)

)
(u0 − uβ) + ruβ if uα < u0 < uβ

η(1+r)
(uβ−uγ)2 (u0 − uβ)2 +

(
r − 2η(1+r)

(uγ−uβ)

)
(u0 − uβ) + ruβ if uβ < u0 < uγ

ru0 − η(1 + r) if uγ < u0.
(3.2)

A plot of this map and the numerically obtained stroboscopic map is given in Figure
(3.2) and we can see that there is reasonably good comparison between the two.
To further simplify the map and reduce the number of parameters of map (3.2), we
put the map (3.2) into standard form by a change of variable

xn = (un − uβ)/(2η(1 + r))

and letting

λ = r, ε = (uβ − uα)/(2η(1 + r)), µ = ((r − 1)uc + η(1 + r))/(2η(1 + r))

and noting that approximately uγ − uβ = uβ − uα. Considering the map over the
general time interval [nT, (n + 1)T ] gives the regularised discontinuous map which
approximates the cam-follower system as

xn+1 ≡ F (xn) =


f1(xn) = λxn + µ if xn < −ε
f2(xn) = −1

2ε2 x2
n + (λ− 1

ε )xn + µ− 1
2 if −ε < xn < 0

f3(xn) = 1
2ε2 x2

n + (λ− 1
ε )xn + µ− 1

2 if 0 < xn < ε
f4(xn) = λxn + µ− 1 if xn > ε.

(3.3)
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Fig. 3.2: The dashed line denotes the piecewise-quadratic map (3.2) and the solid line
is the numerical solution of the cam-follower system (2.2)-(2.3) with cam profile g(t)
given by (2.5) and (2.6). The parameters are ω = 0.501, η = 2, r = 0.8, h = 0.01 and
δ = 10−4 and the initial velocity is v0 = −0.005. Note in this figure δ is δ = 10−5

whereas in Figure (2.3a) it is δ = 10−4.

A plot of map (3.3) is given in Figure (3.3). We study the bifurcation diagrams and
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Fig. 3.3: A plot of the map (3.3) for parameters λ = 0.8, µ = 0.5 and ε = 0.1.

dynamics of the period-adding type of regularied map with a gap (3.3) in §4.

3.2. The impact oscillator. In this section we present a method for deriving
the global form of the stroboscopic map for the impact oscillator which considers the
linear dynamics either side of a grazing bifurcation and we show that this takes the
form of a period-incrementing regularised map with a gap. This calculation comple-
ments the derivation of the local nonlinear discontinuity map for low velocity impacts
close to a grazing bifurcation and the resulting local nonlinear stroboscopic map which
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can be found in [10]. Our method considers the outer linear dynamics of the impact
oscillator which is illustrated in Figure (2.5) where we can see that the stroboscopic
map is globally piecewise-linear for a sufficiently large set of initial conditions with a
small region of initial values where the map takes a square-root form.

To derive the global form of the stroboscopic map we consider the position u(t) and
velocity v(t) of the system (2.8)-(2.10) at times t = 0, T, 2T, 3T, . . . with T = 2π/ω
(this is identical to the cam-follower system). Again, without loss of generality, we
consider the dynamics over the time interval [0, T ] and we introduce a state vector
w(t) = (u(t), v(t)) and let w0 = (u(0), v(0)) ≡ (u0, v0) denote the position and
velocity at time t = 0 and let w1 = (u(T ), v(T )) ≡ (u1, v1) denote the position and
velocity at time t = T . We shall only consider the stroboscopic map for orbits which
impact once or not at all during the time period [0, T ] and will consider the effects
of varying the initial conditions along a set transverse to that set of initial conditions
which leads to a grazing impact at a time ti at which u and v both vanish. We firstly
state the stroboscopic map w0 7→ w1 for those orbits which do not impact in this
time interval.

3.2.1. Non-impacting orbits. The dynamics of the particle when it is out of
contact with the impact wall is given by equation (2.8) and using the state vector
w(t), equation (2.8) can be re-written as

ẇ = Bw + c (3.4)

where matrix B and vector c are defined as

B =
(

0 1
−1 −α

)
and c =

(
0

f(t;ω, h, t0)

)
≡
(

0
h + cos(ω(t + t0))

)
.

The solution of equation (3.4) is simply

w(t) ≡ Φ(w0, t) = eBtw0 + eBt

∫ t

0

e−Bscds; (3.5)

therefore, the stroboscopic map w0 to w1 for a non-impacting orbit is

PT : w0 7→ w1 = Dw0 + g (3.6)

where matrix D and vector g are defined as

D ≡
[

a b
c d

]
= eBT and g ≡

(
g1

g2

)
= eBT

∫ T

0

e−Bscds. (3.7)

Later we compose PT with a linear zero-time discontinuity map to derive the stro-
boscopic map for an orbit with one high-velocity impact during the time interval
[0, T ].

