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Abstract: Images are widely used to visualise physical processes. Models may be developed which attempt
to replicate those processes and their effects. The technique of coupling model output to images may be
used to help understand the underlying physical processes, and better understand the limitations of
the models. An information theoretic framework is presented for image-model coupling in the context of
communication along a discrete channel. The physical process may be regarded as a transmitter of images
and the model as part of a receiver which decodes or recognises those images. Image-model coupling may
therefore be interpreted as image recognition. Of interest are physical processes which exhibit ‘channel
memory’. The response of such a system is not only dependent on the current values of driver variables,
but also on the recent history of drivers and/or system state. Examples of such systems in geophysics
include the ionosphere and Earth’s climate. The discrete channel model is used to help derive expressions
for matching images and model output, and analyse the coupling.

1 Introduction

Images describe what is present in a scene, and mathematical or empirical models may be developed which
attempt to replicate the underlying processes which produce those images. Given an image, it is interesting
to find the model input producing output which best matches the image. In this way useful knowledge
concerning the mechanisms producing that image may be discerned. Such image-model coupling, in the
context of sequences of images and systems with memory, is described below. The particular example
application chosen is the coupling of images of the ionosphere and ionospheric models. This is a challenging
problem because the ionosphere [8] is a nonlinear system with regard to the response of its electron content
to its driver variables. Furthermore, the system has ‘memory’ since its response at a given time depends
not only on the current drivers but also on the recent history.

There are various questions to consider. What objective function should be used to describe the match
between an image sequence and model output? What techniques can be used to search the space of driver
variables? More generally, how can competing models be compared in a quantitative manner? And how
can the importance of driver variables, for replicating image sequences, be assessed?

To attempt to answer these questions in a consistent manner, image-model coupling is presented within
a simple information theoretic context as transmission along a discrete channel. The simpler and more
familiar discrete memoryless channel is a special case suitable for systems which do not exhibit channel
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memory. This approach clearly separates the true underlying real-world process producing the image
sequence and the proposed model, and gives a framework to help identify assumptions in the proposed
model and possible sources of coupling error. The objective function used for coupling is statistical in
nature; with an increased availability of data, it should be possible to derive objective functions which
improve the coupling. The context encourages the use of ‘tools’ drawn from information theory and
statistical modelling. The paper is organised as follows. First, Section 2 introduces discrete channel models
with and without channel memory; the true underlying process producing the image sequence is considered
as a transmitter, and the proposed model is part of a receiver which interprets, or decodes, the image
sequence. Section 3 then describes the receiver in more detail; the codebook, noise and state transition
models, objective function for matching, and the search mechanism. In particular, the assumptions
implicit in applying simple sum square error minimisation are detailed. Section 4 and Section 5 respectively
introduce methods to compare alternative models, and assess the sensitivity of image sequences to different
driver variables. Finally some discussion and conclusions follow in Section 6 and Section 7.

2 Communication channel framework

Image-model coupling may be viewed from an information theoretic perspective as communication via
a discrete channel (e.g. see [11],[1], [9]). The true-world process generating the images is viewed as a
transmitter, and the model which is used to interpret the images is part of the receiver. Some form of
synchronous ‘online’ decoding is attractive for continuous communication, i.e. continuous online image-
model coupling. In the context of ionospheric modelling, the true ionosphere acts as a transmitter and
encodes physical driver variables as an image of the ionosphere, where the image is simply an often
incomplete description of the state. The image may be in the form of electron densities or their line
integrals. The ionospheric model is part of a decoder which attempts to recover the values of those
driver variables. This channel approach allows us to derive an objective function for matching a temporal
sequence of images with model output. The following analysis concerns systems such as the ionosphere
which are not memoryless, so receivers which assume simple discrete memoryless channel models may not
be accurate. However, for reasons of tractability, such receivers may be applied, though it is useful to
understand the limitations and assumptions in so doing. In the following, ‘TX’ denotes the transmitter
and ‘RXq’ the receiver for q ∈ {3, 2, 1}.

