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Abstract. Discrete breathers are found in a nonlinear one dimensional axially loaded mechanical
lattice consisting of rigid links supported laterally by linear springs. We find link centered breathers
for an odd number of mechanical links and pivot centred breathers where the number of links is even.
Substantial parameter regions in load–frequency parameter space are found where these breathers
are linearly and nonlinearly stable. This region includes the lattice in tension, in compression and
in the unloaded state. We also find that despite the rigid nature of this mechanical system both
the lateral displacement and energy-per-link is, at least, exponentially localised in the breather core.
Initial results also point towards the ability of energy to spontaneously localise in this mechanical
lattice. This is seen in the form of a spontaneously appearing moving discrete breather.
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1. Introduction. Pinned and linked mechanical lattice systems of the form il-
lustrated in Figure 1.1 as well as being of great importance in structural engineering
[9] have remarkably rich static [5] and dynamic behaviour. In particular, in this paper
we show that a mechanical lattice system such as this can support spatially localised,
time periodic oscillations, or ‘breathers’. Breather solutions are time periodic solu-
tions in a set of coupled ordinary differential equations (ODEs) where the energy is,
often exponentially, localised in space (for reviews see [7, 1, 2]). Despite the many pub-
lications on this topic few of the applications have been from macroscopic engineering
systems. Localisation of energy in these systems can have catastrophic consequences,
for instance excessive vibration of a single turbine blade leading to premature failure,
or vibration concentration in the lattice of a steel building causing excessive fatigue.

A mathematical model for the mechanical system shown in Figure 1.1, derived in
detail in §2 leads to a set of ODEs of the form

(I +A(y))ÿ +B(y, ẏ)ẏ = f(y) (1.1)

where y is the set of vertical pivot displacements and the functions A, B and f are
defined further in §2. There are several features of this mechanical system and its
mathematical model that make the breather investigations in this paper new. Firstly,
the rigid mechanical nature of this system means that unlike nearly all other systems
that exhibit breather solutions, the vertical displacement of pivots close to the centre
of the lattice affect the horizontal movement of the pivots at the ends of the lattice.
Thus, even if the vertical displacement of the pivots localises exponentially it is not
clear that the energy will also be localised. Secondly, the particular form of the
equations above means that previous existence proofs of breathers in coupled lattice
ODEs do not hold here. For instance, the proof of the existence of breathers given
in [11] requires linear coupling between adjacent pivots (see §3 for details) and that
A = B = 0 in the above set of ODEs. Similarly, the breather existence proofs in [10, 3]
can cope with nonlinear coupling but require hardening inter-pivot potentials and
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Fig. 1.1. The mechanical system in its flat state (top) and a displaced state (bottom) from [9]
that will be studied in this article. It consists of a chain of freely pin jointed rigid links of length
h > 0 constrained to lie in a plane. The vertical springs are linear and the system is axially loaded
by a force P at the end points.

again A = B = 0. In the mechanical system modelled in this paper the nonlinearities
arise purely from the geometry of the mechanical system. For p < 0 we see that the
lattice exhibits behaviour characteristic of a hardening nonlinearity whilst for p > 0
we see the characteristics of a softening nonlinearity.

In order to demonstrate the existence of breathers in this mechanical system we
will use a combination of existing methods for locating breathers in nonlinear lattices,
numerical continuation and direct simulation of the ODEs shown above. One method
for locating breathers in nonlinear lattices is described by Marin and Aubry [12]. In
this paper we use this method to find breathers in a simplified set of ODEs that are
related to the ones shown above. We then use two stages of numerical continuation to
locate breathers in the full set of ODEs. Some of the breathers found in the simplified
set of ODEs do not survive the continuations into the fully nonlinear lattice and these
branches end in either fold bifurcations or bifurcations with the linear modes of the
lattice. This behaviour leads to numerical evidence that the fully nonlinear lattice is
only able to support pivot centred breathers for even N and link centred breathers
for odd N .

Once we have located breathers in the mechanical lattice of Figure 1.1 we discuss
their existence region in parameter space, their linear and nonlinear stability, and
their energy localisation properties. We find that linearly stable sub-linear-spectrum
simple breathers can be found for the lattice in compression (p > 0), tension (p < 0)
and in the unloaded (p = 0) lattice also. The latter case is particularly surprising as
in this case the only nonlinearity in the system is in the left hand side of the ODEs
(1.1) shown above. The existence region in load-frequency space of these branches
of simple breather solutions is bounded at higher frequencies by the lowest frequency
linear mode of the system and at zero frequency as the breather solution approaches
a heteroclinic connection between two static equilibrium states of the lattice.

Direct simulations of the mechanical lattice shown in Figure 1.1 show that the
linearly stable, simple breathers are also stable to moderately large random pertur-
bations. A breather with a random perturbation six percent the size of the breather’s
maximum amplitude shows no noticeable delocalisation after 1000 breather periods,
whereas a linearly unstable breather solution has almost completely delocalised after
just three breather periods. Finally, we see through direct simulation of the nonlinear
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lattice with random initial conditions and parameter values for which we know stable
breather solutions can exist, that spontaneous energy localisation in this mechanical
lattice is also possible. In the simulation performed here this manifested itself as
what appears to be a spontaneously appearing moving breather in the lattice. This is
similar to the moving discrete breathers reported in [13] and the spontaneous energy
localisation seen in other nonlinear lattices by [6] and references therein.

The layout of this paper is as follows. In §2 we introduce a mathematical model
of the mechanical system shown in Figure 1.1 and derive the ODEs (1.1) shown
above. Section 3 explains the numerical methods and simplified lattices we use to
find breather solutions in the full mechanical lattice of Figure 1.1. Some properties of
these lattices are presented in §4. Section 5 shows examples of the implementation of
the methods described in the previous two sections and locates breathers in the full
mechanical lattice of Figure 1.1. Section 6 describes the parameter space existence
region for these breather solutions and also discusses their energy localisation and
nonlinear stability properties. In conclusion we summarise the results of the paper
and present a preliminary numerical simulation that points towards the ability of
energy to spontaneously localise in this mechanical lattice.

2. Modelling. The mechanical system we consider in this paper is the mechan-
ical system studied in the time independent case by [9] and is shown in Figure 1.1.
It consists of a freely pin jointed structure with N , mass-less, rigid links of length
h > 0. The displacements yi, for i = 0, . . . , N , of the joints (mass m) are constrained
to lie in the same plane and the system is constrained vertically at the ends so that
y0 = yN = 0. The system is also subject to a steady axial load P . The shape of
the mechanical system is determined entirely by the N + 1 vertical pivot coordinates
y0, . . . , yN . Including the coordinate x̄ to specify the horizontal coordinate of the
lattice’s centre of mass now completely specifies the state of the mechanical system.
The aim of this section is to derive an ODE for the vertical displacements yi that
models the fully nonlinear dynamic behaviour of this mechanical lattice. We do this
by determining both the potential and kinetic energies of the system in terms of the
yi coordinates which we then use to write down the Lagrangian subsequently derive
the corresponding Euler-Lagrange equations.