3.2.2. The grazing set. Having considered a trajectory which does not impact,
we now vary a parameter, such as the initial velocity v0 ≡ v(0), until a first grazing
impact occurs. A grazing impact is defined as a trajectory which impacts with zero
velocity and the trajectory satisfies u(tg) = v(tg) = 0 for tg ≥ 0 and the set of initial
conditions at t = 0, which leads to a grazing trajectory, is known as a grazing set. We
denote the grazing set by G and it is defined as

G = {(u, v)|u(tg) = v(tg) = 0 with 0 ≤ tg < T} .
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Fig. 3.4: The grazing set G, a set of initial values L0 and a final set of values L1 after
time T is plotted for parameters α = 3, ω = 2.2, r = 0.8 and h = 0.13 for the system
(2.8)-(2.10). The initial values and their final positions for the trajectories A,B, C
and D are denoted by ×.

An example of the grazing set G is plotted in Figure (3.4) and the grazing set separates
impacting and non-impacting orbits. In Figure (3.4) we have also considered what
happens to a set of initial conditions L0 which crosses the grazing set G. The set L1 is
the set of values after integrating the impact oscillator system with initial values L0

forward for an amount of time T = 2π/ω (i.e. L0
T7→ L1) and both L0 and L1 lie on the

Poincaré surface. We also consider the dynamics of four initial values of the set L0 and
these four orbits are denoted by A,B, C and D and their initial trajectories are plotted
in Figure (3.5). Trajectory B is a grazing trajectory, trajectory A is a non-impacting
orbit and C and D are impacting trajectories (but with different impact velocities).
The position of orbits A−D after time T are denoted by A′−D′ and are elements of
the set L1. From Figure (2.5) we can infer that initial values of L0 which lie between
points A and B and also between points C and D are mapped linearly to L1. Clearly
points between A and B are mapped linearly because no impact has occured but
orbits with initial conditions which lie between C and D impact with sufficiently high
velocity that the stroboscopic map is linear for these initial conditions, this is clearly
seen in Figure (2.5). Initial values which lie between points B and C are mapped
nonlinearly by the stroboscopic map and these points are stretched far apart due to
a square-root term in the locally derived stroboscopic map [18]. The set L1 is folded
onto itself with the value B′, which corresponds to the grazing trajectory, lying at the
cusp of the fold. A thorough study of the grazing set can be found in [8].

3.2.3. Impacting orbits and discontinuity map. We now consider the stro-
boscopic map for impacting orbits and we shall use the zero-time discontinuity map-
ping technique which is described in [10] to construct the stroboscopic map for high-
velocity impacts which are modelled by a linear stroboscopic map. We denote the
zero-time discontinuity map by PZDM and the stroboscopic map for an impacting
orbit is given by w1 = PT ◦ PZDM (w0). The difference to the usual study of the
impact oscillator is that we consider a linear discontinuity map rather than a nonlin-
ear disconitinuity map. The zero-time discontinuity map for low-velocity impacting
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Fig. 3.5: Trajectories of the impact system (2.8)-(2.10) for parameters α = 3, ω =
2.1, r = 0.8 and h = 0.08. All trajectories have initial position u(0) = 0.04 and
initial velocities v(0), −0.1(A)(no impact), −0.1868(B)(grazing value), −0.3(C) and
−0.6(D).

orbits, i.e. orbits which occur close to the grazing bifurcation, is derived in [10] and
the map takes a square-root form which is, to lowest order,

PZDM :
(

u0

v0

)
7→
(

u0

v0 + (1 + r)
√

v2
0 − 2A0u0

)
. (3.8)

This discontinuity map describes the dynamics of low-velocity impacting orbits re-
markably well but we have seen in Figure (2.5) that the stroboscopic map for high-
velocity impacts takes a linear form and we would like to derive a map which captures
both the linearity and the global behaviour of the impact oscillator. The discontinu-
ity map stated above is a lowest order approximation of the discontinuity map but a
slightly higher order approximation is

PZDM :
(

u0

v0

)
7→

(
u0 + (1 + r)(∆v0)

v0 − (1 + r)v0

√
1− 2A0u0

v2
0

)
(3.9)

where ∆ > 0 is the (small) time taken for the particle to travel from the Poincaré
surface at t = 0 to the impact wall at u = 0. The above discontinuity map can be
easily derived by keeping terms which are neglected when the map (3.8) is derived,
see [10] for details. Note that the map for v0 in equation (3.9) is exactly the same
as in equation (3.8) as