2.1 Transmitter (TX)

Figure 1 describes the true real-world process generating the images. The process is assumed driven. The
driver variables of interest are recorded at time t as uTX(t) ∈ UTX, where UTX is a discrete, typically open
set.1 For the ionosphere, driver variables of interest may include measurements of solar or geomagnetic
activity. In addition, there are latent driver variables u′

TX(t) ∈ U ′
TX which are not measured and are

typically not of direct interest to the modeller. Again, U ′
TX is a discrete set. The current system is fully

described by zTX(t) ∈ ZTX and z′
TX(t) ∈ Z ′

TX, which respectively describe those variables which form
the image, and the complementary set required to complete the full description. For convenience, define
ZTX ⊆ Z and Z ′

TX ⊆ Z ′. The real-world process may be viewed as a codebook which implements the
deterministic mapping, for some fixed and known channel memory length hc ∈ N (for channel memory,
e.g. see [9]),

zTX(t) : (uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc), z

′
TX(t − hc)) 7→ zTX(t), (1)

where t is the timestep index and hc is expressed in timesteps, and for example,

uTX(t − hc, t) ≡ (uTX(t − hc), uTX(t − hc + 1), . . . , uTX(t)).

1The constraint of discrete signals and sets rather than continuous analogues is necessary for a discrete channel model;
although real-world processes are typically continuous, discretisation may be regarded as the result of sampling continuous
signals or spaces into the machine precision of the recording, storage or computing device.
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Figure 1: Image-model coupling as a discrete channel model, where the true real-world process is an
encoder, δt is the duration of a timestep when used to describe delay in a temporal buffer, and RXq, q ∈
{3, 2, 1} denotes different receivers.

Similar abbreviations are used elsewhere for time-ordered temporal sequences of vectors. The mapping is
assumed injective, so zTX(t) is fully and uniquely determined by the present and past driver variables,
both known and latent, and an initial complete ionospheric description. Hence there are no variables
beyond those in the domain of the mapping which cause stochastic variation in zTX(t). In the case of the
ionosphere, the dependency on initialisation is required since the ionosphere is not memoryless; its state
may evolve differently over time under the action of the same sequence of drivers depending on the initial
distribution of plasma. The injective assumption is thought reasonable due to the inclusion of all driver
variables and description variables in the domain.

There is also memory in the source. Letting hs ∈ N0 denote2 the length of source memory in timesteps,
then it is convenient to define the state,

xTX(t) = (uTX(t − h, t), u′
TX(t − h, t), zTX(t − h), z′

TX(t − h)), (2)

where h = max[hs−1, hc]. The redundancy in this state allows the transmitter to be modelled as a hidden
Markov process (see Section 3.4).

The actual image measured or recorded at time t is z̃(t) ∈ Z. This image is related to the partial
description zTX(t) by,

z̃(t) = zTX(t) + nTX(t), (3)

where nTX(t) ∈ Z is additive noise describing error in the measuring devices. Unfortunately, if an image
is incomplete, it is sometimes necessary to complete the image using data assimilation or tomographic
reconstruction. For the purposes of this analysis, such images are regarded as if directly imaged by a
device, and the error in the reconstruction included into the noise process nTX(t). Both the true real-
world process and noise source may be nonstationary; however for the identification and estimation of the
statistical models described later, properties of stationarity and ergodicity [10] are convenient. The noise
signal nTX(t) is not transmitted independently along the channel, only the image z̃(t). In practice, it is
usual to consider a finite length sequence of images, for example T images z̃(1, T ).

2The notation N0 denotes all positive integers and the zero.
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2.2 Level 3 receiver (RX3)

With infinite knowledge, it is possible to construct a receiver which implements the reverse process to the
transmitter. Hence the receiver first ‘denoises’ the image,

zRX3(t) = z̃(t) − nRX3(t), (4)

where nRX3(t) ∈ Z, zRX3(t) ∈ ZRX3, and ZRX3 is typically an open set denoting the range set of the
receiver codebook. The codebook implements deterministic mappings of form,

zRX3(t) : (uRX3(t − hc, t), u
′
RX3(t − hc, t), zRX3(t − hc), z

′
RX3(t − hc)) 7→ zRX3(t), (5)

and is used to implement the inverse mapping zRX3(t) 7→ uRX3(t). The codebook is typically imple-
mented by a deterministic mathematical or empirical model. The noise source nRX3(t) should model the
measurement noise in the imaging devices. This receiver is unrealisable, but is included since it permits
decoding with the lowest possible error rate. Decoding is described more fully in Section 3.4. For clar-
ity, the receiver is here called a level 3 receiver, where the higher the level, the deeper the conditional
dependencies in the receiver codebook. For convenience, a receiver state is defined,

xRX3(t) = (uRX3(t − h, t), u′
RX3(t − h, t), zRX3(t − h), z′

RX3(t − h)), (6)

where h = max[hs − 1, hc].