We can write the potential energy of this system V in terms of the energy stored
in the springs U and the work done by P in producing a total end shortening E , where

E = h

N−1∑
i=0

1−
√

1−
(
yi+1 − yi

h

)2
 . (2.1)

After neglecting constant terms V is written

V = U − PE = 1
2k

N∑
i=0

y2
i + Ph

N−1∑
i=0

√
1−

(
yi+1 − yi

h

)2

. (2.2)

We note here this model requires us to work with angular displacements of the lattice’s
links that satisfy Θi ∈ (−π2 , π2 ) and so |yi+1 − yi| < h. This means that we cannot
consider situations where the links become vertical or where pivots cross over.

Writing down the kinetic energy in terms of the yi takes a little more work. We
start by noticing that there are two straight-forward ways of writing the horizontal
pivot displacements, xi, in terms of the vertical displacements, yi: summing from the
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left of the lattice or summing from the right of the lattice.

Left: xn = x0 + h

n∑
i=1

√
1−

(
yi − yi−1

h

)2

Right: xn = xN − h
N∑

i=n+1

√
1−

(
yi − yi−1

h

)2

.

Here we use the convention that sums for which the upper index is smaller than the
lower index give the value zero. These two expressions seem slightly unsatisfactory as
they give artificial significance to either the left, or right, end of the lattice. We can
rectify this by averaging these to expressions to get a symmetric expression for the
horizontal displacements xi in terms of the vertical displacements yi:

xn =
1
2

(x0 + xN )︸ ︷︷ ︸
c

+
h

2

 n∑
i=1

√
1−

(
yi − yi−1

h

)2

−
N∑

i=n+1

√
1−

(
yi − yi−1

h

)2


︸ ︷︷ ︸
Kn(y)

.

The extra degree of freedom has been renamed c and the combination of sums renamed
K(y) to give the simpler expression

xn = c+Kn(y),

which has time derivative

ẋn = Xn(y, ẏ, ċ) = ċ+
dKn(y)

dym
ẏm. (2.3)

Here we have used the Einstein summation convention over repeated indices, n,m =
0, . . . , N and also y = (y0, y1, . . . , yN )T. With this expression we can write down the
Lagrangian for this mechanical system to give

L1(y, c, ẏ, ċ) =
mp

2
ẏnẏn +

mp

2
Xn(y, ẏ, ċ)Xn(y, ẏ, ċ)− V (y).

We now need to incorporate the vertically fixed end constraints (y0 = yN = 0) into
this model; we do this using two Lagrange multipliers µ1 and µ2 and forming the new
Lagrangian function

L2(y, c, ẏ, ċ) =
mp

2
ẏnẏn +

mp

2
Xn(y, ẏ, ċ)Xn(y, ẏ, ċ)− V (y)− µ1y0 − µ2yN . (2.4)

The Euler-Lagrange equations for this Lagrangian can be found by evaluating

d
dt

(
∂L2

∂ẏk

)
=
∂L2

∂yk
for k = 0, . . . , N (2.5)

d
dt

(
∂L2

∂ċ

)
=
∂L2

∂c
. (2.6)

Evaluating (2.5) for the Lagrangian (2.4) gives

mp

(
δkl +

∂2Xn
∂ẏl∂ẏk

Xn +
∂Xn
∂ẏk

∂Xn
∂ẏl

)
ÿl +mp

(
∂2Xn
∂yl∂ẏk

Xn +
∂Xn
∂ẏk

∂Xn
∂yl

)
ẏl

+mp

(
∂2Xn
∂ċ∂ẏk

Xn +
∂Xn
∂ċ

∂Xn
∂ẏk

)
c̈ = − dV

dyk
− µ1δ0k − µ2δNk, (2.7)
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for k = 0, . . . , N whilst expression (2.6) becomes

mp

(
∂Xn
∂ċ

c̈+
∂Xn
∂y

ẏ +
∂Xn
∂ẏ

ÿ

)
∂Xn
∂ċ

+mp

(
∂2Xn
∂ċ2

c̈+
∂2Xn
∂ċ∂y

ẏ +
∂2Xn
∂ċ∂ẏ

ÿ

)
Xn = 0.

(2.8)
In these expressions we use the Einstein summation convection for repeated indices
and n, l, k = 0, . . . , N . These differential equations should be solved along with the
constraint equations y0 = yN = 0 making this a set of differential algebraic equations.
However, we now show how we can eliminate the variable c and convert this system
in to a set of N − 1 ordinary differential equations. We first eliminate c̈ by looking at
equation (2.3) and noticing that for all n, k and l

∂2Xn
∂ẏk∂ẏl

= 0,
∂2Xn
∂ċ∂ẏl

= 0,
∂2Xn
∂ċ∂yl

= 0,
∂2Xn
∂ċ2

= 0, and
∂Xn
∂ċ

= 1.

Inserting these simplifications into (2.8) leaves

mp

N∑
n=0

(
c̈+

∂Xn
∂yl

ẏl +
∂Xn
∂ẏl

ÿl

)
= 0 (2.9)

⇒ c̈ =
−1

N + 1

N∑
n=0

(
∂Xn
∂yl

ẏl +
∂Xn
∂ẏl

ÿl

)
. (2.10)

To eliminate ċ we can find an expression for ċ in terms of y and ẏ by noticing that
expression (2.9) is an exact derivative and so it implies

d
dt

(
mp

N∑
n=0

Xn(y, ẏ, ċ)

)
= 0

mp

N∑
n=0

Xn(y, ẏ, ċ) = β, (2.11)

where β is a constant. This expression is equivalent to saying that the centre of mass
of the lattice, x̄, travels at a constant velocity in the x direction1, ˙̄x = β. If we
constrain the system to have a horizontally fixed centre of mass we are able to set
β = 0. Using (2.3) in (2.11) then gives us

ċ = − 1
N+1

N∑
n=0

(
∂Kn(y)
∂ym

ẏm

)
.

Using this expression for ċ and (2.10) for c̈ we can eliminate c from (2.7) to give

mpδkl +mp

(
∂Xn
∂ẏk

∂Xn
∂ẏl
− 1

N+1

(
N∑
n=0

∂Xn
∂ẏk

)(
N∑
n=0

∂Xn
∂ẏl

))
ÿl

+mp

(
∂2Xn
∂yl∂ẏk

Xn +
∂Xn
∂ẏk

∂Xn
∂yl
− 1

N+1

(
N∑
n=0

∂Xn
∂ẏk

)(
N∑
n=0

∂Xn
∂yl

))
ẏl

= − dV
dyk
− µ1δ0k − µ2δNk. (2.12)

1This is seen by differentiating the expression x̄ = 1
N+1

PN
n=0 xn, twice with respect to time and

using ẋn = χn(y, ẏ, c).
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Using (2.3) we can make this elimination of c more explicit by replacing the function
χ(y, ẏ, ċ) with (2.3) and

∂Xn
∂yl

=
∂2Kn(y)
∂ym∂yl

ẏm,
∂Xn
∂ẏk

=
∂Kn(y)
∂yk

,
∂2Xn
∂ẏl∂ẏk

= 0,
∂2Xn
∂ẏk∂yl

=
∂2Kn(y)
∂yk∂yl

to leave

mp

(
δkl +

∂Kn
∂yk

∂Kn
∂yl
− 1

N+1

(
N∑
n=0

∂Kn
∂yk

)(
N∑
n=0

∂Kn
∂yl

))