√
v2
0 = −v0 ≥ 0. The expression v2

0 − 2A0u0 is important in
determining the behaviour of an orbit and if v2

0−2A0u0 = 0 then an orbit grazes. For
v2
0 − 2A0u0 > 0 an impact will occur and the magnitude of this quantity determines

the velocity of the particle at impact. If v2
0 − 2A0u0 is small and positive then the

square-root term in equation (3.8) becomes dominant and equation (3.8) is a good
approximation to the discontinuity map. However, if v2

0 − 2A0u0 is large and positive
then ∆ is approximately given by ∆ = −u0/v0 and if 2A0u0

v2
0

� 1 then we simplify
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equation (3.9) to the following linear map

PZDM :
(

u0

v0

)
7→
(
−ru0

−rv0

)
. (3.10)

We note that a similar linear discontinuity map for the impact oscillator is described
in [13] and is derived in [10] by assuming that the path of the particle near the impact
wall is linear. Thus the stroboscopic map for the case when v2

0 − 2A0u0 is large and
positive, which relates to an orbit impacting at high-velocity, is given as

w1 = PT ◦ PZDM (w0) = −rDw0 + g. (3.11)

3.2.4. One-dimensional approximation and regularisation. Above we have
a stroboscopic map if either v2

0 − 2A0u0 < 0 (non-impacting case) or if v2
0 − 2A0u0

is large and positive (high-velocity impacting case). We do not yet have a map for
the case when v2

0 − 2A0u0 is small and positive which is normally the region in which
the nonlinear discontinuity map (3.8) is applied but our approach is to regularise this
region using the assumption that the stroboscopic map is continuous everywhere and
that the map takes a square-root form for small positive values of v2

0 − 2A0u0. First
we reduce the maps (3.6) and (3.11) to a one-dimensional approximation and we do
this using the same technique which is described in [17] and [18] and introduce the
coordinate transformation (u, v) → (x, y) which is given as

x = v2 − 2Au, y = −[dx + 2Abv + 2A(dg1 − bg2)] (3.12)

where constants a, b, c, d, g1 and g2 are given by equation (3.7).
If an orbit has position u0, velocity v0 and acceleration A0 at time t = 0 and

x0 = v2
0 − 2A0u0 < 0 then the orbit will not impact during the time period [0, T ] and

the stroboscopic map in terms of x and y using the coordinate transformation (3.12)
and map (3.6), after some manipulation, is given as

x1 = (a + d)x0 + y0 + 2A0[(dg1 − bg2)− g1], y1 = −(ad− bc)x0. (3.13)

Now ad − bc = det(eBT ) = etrace(BT ) = e−αT and thus if αT is large then yi terms
can be neglected and a one-dimensional map in terms of x only is obtained. For
v2
0 − 2A0u0 large and positive (high-velocity impacting orbits) the map in the new

coordinate system is

x1 = −r(a + d)x0 − ry0 − 2A0[r(dg1 − bg2) + g1], y1 = r(ad− bc)x0 (3.14)

and similarly, if αT is large then yi terms are negligible. Therefore, if we now consider
the general map from t = nT to t = (n + 1)T , we have the system of one-dimensional
maps,

xn+1 =
{

(a + d)xn + 2An[(dg1 − bg2)− g1] if xn < 0
−r(a + d)xn − 2An[r(dg1 − bg2) + g1] if 0 � x̄ < xn.

Here the constant value x̄ is introduced to separate between impacting orbits which
impact with high- and low-velocity. We now wish to regularise this one-dimensional
map such that it is continuous everywhere and takes a square root form in the region
0 < xn < x̄. Before we do this, we first introduce the following parameters

µ = 2A[(dg1 − bg2)− g1] l = 2A(1 + r)(dg1 − bg2) λ1 = a + d (3.15)
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which allows us to re-write the above map in the standard form

xn+1 =
{

λ1xn + µ if xn < 0
−rλ1xn + µ− l if x̄ < xn.

(3.16)

Imposing the condition that the map is continuous at xn = {0, x̄} and that the first
derivative of the map is continuous at xn = x̄ leads us to the following regularised
map in the region 0 < x < x̄,

xn+1 = −l

√
4xn

x̄
+
(

l

x̄
− rλ1

)
xn + µ if 0 < xn < x̄.