2.3 Level 2 receiver (RX2)

This is identical to the level 3 receiver except for the codebook mappings and notation. Denoising is,

zRX2(t) = z̃(t) − nRX2(t), (7)

where nRX2(t) ∈ Z and zRX2(t) ∈ ZRX2. The codebook then implements deterministic mappings of form,

zRX2(t) : (uRX2(t − hc, t), zRX2(t − hc, t − 1)) 7→ zRX2(t), (8)

where the unmeasured or unknown driver and description variables in U ′
TX and Z ′

TX have been omitted.
The stochastic variation in z̃(t) due to these variables is instead incorporated into a more complicated
noise source nRX2(t). The noise source no longer models the error in measurement devices alone, but also
the stochastic variation due to the omitted variables. Again, define a state,

xRX2(t) = (uRX2(t − h, t), zRX2(t − h, t − 1)), (9)

where h = max[hs − 1, hc].

2.4 Level 1 receiver (RX1)

This is identical to the level 3 and 2 receivers except again for the codebook mappings and notation.
Denoising is,

zRX1(t) = z̃(t) − nRX1(t), (10)

where nRX1(t) ∈ Z and zRX1(t) ∈ ZRX1. The codebook implements deterministic mappings of form,

zRX1(t) : uRX1(t) 7→ zRX1(t). (11)

Each codebook entry zRX1(t) may be regarded as ‘typical’ for its driver variables, in a similar manner
to which the mean of a Gaussian distribution is typical of samples drawn from that Gaussian. The
noise source nRX1(t) should now also describe the stochastic variation due to different histories of driver
variables and initialisations. The present drivers form the state so xRX1(t) = uRX1(t).
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2.5 Perfect image-model coupling

In this analysis, perfect image-model coupling is the transmission of a sequence of driver variables, without
loss, via the true real-world process as encoder, the images as the transmission medium, and the proposed
model as decoder. Ideally uTX(t) = uRXq(t). For the example of the level 3 receiver, perfect coupling
presupposes that,

• the codebook mappings are identical, i.e. z−1
RX3(t) ◦ zTX(t) = I, ∀t, where I is the identity map,

• the domain of the receiver codebook is identically descriptive, i.e. URX3 = UTX, and,

• the transmitter noise source is correctly modelled by the receiver noise source, i.e. nRX3(t) =
nTX(t), ∀t.

The first two conditions assume the proposed model is correct, the third that the noise model is correct.
Unfortunately, even under these conditions where the distribution of noise nRX3(t) is correct, the particular
sample drawn from that noise distribution remains unknown. For this reason, even in the case of the level
3 receiver, perfect coupling may not be achievable. In many cases, the driver variables uTX(t) can only
be recovered in the sense of maximum a-posteriori (MAP) or other estimates. For either of the level 3,
2 or 1 receivers, perfect coupling would only be possible if the transmitter and receiver were identical,
and either noise samples were transmitted independently between the transmitter and receiver along a
separate noiseless channel, or the widths of the noise distributions were always strictly less than the
distances between neighbouring entries in the transmitter and receiver codebooks. Decoding is described
more fully in Section 3.

3 Receiver

The purpose of the receiver is to decode the image sequence z̃(1, T )) as a sequence of driver variables. The
receiver at level q implements this by first decoding the most appropriate state sequence which minimises
a scalar objective function,

x̂RXq(1, T )(z̃(1, T )) = argmin
xRXq(1,T )∈⊗T

t=1
XRXq

fRXq(xRXq(1, T ), z̃(1, T )), (12)

and then extracting the underlying consistent driver sequence ûRXq(1, T )(z̃(1, T )), i.e. implementing some
extraction mapping,

x̂RXq(1, T )(z̃(1, T )) 7→ ûRXq(1, T )(z̃(1, T )). (13)

This section explains how the receiver achieves this. The definition of the objective function requires
the specification of (1) a codebook, both the mapping as implemented by a deterministic model and its
domain, (2) a noise model, and (3) a state transition model. The decoder attempts to find the best match
between each image and a member of the codebook. This requires careful selection of (4) the objective
function to measure the ‘goodness of match’, and (5) a search mechanism, often heuristic, to navigate the
codebook and find the member with maximum ‘goodness-of-fit’. These components are described in the
remainder of this section. It should be noted that the analysis is restricted to ‘static models’ where the
principal driver variables do not vary with time. Otherwise modifications, particularly for the codebook
and noise model, would be required.