+mp

(
∂2Kn
∂yk∂yl

[
ċ(y, ẏ) +

dKn
dym

ẏm

]
+
∂Kn
∂yk

∂2Kn
∂ym∂yl

ẏm

− 1
N+1

(
N∑
n=0

∂Kn
∂yk

)(
N∑
n=0

∂2Kn
∂yl∂ym

ẏm

))
= − dV

dyk
− µ1δ0k − µ2δNk (2.13)

for k = 0, . . . , N . Considering these differential equations with the constraint equa-
tions y0 = yN = 0 leads to a differential algebraic equation for the variables yi with
i = 0, . . . , N , µ1 and µ2. We can almost trivially convert this into an ordinary dif-
ferential equation by substituting y0 = yN = 0 into the above equations and then
noticing that for k = 0 and k = N equation (2.13) can be solved to give explicit
expressions for the Lagrange multipliers µ1(y0, . . . , yN ) and µ2(y0, . . . , yN ). We are
then left with N−1 ODEs in the form of (2.13) for k = 1, . . . , N−1 with y0 = yN = 0.
If we now let y = (y1, . . . , yN−1)T we are able to define

[A]kl =

(
∂Kn
∂yk

∂Kn
∂yl
− 1

N+1

(
N∑
n=0

∂Kn
∂yk

)(
N∑
n=0

∂Kn
∂yl

))

[B]kl =
(
∂2Kn
∂yk∂yl

[
ċ(y, ẏ) +

dKn
dym

ẏm

]
+
∂Kn
∂yk

∂2Kn
∂ym∂yl

ẏm

− 1
N+1

(
N∑
n=0

∂Kn
∂yk

)(
N∑
n=0

∂2Kn
∂yl∂ym

ẏm

))
and

[f(y)]k = − dV
dyk

for k, l = 1, . . . , N−1, n,m = 0, . . . , N and the ODE modelling our mechanical system
becomes

mp(I +A(y))ÿ +mpB(y, ẏ)ẏ = f(y),

where I is the N − 1 by N − 1 identity matrix.
It is convenient to non-dimensionalise the above equations using the scalings

hȳi = yi, hc̄ = c, t̄

√
m

k
= t,

hk

4
p̄ = p.

These scalings leave one free parameter in this system: the nondimensionalised load p̄.
Dropping the bars from the nondimensional quantities we are left with the differential
equations

(I +A(y))ÿ +B(y, ẏ)ẏ = f(y) (2.14)
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where A,B, K and ċ are given by the equations above with h set to one and

f(y) =



−y1 − p
4g(y2 − y1) + p

4g(y1)
...

−yi − p
4g(yi+1 − yi) + p

4g(yi − yi−1)
...

−yN−1 − p
4g(−yN−1) + p

4g(yN−1 − yN−2)

 (2.15)

for i = 2, . . . , N − 2 and g(x) = x/
√

1− x2.

3. Method used to find breather solutions. As mentioned in the introduc-
tion, current existence proofs for breather behaviour in nonlinear lattices do not apply
to lattice ODEs of the form (2.14). In addition to this there are also no direct numer-
ical methods for finding breather solutions in these equations. This section describes
how we located breather solutions in a simplified version of equations (2.14) before
using numerical continuation to slowly increase the full nonlinearities these equations
and hence find breathers in the mechanical lattice of Figure 1.1.

There are three aspects to our search for breather solutions. The first is the
numerical method we have used to accurately find and continue time-periodic, time-
reversible solutions to these ODEs. The second is the numerical continuation proce-
dure we have used to follow branches of breather solutions from the simplified lattice
to the fully nonlinear mechanical lattice equations. The third aspect of the search for
breather solutions is how we create breather solutions in the simplified mechanical
lattice and which of the available solutions we choose to consider further. We now
describe these methods.

Numerical methods. We are interested, in this paper, in time periodic solutions
to multidimensional differential equations such as (2.14) and (3.5) (seen later). In
order to find these computationally we first write the ODE system in the standard
form Ẋ = F (X). Using the equations (2.14) as an example, we let w = ẏ,

X =
(

y
w

)
and then equations (2.14) can be written in standard form thus

Ẋ = F (X) ≡
(

w
(I +A(y))−1 (f(y)−B(y,w)w)

)
. (3.1)

This mechanical system is conservative, as are the multidimensional ODE systems we
consider in this paper, and so we expect periodic solutions to exist in one parameter
families which may be parametrised by the orbital period T . Also, when searching
for periodic solutions we have to remove the time translation symmetry of a periodic
solution and we do this by searching for time reversible solutions. We can confirm
that the ODEs (2.14) are indeed reversible by defining the involution ρ by

ρ :
(

y
w

)
→
(

y
−w

)
and using the expressions for A(y) and B(y, ẏ) of the previous to show that

ρF (X) = −F (ρX).
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Similar calculations can verify this property for the other sets of ODEs seen later in
this paper.

The search for time reversible periodic solutions rests on the following result.
Lemma 3.1. Let X(t) be a solution to the dynamical system Ẋ = F (X) that for

some T > 0 satisfies ρX(0) = X(0) and ρX(T ) = X(T ). Also let F be a reversible
vector field, i.e. ρF (X) = −F (ρX). Then there exists τ such that X(t + τ) = X(t),
i.e. X(t) is a time periodic solution.

Proof. See, for example, [8].
After rescaling the time variable in (3.1) the above lemma allows us to see that

the search for time reversible periodic solutions, with period τ , is equivalent to finding
solutions of the two point BVP

Ẋ = τF (X) with w(0) = 0 and w(1) = 0.

To find accurate solutions to this BVP we use a Newton based method (see [12] for
further details). We search for zeros of the map F : RN−1 → RN−1 which maps y(0)
to w(T ), where T = 2π/ω is the period of the periodic orbit sought and y,w ∈ RN−1.
The numerical accuracy of this method depends on the Newton’s method convergence
criterion and the accuracy of the numerical integrator used to find w(T ). In this
work Matlab, with its IVP solver ode45 is used to compute individual time periodic
solutions. Once we have a time periodic solution we use the numerical continuation
software AUTO [4], which uses an adaptive collocation method to solve the relevant
ODEs, to perform continuation of these periodic solutions and see how they change
with the parameters of the system. Later, in §6 we see that in order to accurately
determine the energy based properties of these periodic solutions numerically it is
necessary to use one further numerical method that preserves the energy of the system
better than AUTO and Matlab. The need for this method further discussed in §6 and
the method itself is presented in Appendix A.

Continuation procedure. There are no direct methods for finding breather
solutions in ODEs of the form (2.14) and so we first locate breathers in an artificially
simplified version of the ODEs (2.14) using the method described in [12]. These
artificially simplified ODEs are created by introducing continuation parameters C
and α such that when C = 0 and α = 0 we can find breathers easily and when C = 1
α = 1 we have the ODE system (2.14). We then numerically continue the breather
solutions between these two parameter limits using the continuation code AUTO [4].