Rescaling xn by letting x̂n = xn/l, ε = x̄/l and µ̂ = µ/l, gives us the following map
(immediately dropping theˆs) which has a unit discontinuity

xn+1 ≡ f(xn;λ1, µ, ε) =


f1(xn) = λ1xn + µ, if xn < 0,

f2(xn) = −
√

4xn

ε +
(
λ2 + 1

ε

)
xn + µ, if 0 ≤ xn < ε,

f3(xn) = λ2xn + µ− 1, if ε ≤ xn.
(3.17)

For the impact oscillator, see Figure (2.5), we have λ2 = −rλ1 and when we study
the dynamics in more detail in §5 we consider the more general case λ2 < 0 < λ1. A
plot of the map (3.17) is given in Figure (3.6).
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Fig. 3.6: A plot of the map (3.17) for λ1 = 0.8, λ2 = −0.6, ε = 0.3 and µ = 0.5.
This map has a similar form to that of the stroboscopic map of the impact oscillator
plotted in Figure (2.5) and denoted by the solid line.

4. Period-adding: 0 < λ < 1 (Cam-follower). We now study the dynamics
of the regularised discontinuous map (3.3) which was derived from the Poincaré map
associated with those impacts of the cam-follower system occuring close to a corner.
We first show that the map (3.3) produces similar bifurcation diagrams to the cam-
follower system and then investigate the bifurcations which occur for the map (3.3).
We note that in this case λ1 = λ2 ≡ λ > 0 which infers that the map is of period-
adding type for the cam-follower. We recall that the value of ε decreases as the
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curvature of the corner increases and that the case ε = 0 corresponds to the example
studied in [7] which is when the cam profile has a discontinuous first derivative.
The key results of this section are a series of calculations showing the change in the
existence regions for periodic orbits as ε changes from ε = 0 to ε > 0. This allows us
to estimate for a given value of ε the largest value of N for which a period-N orbit
can be observed.

A plot of the ω-limit sets (bifurcation diagram) for ε = 0 and ε = 0.05 is given in
Figure (4.1) for λ = 0.8 > 0. The case ε = 0 leads directly to a piecewise-linear

(a) ε = 0 (b) ε = 0.05

Fig. 4.1: The bifurcation diagrams for the regularised discontinuous map (3.3) with
bifurcation parameter µ for λ = 0.8.

discontinuous map and has been extensively studied in the research literature and for
more details see [2] [3] [4] [14] [15] but we briefly summarise the main results here. The
principle orbits are periodic cycles {x1, x2, . . . xN} which can be described via their
symbolic sequences. In particular, if an iterate xi of a periodic orbit occurs to the left
of the discontinuity so that xi < 0 we denote this by L and if it lies to the right it is
denoted by R. As an example, a period-7 orbit with six iterates to the left followed
by one to the right has the symbolic expression L6R. Discontinous (border-collision)
bifurcations occur when one of the iterates xi crosses the discontinuity boundary as
a parameter varies so that a discontinuous bifurcation occurs when xi = 0. In a
period-adding bifurcation diagram, as shown in Figure (4.1a), we typically see period
n orbits of symbolic sequence Ln−1R followed by period m orbits of symbolic sequence
Lm−1R with a concatenated period n + m orbit of symbolic sequence Ln−1RLm−1R
lying inbetween. The winding number of such orbits (expressing the fraction of the
time to the left of the discontinuity as a fraction of the overall period) then follows a
Farey Sequence and more details on this can be found in [3] [10] [16]. The simplest
period-N orbit to analyse are the (so called) maximal orbits of the form LN−1R for
which x1, x2, . . . xN−1 < 0 and xN > 0. Repeated applications of the map (3.3) imply
that

xN = λN−1x1 +
(

λN−1 − 1
λ− 1

)
µ, x1 = λxN + µ− 1. (4.1)

As x1 < x2 < . . . xN−1 < 0 < xN it follows that such an orbit exists provided that µ
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lies in the interval

µN,1 ≡
λN−1(1− λ)

1− λN
< µ <

λN−2(1− λ)
1− λN

≡ µN,2. (4.2)

Border-collision bifurcations occur when µ = µN,1 and xN = 0 or when µ = µN,2

and xN−1 = 0. The resulting intervals of existence for these maximal orbits and the
complex transitions and period-adding sequences between them are visible in Figure
(4.1a). We now consider the corresponding bifurcation diagram for the regularised
map shown in Figure (4.1b). The main difference between the bifurcation diagrams
arising when ε = 0 and when ε = 0.05 (for the same values of λ) is that chaotic
intervals separate periodic intervals for ε = 0.05 but only periodic orbits exist for ε = 0.
Furthermore, the orbits of higher period do not appear to persist as ε increases. We
observe that the bifurcation figure for the cam-follower system, Figure (2.4), displays
exactly the same qualitative structure as is shown in Figure (4.1b) and Figure (4.2).
That is, between each periodic interval there exists a region of chaos and the sequence
of periodic orbits in Figure (2.4) agrees with the period-adding sequence. In Figure
(4.2) we plot two bifurcation diagrams for different values of ε and for µ ≈ 0.07
each plot contains a period-7 orbit which is a smooth continuation of one of symbol
sequence L6R arising when ε = 0. Observe that for ε = 0.01 we see orbits of periods
6 to 12 whilst for ε = 0.04 we see only those of periods 6 and 7 persist.

(a) ε = 0.01, orbits of period 12 to 6 exist (b) ε = 0.04, orbits of period 7 and 6 only exist

Fig. 4.2: Close-up bifurcation figures for λ = 0.8 for the map (3.3).

To understand the structure of the bifurcation diagrams for ε > 0 we now investigate
in more detail the nature of the bifurcations observable in Figure (4.2). When ε > 0
the regularised map has continuous first derivatives and we expect the bifurcations
of the periodic orbits to be (smooth) period-doubling or fold-bifurcations. In Figure
(4.2a) we see that the existence regions for the periodic orbits are apparently bounded
by period-doubling bifurcation points for values of µ rather larger than ε. However,
in the limit ε = 0 all bifurcations are (nonsmooth) border-collision type bifurcations
which arise as we have seen when an iterate of the orbit intersects the discontinuity. To
analyse this we again consider the maximal periodic orbits of the symbolic sequence
LN−1R when ε = 0 and determine for which values of µ smooth perturbations of orbits
exist as ε increases. (We note that a simple symmetry argument also determines when
orbits of the form LRN−1 exist.) For example, consider the orbits in Figure (4.2b)
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arising when ε = 0.04, the period 6 orbit which exists for µ = 0.1 appears to have
a period-doubling bifurcation at µ ≈ 0.095 and persists locally for µ > 0.095 before
vanishing, in this case at a fold bifurcation. Instead of the border-collision bifurcation
at µ = µN,1, we consistently appear to have a period-doubling bifurcation for a slightly
perturbed value of µ = µPD,N,1. This arises when the (corresponding) point xN of
the orbit lies in the (regularisation) interval in which the map, though regular, has a
high negative gradient. For the map described in (3.3) this implies that

xN = f1(xN−1), x1 = f3(xN )

so that

xN = λN−1x1 +
(

λN−1 − 1
λ− 1

)
µ, x1 =

x2
N

2ε2
+ (λ− 1/ε)xN + µ− 1

2
. (4.3)

If such a maximal orbit LN−1R exists for a certain value of µ then as µ is decreased
there is a certain value of µ ≡ µPD,N at which the orbit of type LN−1R undergoes a
bifurcation. As f ′1 > 0 and f ′3 < 0 this must be a period-doubling bifurcation so that

(f ′1)
N−1f ′3(xN ) = −1.

The form of such an orbit is shown in Figure (4.3). Using the explicit form of map
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Fig. 4.3: A plot of the period-7 orbit close to undergoing a period-doubling bifurcation
for parameters λ = 0.8, ε = 0.01 and µ = 0.08.

(3.3) it follows that

(f ′1)
N−1f ′3(xN ) = λN−1

(
xN

ε2
+ λ− 1

ε

)
= −1.

If we consider the case of ε � λ then, after some manipulation,

xN = ε− ε2
(
λ + λ1−N

)
, x1 = µ− 1 + λε +O(ε2).

Hence, solving (4.3) for µ we have

µPD,N,1 =
λN−1(1− λ)

1− λN
+ (1− λ)ε +O(ε2).
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Observe that µPD,N,1 = µN,1 +O(ε) > µN,1.

If we now increase µ from µPD,N,1 the periodic orbit will again cease to exist at a
bifurcation. This can arise in one of two ways: through a period-doubling bifurcation
at a fixed point of the iterated map fN−2

1 ◦ f2 ◦ f4 (which is a perturbation of the
border-collision bifurcation arising when xN−1 = 0), or alternatively, at a saddle-node
bifurcation at a fixed point of the iterated map fN−2

1 ◦ f2 ◦ f3. The latter case arising
when µ = O(ε).

The analysis of the first case, in which µ is rather greater than ε, proceeds much
as above and we have x1 = f4(xN ), xN = f2(xN−1), xN−1 = f1(xN−2). Setting
(fN−2

1 )′f ′2f
′
4 = −1 gives xN−1 = −ε + ε2(λ + λ1−N ) and xN = µ − λε + O(ε2). So

that if ε is small then xN−1 lies inside the ‘regularisation’ interval and xN lies outside
it provided xN > ε. This condition is satisfied when

µ > (1 + λ)ε +O(ε2).