The first of the two parameters we introduce is α which enters the ODEs (2.14)
in the following way:

(I + αA(y))ÿ + αB(y, ẏ, ċ)ẏ = f(y). (3.2)

When α = 0 the above equation becomes a set of nonlinearly coupled oscillators
ÿ = f(y), which then allows us to use the method of [12] to find breather solutions.
This method requires the system ÿ = f(y) to have a limit of one of its parameters
(an anticontinuous limit) such that the system becomes a set of decoupled nonlinear
oscillators. A trivial breather can be created in this limit: one oscillator oscillating
while the others are stationary. If we write (3.2) for α = 0 explicitly we get

ÿ1 = −y1 − p

4
g(y2 − y1) +

p

4
g(y1) (3.3a)

ÿi = −yi − p

4
g(yi+1 − yi) +

p

4
g(yi − yi−1) (3.3b)

ÿN−1 = −yN−1 − p

4
g(−yN−1) +

p

4
g(yN−1 − yN−2), (3.3c)
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with i = 2, . . . , N − 1 and g(x) = x/
√

1− x2. We can see that there is no such
nonlinear anticontinuous limit as the limit p = 0 leads to decoupled linear oscillators.
The technique used in [12] to get around the problem of the lack of such a limit is to
introduce the change of variables given by

z1 = y1, zi = yi − yi−1 for i = 1, . . . , N, zN = −yN−1. (3.4)

Using this and subtracting (3.3) for i = j+ 1 from (3.3) for i = j we get the following
equations of motion for the variables zj

z̈1 = −z1 +
p

4
g(z1)− pC

4
g(z2) (3.5a)

z̈j = −zj +
p

2
g(zj)− pC

4
(g(zj+1) + g(zj−1)) (3.5b)

z̈N = −zN +
p

4
g(zN )− pC

4
g(zN−1). (3.5c)

for j = 2, . . . , N − 1. We can now see where the second continuation parameter, C is
introduced. The parameter C has been introduced so that when C = 0 the system
decouples into N nonlinear oscillators. A trivial breather at frequency ωb can be
created in this limit: one oscillator oscillating while the others are stationary. As long
as this breather is not at a frequency that is part of the linear spectrum of the lattice
[11], it can then be numerically continued from this anticontinuous limit to the finite
coupling regime to give the required breather. Once at C = 1 we can recover the
coordinates yn by using the expression

yn =
n∑
i=1

zi for n = 1, . . . , N − 1. (3.6)

Once we have located a breather in equations (3.5) with C = 1, or equivalently
equations (3.2) with α = 0, we then perform another continuation, in α to find a
breather in the fully nonlinear set of ODEs (2.14) and thus the mechanical lattice
shown in Figure 1.1.

The answer to the question of which trivial breathers we can create in the an-
ticontinuous limit, and whether these breathers can survive the continuations up to
C = 1 and α = 1, depends on the detailed properties of the nonlinear oscillators that
result from setting C = 0 in (3.5) and the linear spectrum of this lattice for C > 0.
This behaviour is investigated in the next section.

3.1. Anticontinuous limit. The previous two sections have described how we
take easily created breather solutions from a simplified version of our mechanical
lattice (the anticontinuous limit, C = 0 in equations (3.5)) and then continue these
breather solutions into the fully nonlinear lattice given by equations (2.14) (or (3.2)
with α = 1). We now discuss these ‘easily created’ breathers in the anticontinuous
limit.

The idea of the anticontinuous limit, as described in [12, 11] and others, is that
creating a time periodic spatially localised oscillation in a set of uncoupled oscillators
is easy, we set one oscillating whilst leaving the remainder stationary. We have re-
stricted the search for breather solutions to time reversible solutions and so the two
conditions we have on our ‘trivial’ breather solutions are that they are time periodic
with frequency ωb and that ż(0) = 0 (where z is the variable seen in equations (3.5)).
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To create a time reversible periodic solution to equations (3.5) with C = 0 with
frequency ωb, we set each individual oscillator oscillating with a frequency ωzi

such
that nωzi

/2 = ωb for any n ∈ N. We ensure that this solution is time reversible
by choosing the initial conditions zi(0) = aiz

max
i for each i where ai ∈ {−1, 0, 1}

and zmaxi > 0 is chosen so that oscillator i is oscillating at frequency ωzi . This
method leads to many different types of solution, some of which are not spatially
localised (these are often referred to as multibreathers). Since, in this paper, we are
interested in localisation in this mechanical lattice we shall restrict our attention to
two of the very simplest type of localised solutions which we will call the pivot centred
breather (PC) the link centred breather (LC). These breathers are characterised by
the amplitudes of the nonlinear oscillators at t = 0 in the anticontinuous limit.

LC : zi =

{
z(ωb) i = i∗

zi = 0 otherwise
, PC : zi =


z(ωb) i = i∗

−z(ωb) i = i∗ + 1
zi = 0 otherwise

,

where i∗ = b(N + 1)/2c. We note here that we have used the terminology link and
pivot centred to refer to the original mechanical lattice (of Figure 1.1) rather than
the transformed, anticontinuous limit lattice. This means that in the coordinates zi
for i = 1, . . . , N as shown above these labels appear to be the wrong way around.
Transforming back to the original lattice coordinates removes this issue.

The decoupled oscillators that arise from setting C = 0 in equation (3.5) cannot
oscillate at any frequency. The attainable set of frequencies is determined by the be-
haviour of these decoupled nonlinear oscillators. Similarly, not all breathers created
in this anticontinuous limit will be able to be continued into the fully nonlinear me-
chanical lattice regime. This behaviour is mostly determined by the linear spectrum
of the ODEs seen above. The next section determines the behaviour of the decoupled
nonlinear oscillators and the linear spectra of the lattices shown above.

4. Lattice properties. In order to start our detailed search for breathers in
the nonlinear lattices presented in the previous section we need to know some of their
detailed properties. Firstly, in order to choose a suitable frequency of oscillation in the
anticontinuous limit lattice (ODEs (3.5) with C = 0) we need to know the amplitude
frequency dependence of these decoupled nonlinear oscillators. This is determined
in the following section. It is also known that the linear spectrum of a lattice plays
an important role in the existence theory for breathers as it is shown in [11] that
we cannot continue a breather from the anticontinuous limit if the breather is at
a frequency that resonates with the linear spectrum. This means that we require
nωb 6= ωi for all n ∈ N and ωi ∈ σ where ωb is the breather frequency and the set σ is
the linear spectrum of the lattice. Thus we look at these linear spectra in §4.2 below.