Hence, repeating the above analysis in this case, there is a period-doubling bifurcation
when

µ ≡ µPD,N,2 =
λN−2(1− λ)

1− λN
− (1− λ)ε +O(ε2). (4.4)

Again observe that µPD,N,2 = µN,2 −O(ε) < µN,2.

We now examine the case of µ < (1 + λ)ε in which both of the iterates xN−1 and
xN lie inside the ‘regularisation’ interval so that xN = f2(xN−1), x1 = f3(xN ). This
case is illustrated in Figure (4.4). The iterated map is now (fN−2

1 ) ◦ f2 ◦ f3 and as

−0.1 −0.05 0 0.05 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Fig. 4.4: An orbit close to undergoing a fold-bifurcation for the map (3.3) for param-
eters λ = 0.8, µ = 0.0765 and ε = 0.04.

f ′1 > 0, f ′2 < 0, f ′3 < 0 this orbit ceases to exist at a saddle-node bifurcation for which
(fN−2

1 )′f ′2f
′
3(xN ) = 1 which explicitly is

λN−2

(
−xN−1

ε2
+ λ− 1

ε

)(
xN

ε2
+ λ− 1

ε

)
= 1.
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As µ increases then xN−1 increases and when xN−1 ≈ −ε a saddle-node bifurcation
occurs. For xN to lie in the regularisation interval with xN > 0 we must have xN = aε
for some 0 < a < 1. Substituting into the above expression this implies that a saddle-
node bifurcation occurs when

xN−1 = −ε + λε2 − ε3λ2−N

(a− 1)
+O(ε4).

Furthermore, as xN = f2(xN−1), then

µ = (1 + a)ε +O(ε2).

It further follows that

x1 = f3(xN ) = µ+(a2−1)/2−a+λaε and xN−1 = −ε+O(ε2) = λN−2x1+
(1− λN−2)µ

1− λ
.

We have, after combining these expressions and some manipulation, that at the saddle-
node bifurcation µ ≡ µSN,N and satisfies the equation

µSN,N =
λN−2(1− λ)

1− λN−1
(a + (1− a2)/2)− ε(1 + aλN−1)(1− λ)

1− λN−1
+O(ε2),

and as 0 < a < 1 we have

µSN,N <
λN−2(1− λ)

1− λN−1
− ε(1− λ)

1− λN−1
+O(ε2).

We have seen in Figures (4.1) and (4.2) that as ε increases the total number of pe-
riodic orbits which exist decreases. This occurs because the width of the intervals
(µPD,N,1, µSN,N ) and (µPD,N,1, µPD,N,2) decrease as ε increases and eventually be-
come zero at which point the orbit vanishes. From the expressions for µPD,N,1 and
µSN,N we can approximate the value of ε for which an orbit of the form LN−1R
vanishes by

εN =
λN−2(1− λ)

(1− λN )(2− λN−1)
. (4.5)

Note that, as observed, εN decreases as N increases. A numerical plot of the transition
of the periodic orbit L6R as ε increases is plotted in Figure (4.5). Observe that the
period-7 orbit is stable for small values of ε and vanishes at a saddle-node bifurcation
as ε increases. A numerical calculation indicates that this occurs when ε = 0.043.
Our prediction is ε7 = 0.048 which shows good agreement.

Similarly, it follows from equation (4.5) that if ε is fixed then the largest value of N
for which we expect to see a period-N orbit is given approximately by

Nmax = 2 +
log(2ε/(1− λ))

log(λ)
.

For example, if λ = 0.8 and ε = 0.03 then Nmax ≈ 7.39. In Figure (4.6) we give
a bifurcation diagram for these values and can clearly see that the largest observed
orbit has period-8, in good agreement with the result above.
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Fig. 4.5: The bifurcation diagram for the map (3.3) when ε is the parameter. The
parameters are λ = 0.8 and µ = 0.075 and as ε increases the period-7 orbit vanishes
when ε = 0.043.

Fig. 4.6: A bifurcation diagram showing the existence of a period-8 orbit but not
a period-9 orbit which agrees with our analysis, the parameters are λ = 0.8 and
ε = 0.03.

We have seen in this section how a regularised one-dimensional discontinuous map
can approximate the behaviour of a cam-follower system with impacts occuring close
to a smooth but sharp corner of the cam. The bifurcation diagrams of the regu-
larised one-dimensional map are qualitatively similar to the bifurcation diagrams for
the cam-follower system. To increase accuracy a regularised two-dimensional discon-
tinuous map would improve quantative agreement between the model and the ap-
proximation. However, this would be challenging as the dynamics of a discontinuous
two-dimensional map are as yet not understood.

5. Period-incrementation: λ1λ2 ≡ −rλ2 < 0 (Impact Oscillator). We now
study the dynamics of the regularised discontinuous map (3.17) which was derived by
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considering the linear dynamics of high-velocity impacting orbits and regularising the
map to capture the local nonlinear effects of low-velocity impacts. A feature of the
map (3.17) which gives it different behaviour to the map (3.3) derived for the cam-
follower system is that the slopes of the respective linear parts are positive-negative
for the impact oscillator but are positive-positive for the cam-follower system. Hence
we expect to see period-incrementing behaviour in this case.

In Figure (2.6) we plotted a bifurcation diagram calculated directly from the impact
oscillator system and in Figure (5.1) we have used equivalent parameter values, cal-
culated using equation (3.15). Figures (2.6) and (5.1) are very similar (qualitatively)
and we can see that the ratio of the widths of the regions of existence for the period-2
and period-3 orbits are similar, with clear evidence of period-incrementing behaviour.

Fig. 5.1: The bifurcation diagram for the ω-limit sets for map (3.17) with parameter
values λ1 = 0.32, λ2 = −0.26 and ε = 0.93.

As in the previous section we now consider the effect of the regularisation on the
map with a gap, and in particular will see that certain high period orbits vanish as ε
increases although the overall period-incrementing structure is maintained. For this
analysis it is convenient to study a general system of the form (3.17) with −1 < λ2 <
0 < λ1 < 1.

The bifurcation diagrams of the ω-limit sets for the regularised discontinuous map
(3.17) with fixed parameters λ1 = 0.7 and λ2 = −0.9 and ε = {0, 0.1, 0.3, 1} are
plotted in Figure (5.2). In all of these figures we see period incrementing behaviour,
but we note that (as before) the high period orbits which exist for small values of ε
vanish and are replaced by chaotic behaviour. Similarly, the overlapping intervals of
existence of the period orbits are generally replaced by chaotic intervals.

The limiting case of the map with a gap when ε = 0 has been studied in [14] and
details of this case can be found in [10] and [14]. To briefly summarise these results
(for which the analysis is very similar to that of the previous section), we can study
the maximal periodic orbits of the form LN−1R with x1, . . . xN−1 ∈ L and xN ∈ R
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(a) ε = 0 (b) ε = 0.1

(c) ε = 0.3 (d) ε = 1

Fig. 5.2: The bifurcation diagram for the ω-limit sets of map (3.17) with parameters
λ1 = 0.7 and λ2 = −0.9.

so that

xN = λN−1
1 x1 + (1− λN−1

1 )µ/(1− λ1), x1 = λ2xN + µ− 1.

Such orbits arise at border-collision bifurcation points µN,1 (xN = 0) and µN,2,
(xN−1 = 0) given by

µN,1 =
λN−1

1 (1− λ1)
1− λN

1

, µN,2 =
λN−2

1 (1− λ1)
1− λN−2

1 (λ1λ2 + (λ1 − λ2))
.

When ε > 0 these bifurcation points change in their nature with µN,1 becoming a
period-doubling bifurcation. Figure (5.2) clearly shows that as ε increases from 0
the number of different periodic orbits decreases and periodic orbits are replaced by
chaotic intervals. Note that all periodic orbits in Figure (5.2) are of the form LN−1R.
Increasing ε has the effect of narrowing the width of the existence intervals of the
periodic orbits and for large enough ε the periodic orbits vanish and are replaced by
chaos.

We now derive the existence intervals for periodic orbits LN−1R in this case. An
example of a period-6 orbit (L5R) is plotted in Figure (5.3) and this orbit (and orbits
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LN−1R in general) undergo a bifurcation if µ is increased and the largest negative
iterate xN−1 collides with the discontinuity border and undergoes a border-collision
bifurcation. Similarly, if µ is decreased then the point xN moves into the regularisation
interval (as seen in Figure (5.3)) and we have x1 = f2(xN ), xN = f1(xN−1). A
period-doubling bifurcation then arises when

(fN−1
1 )′f ′2(xN ) = −1.

Examples of this behaviour is given in Figure (5.5).
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Fig. 5.3: A period-6 orbit for the map (3.17) for parameters λ1 = 0.7, λ2 = −0.9, ε =
0.1 and µ = 0.08.