4.1. Anticontinuous limit: oscillators. Setting C = 0 in (3.5a) and (3.5c)
leads to two nonlinear oscillators of the form

z̈n = −zn +
p

4
ḡ(zn) (4.1)

while C = 0 in (3.5b) leads to N − 2 nonlinear oscillators of the form

z̈n = −zn +
p

2
ḡ(zn). (4.2)

The first oscillators (4.1) are different from the oscillators (4.2) due to boundary
effects. In this paper we wish to consider breather solutions for which the vertical
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Fig. 4.1. Plots of the potential function (4.3) for the p values, from left to right, p =
−0.5, 0, 1.5, 2.2. This illustrates the behaviour of the interior nonlinear oscillators obtained from
the anticontinuous (C = 0) limit of the lattice ODEs (3.3), as described in the text.
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γ+(p, z) < 0
γ (p, z) > 0

γ+(p, z) > 0
γ (p, z) > 0

γ+(p, z) > 0
γ (p, z) < 0

Fig. 4.2. For the expression (4.4) to be valid we require β2 > 0. If we define γ+(p, z) = 2V (z)+p
and γ−(p, z) = 2V (z) − p then β2 > 0 when γ+ and γ− are greater than zero. This occurs for the
central region shown in this figure. The vertical dotted lines show the maximum and minimum
possible values of z, z = ±1.

displacement of the lattice is localised to some interior points of the lattice and so we
will not consider, in detail, the behaviour of the oscillators (4.1). The oscillators (4.2)
are Hamiltonian with Hamiltonian function

H =
z2

2
+ V (z), and V (z) =

z2

2
+
p

2

√
1− z2. (4.3)

The qualitative behaviour of this Hamiltonian oscillator for different values of p can
be found by considering the behaviour of the function V (z), which is plotted for the
p values p = −0.5, 0, 1.5, 2.2 in Figure 4.1. This allows us to get our first insight
into the physical behaviour of this system. The plots in Figure 4.1 show us that
putting the lattice under tension (p < 0) tends to make the system behave as if the
nonlinearity is a hardening nonlinearity and the frequency of oscillation increases with
amplitude. However, with the lattice under compression p > 0 the converse is true
the system’s nonlinearity appears to be of softening type. This means that, at least
initially, we expect to look for breathers at frequencies above the linear spectrum for
p < 0 and breathers below the linear spectrum for p > 0. This oscillator behaviour is
summarised in the following table.
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p Oscillatory domain ωmax and ωmin Characteristic
p < 0 |z| < 1 ωmin = ωlin, ωmax = ω(1) Hardening
p = 0 z ∈ R ωmin = ωmax = ωlin Linear
0 < p < 2 |z| <√1− p2/4 ωmin = 0, ωmax = ωlin Softening

The frequency of small oscillations for the above nonlinear oscillator (see equation
(4.2)) is

ωlin =
√

1− p

2
.

For the p values and oscillation amplitudes, z, shown in Figure 4.2 we can deter-
mine the oscillation frequency analytically and this is given by

ω(z) =

(
4a

π
√

2V (z)− p
[
2Π(−a2;φ(z)|β2)− F (φ(z), β2)

])−1

(4.4)

where

a2 =
4− 4h−√(4h− 4)2 − 4(4h+ p)(4h− p))

4h− 2p
, β2 =

(2h+ p)a4

2h− p
h = V (z), φ(z) = sin−1

(
1
a

tan
(

1
2

sin−1(z)
))

,

and F and Π are the incomplete elliptic integrals of the first and thrid kinds re-
spectively. Using expression (4.4) we can determine the maximum and minimum
oscillation frequencies that the nonlinear oscillators defined by (4.3) can achieve. The
dependence of these frequencies on p is plotted in Figure 4.3 as solid lines. This in-
formation will be used for comparison with the linear spectrum which is found in the
next section.

4.2. Linear Spectra. We have two lattice equations we are considering in this
paper, (3.5) and (3.2). These are the two lattices we have to perform continuation on
to reach the full mechanical lattice. In the first of these lattices, (3.5), the continuation
parameter C does affect the linear behaviour. The linear spectrum of this lattice is
derived from the set of eigenvalues, {λk}, of the matrix A ∈ RN×N , with

A =


p
4 − 1 −pC4
− p
C 4 p

2 − 1 −pC4
. . . . . .

− p
C 4 p

2 − 1 −pC4− p
C 4 p

4 − 1

 ,

through the relation ωk =
√−λk for k = 1, . . . , N . The variation of ωk with C is

shown in Figure 4.4 for p = −0.5 and p = −0.5 in (a) and (c) respectively. Parts (b)
and (d) of Figure 4.4 show the corresponding eigenvectors and show that for p < 0
the highest frequency modes have the shortest spatial wavelength whilst for p > 0 the
highest frequency modes have the longest spatial wavelength. We can also see that,
as expected, at C = 0 the system decouples into N − 2 oscillators with frequency√

1− p/2 and the two oscillators at the boundaries with frequency
√

1− p/4. In
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Fig. 4.3. This shows the maximum and minimum frequencies, ωmax and ωmin, achievable in
the nonlinear oscillators (4.2) for −1 < p < 1 as solid lines. The dashed lines show the lowest
and highest frequency linear modes in the nonlinear lattice (3.5) for C = 1. Regions A and B show
the parameter regions for which we expect branches of simple breathers to exist between C = 0 and
C = 1.
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Fig. 4.4. The two plots on the left show how the frequencies in the linear spectrum of lattice
(3.3) change as the parameter C is increased from the anticontinuous limit for N = 9 and p = −0.5
(top) and p = 0.5 (bottom). The plots on the right show the linear mode shapes at C = 1 in the
z coordinates and transformed into the y coordinates using (3.6). We can see that for p > 0 the
highest temporal frequency mode has the longest spatial wavelength, and for p < 0 the situation is
reversed.
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order to locate a breather in the fully nonlinear mechanical lattice we have to continue
the trivial breather solution from the anticontinuous limit (C = 0) of equation (3.5)
up to C = 1. For this to be possible the frequency of the breather must not collide
with the linear spectrum shown in Figure 4.4. To see the parameter values that this
condition allows the maximum and minimum linear frequencies at C = 1 are shown
in Figure 4.3 as dashed lines. This then tells us that the two parameter regions in
which we are able to search for breathers are the regions denoted A and B in Figure
4.3.

In the second lattice we shall perform continuation on, (3.2), the continuation
parameter only affects the nonlinear terms and so the linear spectrum for this lattice
is the same as for the lattice above with C = 1. It turns out that when C = 1 this
linear spectrum can be determined analytically to give

ω2
k = 1 +

p

2

(
cos

kπ

N
− 1
)
.

5. Results: computations of breather solutions. We now have all the in-
formation needed to present the numerical results of our search for breather solutions
in the mechanical lattice shown in Figure 1.1.

5.1. Continuation one. In this section we consider the behaviour of the branches
of link and pivot centred breathers found in the anticontinuous limit in §3 as we in-
crease the parameter C from 0. There are two bifurcation scenarios for the branches of
breather solutions continued away from the anticontinuous limit; these are illustrated
in Figure 5.1. The first bifurcation scenario, (a) of Figure 5.1, is that the breather
frequency encounters the edge of the linear spectrum of the lattice as C is increased,
the breather delocalises and the branch disappears in a bifurcation with the band edge
linear mode. As long as this bifurcation with the linear mode happens for C > 1 we
can still locate a breather at C = 1 as is shown in (b) of Figure 5.1. The second type
of breather branch behaviour as we increase C, (c) of Figure 5.1, is that the breather
branch disappears in a fold bifurcation with another, related breather branch. Again,
as long as this fold bifurcation occurs at C > 1 we can locate breather solutions at
C = 1 (plots (d) and (e)) as required for the second stage of numerical continuation.