A general LN−1R orbit undergoes a border-collision bifurcation at µ = µBC,N when
xN−1(µ) = 0, xN = µ. If µ > ε then xN lies outside of the regularisation interval and
x1 = f3(xN ) and exactly the same analysis as before (for ε = 0) can be applied so
that in this case the border collision occurs when µBC,N = µN,2. In the case of µ < ε
we have x1 = f2(xN ) and following some algebra, the resulting value for µBC,N for
the case µ < ε is given by

µBC,N =
4λ

2(N−2)
1 ε{

(λ2ε + 1)λN−2
1 + ε

(
λN−1

1 −1
λ1−1

)}2 .

The period-doubling bifurcation occurs when µ = µPD,N at which (f (N−1)
1 )′f2(xN )′ =

−1. Using the explicit form of map (3.17) the condition (f (N−1)
1 )′f2(xN )′ = −1 is

λN−1
1

(
−1
√

εxN
+ λ2 +

1
ε

)
= −1

which can be rearranged to show that xN ≈ ε. The iterate xN satisfies the condition
f

(N−1)
1 f2(xN ) = xN which is explicity

λN−1
1

[
−
√

4xN

ε
+
(

λ2 +
1
ε

)
xN + µ

]
+

(
λN−1

1 − 1
λ1 − 1

)
µ = xN .
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Calculated upto O(ε) we have

µPD,N (ε) =
λN−1

1 − λN
1

1− λN
1

+
(1− λ1)(1− λN−1

1 λ2)
1− λN

1

ε +O(ε2).

Observe that µPD,N = µN,1 +O(ε) > µN,1.

If ε = 0 we denote the existence intervals of the LN−1R orbit by IN , for which
µ ∈ (µN,1, µN,2). These intervals are of non-zero width, and the intersection between
IN and IN+1 is non-empty. For ε > 0 the width of the corresponding existence
interval IN (ε), for which µ ∈ (µPD,N , µBC,N ), is now a function of ε. As ε increases
the width of the existence interval decreases and the orbit LN−1R does not exist for
µPD,N (ε) > µBC,N (ε). Similarly, the interval IN (ε) ∩ IN+1(ε) vanishes at some point
as ε increases. This is illustrated in Figure (5.4) in which we plot the intervals in the
cases of N = 3, 4, 5 by showing the paths of the period-doubling bufurcations (solid)
and border-collision bifurcations (dashed) as ε increases. In this figure it can be seen
that the period-3 orbit exists for ε < 0.65 (approximately) and that the period-3
orbit coexists with the period-4 orbit for ε < 0.08 (approximately). To illustrate this
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Fig. 5.4: A plot showing the values of µ for which period-doubling (solid lines) and
border-collision bifurcations (dashed lines) occur for orbits with period N = 3, 4, 5.
The parameters are λ1 = 0.7 and λ2 = −0.9.

further we plot in Figure (5.5) the bifurcation diagram when ε = 0.07 in which we
can see the co-existence of the period-3 and period-4 orbits for this value, but that
the period-4 and period-5 orbits (and similarly the period-5 and period-6 orbits) are
now separated by an interval of chaotic behaviour.

We have seen in this section how a regularised discontinuous piecewise-linear map
which was derived using an outer approximation of the linear dynamics of the impact
oscillator gives qualitatively good agreement with the actual model. We have also
analysed the difference in behaviour between the discontinuous piecewise-linear map
(1.1) and the regularised discontinuous map (3.17).

6. Conclusions. In this paper we have seen that the dynamics of a cam-follower
system which impacts a smoothed corner can be described by a regularised discontin-
uous map and that the smooth bifurcations of such regularised discontinuous maps
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(a) ε = 0.04 (b) ε = 0.07

Fig. 5.5: Bifurcation diagrams for the map (3.17) for parameters λ1 = 0.7 and λ2 =
−0.9 showing that for ε = 0.04 the period-4 and period-5 orbit coexist but for ε = 0.07
a region of chaos separates the two orbits. This agrees exactly with Figure (5.4) which
plots the existence regions for the period-4 and period-5 orbits.

are ‘close’ to the nonsmooth border-collision bifurcations of a piecewise-linear discon-
tinuous map. We have also shown that the stroboscopic map for the impact oscillator
can be derived by considering the outer linear dynamics of the system and gives a
regularised discontinuous map. The regularised discontinuous map produces bifurca-
tion diagrams which are in reasonable agreement with bifurcation diagrams produced
directly from the impact oscillator system. Our method of considering the outer lin-
ear dynamics could be tested on other discontinuity-type bifurcations where the local
nonlinear effects are outweighed by the global linear behaviour of the system and the
local nonlinear behaviour could be obtained by regularisation.
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