Predicting which values of N , p and ω lead to each of these two different situations
is difficult. Similarly, determining which branches will reach C = 1 and which will not
is also not clear. Having said this, it appears to be the case that for the majority of
parameter values, p and ω, when N is odd the branch of link centred breathers tends
to terminate in a bifurcation with the band edge linear mode and when N is even
this branch tends to terminate in a fold bifurcation. The converse is the case when
considering the pivot centred breathers. The branches of pivot centred breathers tend
to terminate in a bifurcation with the band edge linear mode for N even and in fold
bifurcation when N is odd.

5.1.1. Breathers for values of ω above the linear spectrum. The discus-
sion so far applies to locating breathers at frequencies below the linear spectrum.
We can see from Figure 4.3 that it should be possible, using the same methods as
in the previous section, to determine breathers above the linear spectrum for p < 0
by choosing frequencies in region A. Frequencies in this region are achievable in the
anticontinuous limit of lattice (3.5) and will not collide with the highest frequency
linear mode for C ≤ 1. Attempting to perform this continuation from C = 0 to C = 1
leads to a problem with the particular model chosen in §2. As we continue this branch
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Fig. 5.1. Examples of continuations from the anticontinuous (C = 0) limit of lattice ODEs
(3.5) for p = 0.3 and ω = 0.7. Plots (a) and (b) are for N = 15 and plots (c)–(e) are for N = 16.
Plot (a) shows how this breather reaches C = 1 and then at a higher C value collides with the lowest
frequency linear mode at the C value marked by a vertical black line. Plot (b) shows the breather
profile at C = 1. Plot (c) shows how for even N the simple breather branch disappears in a fold
bifurcation before reaching the edge of the linear spectrum indicated by the vertical dashed line. Plots
(d) and (e) show the breather profile at C = 1 for the upper and lower branches respectively shown
in (c).

from C = 0 it the breather solutions appear to move into the region where |zi| > 1
for some i. Equivalently, one of the mechanical links is trying to attain an angle with
the horizontal of greater than π/2 for C � 1. To consider these breathers will require
a more general model than that used here and so we postpone investigation of these
breathers above the linear spectrum until further work has been completed.

5.2. Continuation two. In the previous section we saw that it is possible to
find breather solutions in the intermediate lattice equations, (3.5), at C = 1. Via
the coordinate transformation (3.4) this is equivalent to finding a breather solution
in the lattice equations (3.2) with α = 0. We now consider the bifurcation behaviour
of these breather branches as we increase α from zero to one.

In this continuation the distinction between the bond centred and site centred
breathers is more clear. Again, there appear to be two fates for the breather branches
as we continue α up from zero (see Figure 5.2). Either the branch disappears in a fold
bifurcation for a small value of α (Figure 5.2 (d)) or the branch continues towards
higher and higher values of α with the breather amplitude asymptoting to zero as α
increases (Figure 5.2 (a)). The first of these situations occurs for the bond centred
breathers when N is even and for the site centred breathers when N is odd. The
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Fig. 5.2. Examples of the two different types of behaviour when following a branch of link
centred breather solutions towards higher α values. Pane (a) shows an example of a branch that
appears to extend to infinite values of α with an ever decreasing breather amplitude (parameters
N = 15, p = 0.3, ω = 0.7). Pane (b) shows the breather at α = 1 on the branch in pane (a). Pane
(c) shows an example of a branch of breather solutions that is destroyed in a fold bifurcation. The
parameters here are N = 30, p = 0.3, w = 0.7. The solutions marked by • in (c) are shown in (d)
and (e), with solution (d) being the higher dot.

second situation occurs for the bond centred breathers when N is odd and for the site
centred breathers when N is even.

Only the first of these two bifurcation scenarios leads to finding a breather in the
full mechanical lattice. An example of such a breather is shown in Figure 5.2 (b).
Now that we have located breathers in the mechanical lattice of Figure 1.1 we now
go on to investigate some of their properties.

6. Breather Properties. We saw in the previous section that it is possible
to find breathers in the fully nonlinear mechanical lattice described by the ODE
system (2.14). The purpose of this section is to describe some of their properties and
to investigate whether these breathers have similar properties to breathers found in
simpler multidimensional ODEs in the literature.

6.1. Existence and Stability. Now that we have located both a breather in
the mechanical lattice the next important questions are for what parameters in load
frequency space do these breathers persist and are they linearly (and nonlinearly)
stable. These questions are particularly important with regard to the possibility of
observing these solutions experimentally: there is very little hope if they only exist
for very specific parameter values or are dynamically unstable.
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Fig. 6.1. This shows the behaviour of a link centred breather branch for N = 29 and p = 0.2 as it
is continued in the breather frequency ω. As ω approaches zero the breather amplitude increases ((a)
and (b)) and the periodic solution approaches a heteroclinic connection between two static equilibrium
states of the lattice. At the other end of the branch the branch bifurcates with the band edge linear
mode and the breather delocalises. Pane (c) shows the absolute values of the Floquet multipliers for
this breather solution and we see the breather looses its linear stability at about ω = 0.5.

Figure 6.1 summarises the results of a numerical continuation that shows how
a link centred breather changes shape and stability as we change the frequency of
the breather solution. As the breather frequency is increased, since this breather
exists at frequencies below the linear spectrum of the lattice, the breather frequency
gets closer and closer to the linear mode at the lower spectrum edge. Eventually the
breather delocalises and bifurcates with this linear mode (Figure 6.1 (a) and (b)),
which is behaviour seen in many other systems which can support discrete breathers.
As we reduce the breather frequency, the breather solutions on this branch approach a
heteroclinic connection between two static equilibrium states of the mechanical lattice.
As we get close to this heteroclinic connection it becomes increasingly difficult to follow
the branch numerically and so the plots in Figure 6.1 stop at ω ≈ 0.35.

Plot (c) of Figure 6.1 shows us the absolute values of the Floquet multipliers
of this time periodic breather solution. This shows that at around ω = 0.5 this
breather branch looses its linear stability and becomes more and more unstable as the
breather frequency approaches zero. On this Figure we finally note that this breather
branch is at constant load and the changing breather frequency has little affect on the
localisation width. This figure, therefore, gives us the frequency-amplitude relation
for this discrete breather.
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Fig. 6.2. Plots (a) and (b) show how the amplitude of a link centered breather solution, with
N = 29 and ω ≈ 0.84, increases as the load p on the lattice is reduced. Plot (c) shows that absolute
values of the Floquet multipliers for this breather solution and we see that the lienar stability is load
at p ≈= −1.6. Plot (d) shows how reducing p affects the localisation width of the breather. The
plot for ≈ −3.2 has been displaced upwards on the plot by 0.05 to make comparing the two breather
shapes easier.

On the other hand, Figure 6.2 shows how the same link centred breather solution,
with N = 29, changes as we alter the axial load on the lattice. As p is increased, as
with ω described above, we eventually reach the edge of the linear spectrum of the
lattice and the branch of breather solutions disappears in a bifurcation with this band
edge linear mode. As p is reduced, however, we see some different behaviour. As can
be seen in Figure 6.2 (b) and (d) reducing the load p increases the amplitude and
reduces the localisation width so that for p ≈ −3.2 in (d) we have a sharply localised
breather with a relatively large amplitude. Pane (c) shows, again, that the size of
the region of linear stability is significant with this breather branch loosing its linear
stability at around p = −1.6.

The slightly surprising aspect of the results presented in Figure 6.2 is that the
branch of breather solutions shown there passes continuously through the change of
load on the lattice from a compressive situation (p > 0) through the unloaded state,
into a situation where the lattice is under tension. We can see through equations
(2.14) and (2.15) (p6) that when p = 0 the only nonlinearity in the equations of
motion for this system is in the mass matrix terms on the right hand side of (2.14).
This contrasts with most other ODE systems supporting breather solutions which
contain some type of nonlinearity in the potential, or left-hand-side of (2.14).
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Fig. 6.3. This shows a perturbed breather profile (N = 29 p ≈ −0.2432 and ω ≈ 0.8497) at t = 0
(lower) and t = 1000τb (upper) where τb is the breather period. This demonstrates that this breather
solution as well as being linearly stable is also stable to moderately large random perturbations.

6.1.1. Breather nonlinear stability. We have seen in the previous section that
simple breather solutions can be linearly stable in this nonlinear mechanical lattice.
In order to observe them experimentally it is useful to know their lifetime away from
the exact solution’s trajectory. In order to investigate this we have directly simulated2

the ODEs (2.14) using the solutions found in the previous section (labelled y∗ below)
with a small random perturbation added to each of the pivot displacements. This
perturbation took the form

yi(0) = y∗i (0) + ∆y with ∆y ∼ U(−ε, ε) (6.1)

with ε = 1× 10−2.
The result of this simulation for the linearly stable, link centred, simple breather

solution with N = 29, p ≈ −0.2432 and ω ≈ 0.8497 is shown in Figure 6.3. With a
perturbation to the breather’s initial conditions as above the amplitude of the per-
turbation is around six percent of the breather’s maximum vertical displacement and
even after 100 breather periods we can see that the breather solution has not notice-
ably delocalised. In contrast, performing the same simulation on a linearly unstable
breather solution leads to total delocalisation of the breather solution in a time less
than three breather periods.

6.2. Localisation properties. It was mentioned in §1, and can be seen by
considering the mechanical system in Figure 1.1, that it is not clear that if the vertical
displacement of this mechanical system localises that the energy does also. This
question arises because the vertical displacement of the central pivots affects the
horizontal displacement of the pivots in the tails. This means that we need to look
more closely at the kinetic energy present in the breather tails and see whether this
is significant.

The adaptive collocation method used by AUTO to solve the differential equations
when continuing these periodic solutions is used because it is quick, accurate and
efficient for numerical continuation. However, it does not preserve the total energy

2These simulations were performed using the numerical method presented in the Appendix A
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well in Hamiltonian dynamical systems such as the mechanical lattice we are looking
at. In order to compare the energy in the core and the tails for these breathers we
have thus used a different method to solve for the time dependence of the mechanical
system shown in Figure 1.1. This is a constraint based method solved numerically
with a generalised RATTLE algorithm (see [8, §VI.1.3]) which is explained further in
Appendix A. This numerical method keeps the total energy in the system constant
to a much better accuracy that AUTO’s numerical integrator. The initial conditions
for this numerical integration are taken from the boundary value solution generated
by AUTO. This change of numerical integrator leads to a slight discrepancy between
the exact trajectories of these two methods as can be seen by noticing that in Figure
6.4 the oscillations do not have period one exactly.

Most breather solutions in the literature show exponentially localised displace-
ment in the spatial direction. We can see from Figure 6.5 (b) that the vertical dis-
placement of these mechanical breathers also appears to be, at least, exponentially
localised. Now to consider the energy behaviour.

The mechanical system shown in Figure 1.1 is Hamiltonian and if we give pivot i
the horizontal coordinate xi and vertical coordinate yi we can write the Hamiltonian
function as follows

H =
mp

2

N+1∑
i=0

(
ẋ2
i + ẏ2

i

)
+
k

2

N+1∑
i=0

y2
i − p(xN+1 − x0).

This then leads to a reasonably natural definition of total energy per link at time t,
Ei(t) for i = 1, . . . , N , where we share the kinetic energy of each pivot between the
two adjacent links to get

Ei(t) =
mp

4
(
ẋ2
i + ẏ2

i + ẋ2
i+1 + ẏ2

i+1

)
+
k

4
(
y2
i + y2

i+1

)− p(xi+1 − xi)

+
mp

4
(
ẋ2

0 δ1,i + ẋ2
N+1 δN,i

)
, (6.2)

where δi,j is the Kronecker delta symbol and these terms account for the behaviour
at the lattice boundaries. Averaging this energy over one breather period gives us the
mean energy per link for a breather solution defined by

Ēi =
1
τb

∫ τb

0

Ei(t) dt. (6.3)

Figure 6.5 (a) shows a plot of log(Ēi) against i for a linearly stable site centred
breather in a mechanical lattice with N = 64. We can see that, firstly, the energy per
link in the core centre is several orders of magnitude larger than the energy per link
in the tails. Secondly, we can also see that in the core region the energy does localise
exponentially. The slight rise in the energy per link for the links at the ends of the
lattice seen in Figure 6.5 is due to the end effects of the Kronecker delta terms in the
definition of the energy per link, equation (6.2).

To consider the total energies in the core and tail we need to define which links
are part of the breather core and which are part of the breather tail. We do this by
defining the link numbers n1 and n2 (n2 > n1) such that links 1, . . . , n1 and n2 . . . , N
are part of the tail and links n1 + 1, . . . , n2 − 1 form the breather core. We define n1

and n2 mathematically by using a cut off of 10−4 on the maximum pivot amplitude:

n1 = {maxn : max
t

(|yi(t)|) < 10−4 for all i ≤ n} and

n2 = {minn : max
t

(|yi(t)|) < 10−4 for all i ≥ n}.
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Fig. 6.4. This shows the how the energy of a mechanical breather in a lattice of size N = 64
with p = 0.3 and ω = 0.7 oscillates between the core of the breather (upper line) and breather tail
(lower line). These two energies are defined in equation (6.4).
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Fig. 6.5. The logarithm of the mean energy per link (see equation 6.2) for the breather of Figure
6.4 is plotted in (a). This shows the exponential localisation of energy in the breather core and the
residual energy in the breather tails. The slight increase in link energy at each end of the lattice is
due to boundary effects in the definition of Ei(t), equation (6.2). In (b) the logarithm of the vertical
pivot displacements is shown and we can see that they are at least exponentially localised.

We then have

Ecore(t) =
n2−1∑
i=n1+1

Ei(t), and Etail(t) =
n1∑
i=1

Ei(t) +
N∑

i=n2

Ei(t). (6.4)

Figure 6.4 shows plots of Ecore(t) and Etail(t) for the breather with N = 64 shown
in Figure 6.5. We can see that the energy in the core is more than the energy in
the tails and that the tails have only kinetic energy as there is no end-shortening or
vertical displacement into the foundation springs in the tails. Even with the large
lattice of N = 64 we can see that the maximum energy, over one breather period, in
the breather core is significantly larger that the maximum energy in the tails with
maxtEcore(t)/maxtEtail(t) ≈ 6.3.

It is interesting to note what happens to these breather solutions as we increase
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Fig. 6.6. These plots show how the maximum link angle (a) and ratio of the maximum breather
core energy, Emax

core = maxt Ecore(t), to breather tail energy, Emax
tail = maxt Etail(t), (b) change as

the lattice size N increases. These breather solutions have parameter values p = 0.3 and ω = 0.7.

Fig. 6.7. A simplified model of a mechanical breather.

the lattice size N (with all other parameters constant), to see whether the energy in
the tails can become larger than the energy in the core. We can see in Figure 6.6 (a)
that the amplitude of the breather decreases with increasing lattice size N . Figure 6.6
also shows us that the ratio maxtEcore(t)/maxtEtail(t) also decreases with N . But
will this ratio ever drop below one? By considering a simplified model of the breather
situation we can see that the answer to this question is no.

Figure 6.7 shows a simplified model of a mechanical breather where we consider
the two tails as point masses oscillating either side of the core which we consider as
a ‘black box’ spring which acts to make the tails oscillate horizontally. As the tails
oscillate in the model of Figure 6.7, since the mechanical system is conservative, their
energy moves between the kinetic energy of the tails and potential energy stored in
the core. This shows that the energy of the core must, at least, be as large as that of
the tails. In fact, the actual breather core ‘black box’ has its own degrees of freedom
which mean that its energy will always be greater than that of the tails.

7. Conclusions. In this paper we have located discrete breathers in the pinned
mechanical lattice shown in Figure 1.1. These breathers were found computationally
using numerical continuation to follow branches of breather solutions from lattices in
which we know they exist to this mechanical lattice. We then went on to discuss the
properties of these spatially localised time periodic solutions to the lattice’s equations
of motion.

A point key to the physical relevance of these breathers is that the maximum
displacement of a link in a breather solution is small (for example, a breather with
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N = 32, ω = 0.7 p = 0.3 has maxi,t(θi(t)) ≈ 6.2◦) and this reduces as the lattice size
N increases. This means that these solutions could be important in structures that
allow a small degree of movement, such as bridges, pylons and high-rise buildings.
We also find that the breather solutions exist in the mechanical lattice under tension,
compression and in the unloaded state. The last of these three states is particularly
surprising as the only nonlinearity in the system when it is unloaded is in the inertial
terms of the equations of motion.

Another key point in the physical relevance of these mechanical breather solutions
is that, in §6.1, we see that there is a large region in load-frequency parameter space
in which these breather solutions are linearly stable. A numerical simulation of a
perturbed exact breather solution in the fully nonlinear lattice also indicates that
these solutions are nonlinearly stable too.

One feature of the mechanical structure studied here that distinguishes this from
lattices in which breather have previously been found is that the rigid links of the
lattice mean that vertical movements of the mechanical pivots near the centre of the
lattice affect the horizontal movements of the links and pivots at the ends of the
lattice. This has the potential to reduce if not remove the key localisation properties
of breather solutions. However, in §6.2 we saw that over the breather core region,
both energy and vertical displacement are still exponentially localised. We also saw
that the energy of the tails cannot exceed the energy in the breather core no matter
how large the lattice.

This paper has focused on the ability of a mechanical lattice system to sup-
port spatially localised, time periodic behaviour, or discrete breathers. For localised
behaviour to be significant in real structural systems we might also hope that this
localisation behaviour can spontaneously appear from apparently random initial con-
ditions. Figure 7.1 presents a glimpse that this is also possible in this mechanical
structure, in the form of a spontaneously appearing moving discrete breather (see
Figure 7.2). Figure 7.1 shows the results of a long time integration of the mechani-
cal lattice of this paper with random initial conditions (using the energy preserving
numerical integrator of Appendix A). Figure 7.1 shows how the energy per link (equa-
tion (6.2)) varies with time, and we can clearly see the appearance of spontaneous
energy localisation. This provides an interesting glimpse of the additional behaviour
one might hope to observe in an experiment on this mechanical lattice.
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Appendix A. Generalised RATTLE constraint based formulation. Here
we describe a constraint based mathematical model of the mechanical system of Figure
1.1. In this paper we use this model in conjunction with the generalised RATTLE
algorithm (see [8, §VI.1.3]) to solve for the time dependence of the mechanical lattice
as an IVP whilst preserving the total energy in the numerical solution. This allows
us to accurately compare the energy in the core and the tails of the breather and also
to get good accurate results on the behaviour during long time simulations.

For this model of the mechanical system we assign each of the N +1 pivots (mass
mp) a horizontal, x, and vertical, y, coordinate. Since we are taking the links to be



24 S.C. GREEN AND C.J. BUDD AND G.W. HUNT

Fig. 7.1. A short snapshot in time of how the energy per link (see equation (6.2)) of the
mechanical lattice shown in Figure 1.1 changes over time in the lattice with a set of random initial
conditions. Red shows regions of higher energy per link and blue indicates lower energy, clearly
showing regions of spontaneous energy localisation.
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Fig. 7.2. Snapshot at t = 605.3τb of the long time integration shown in Figure 7.1. The feature
in the lattice circled is, perhaps, an example of a moving discrete breather that is leading to the
moving patch of localised energy that appears again and again in Figure 7.1.

mass-less, the kinetic and potential energies of the lattice are then easy to write down:

T (ẋ, ẏ) =
mp

2

N+1∑
i=1

(
ẋ2
i + ẏ2

i

)
, V (y) =

k

2

N+1∑
i=1

y2
i − p(xN+1 − x0).

These expressions then lead to the Hamiltonian H(x,y, ẋ, ẏ) = T (ẋ, ẏ) + V (x,y).
However, this Hamiltonian does not completely specify our mechanical system. We
need to include some constraints to account for the rigid links, vertically fixed bound-
aries and fixed horizontal lattice centre of mass (x̄). We do this by introducing the
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constraint function g : R2(N+1) → RN+2 where

0 = gn ≡ (xn+1 − xn)2 + (yn+1 − yn)2 − h2 for n = 1, . . . , N − 1
0 = gN ≡ y1
0 = gN+1 ≡ yN+1

0 = gN+2 ≡ 1
N + 1

N+1∑
n=1

xi − x̄.

The generalised RATTLE algorithm described in [8, §VI.1.3] is a numerical inte-
grator for constrained, Hamiltonian dynamical systems that satisfies the constraints
exactly at each time step and is also an energy preserving numerical integrator. It is
implemented at each time step by solving the following equations

pn+ 1
2

= pn − h

2

(
Hq(pn+ 1

2
, qn) + g′(qn)Tλn

)
qn+1 = qn +

h

2

(
Hp(pn+ 1

2
, qn) +Hp(pn+ 1

2
, qn+1)

)
pn+1 = pn+ 1

2
− h

2

(
Hq(pn+ 1

2
, qn+1) + g′(qn+1)Tµn

)
g(qn+1) = 0

g′(qn+1)Hp(pn+1, qn+1) = 0.
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