3.1 Codebook

For the level q receiver, the codebook may be viewed as the set of deterministic mappings,

CRXq = {xRXq(t) 7→ zRXq(t), ∀xRXq(t) ∈ XRXq}. (14)
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These may be implemented using lookup tables, but more typically by empirical or mathematical models.
The codebook domain XRXq may also be constrained by the choice of model. For example an empirical
model may impose lower and upper bounds on its driver variables, which in turn constrain the codebook
domain. The degree of quantisation effects the domain, whether it is at machine precision, or some
greater level of quantisation. For example, if the decoder implements grid search, then the effective
discrete codebook domain is still further reduced. Codebooks may be viewed as ‘plug-and-play’ modules.
In ionospheric modelling, some codebooks may be more suitable for different tasks than others, e.g. some
deterministic models are better at describing high latitude processes while others are more suitable for
low latitude processes.

3.2 Noise model

Since the codebook is deterministic, stochastic variability must be introduced via a supplementary noise
model. For the level q receiver, the noise process may be fully specified via a set of probability mass
functions (PMFs),

NRXq = {PRXq(nRXq(t)|xRXq(t)), ∀nRXq(t) ∈ Z, ∀xRXq(t) ∈ XRXq}. (15)

In effect {CRXq,NRXq} defines a stochastic version of the deterministic codebook. Indeed if the model
involved in image-model coupling is stochastic, then there is no need to define CRXq and NRXq explicitly.
Ideally the codebook and noise model should replicate the stochastic variation in the transmitter (i.e.
the real-world process) so that PRXq(z̃(t)|uRXq(t)) = PTX(z̃(t)|uTX(t)), ∀z̃(t) given uRXq(t) = uTX(t).
However this is a challenging task since considerable complexity is expected in the real-world variation,
as described in Appendix A.

3.3 State transition model

Another supplementary model must be supplied governing and regularising the transitions between con-
secutive states. This may again be fully specified by a set of PMFs. For a level q receiver,

ARXq = {PRXq(xRXq(t)|xRXq(t − 1)), ∀xRXq(t) ∈ XRXq, xRXq(t − 1) ∈ XRXq}. (16)

This state transition model must assign zero mass to those transitions which do not respect a temporally
consistent sequence for uRXq(1, T ).

3.4 Objective function

The objective function should be derived from a decision theoretic perspective. For each sample z̃(1, T ),
the decision rule should seek to minimise the conditional risk [5],

R(xRXq(1, T )|z̃(1, T )) =
∑

yRXq(1,T )∈⊗T
i=1

XRXq

l(xRXq(1, T ), yRXq(1, T ))PRXq(yRXq(1, T )|z̃(1, T )),

(17)

where xRXq(t), yRXq(t) ∈ XRXq, ∀t ∈ [1, T ]. The scalar function l(·, ·) is the loss, and the conditional risk
is expressed as the average loss over a posterior distribution in the receiver. An intuitive choice of loss
function is the squared L2 norm of the difference between the two arguments. However, under such a
regression-based loss, the conditional risk is expensive to compute particularly if samples must be drawn
from the posterior. A simpler classification-based loss may instead be used [5],

l(xRXq(1, T ), yRXq(1, T )) =

{

0 if xRXq(1, T ) = yRXq(1, T )
1 otherwise

. (18)
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Figure 2: Temporal portion of hidden Markov model (HMM) for modelling the receiver RXq, q ∈ {3, 2, 1}.

This is preferable because it reduces computational cost since then,

R(xRXq(1, T )|z̃(1, T )) = 1 − PRXq(xRXq(1, T )|z̃(1, T )), (19)

thereby avoiding the averaging operation. Hence an objective function may be expressed as follows, where
logs are taken and unneccessary terms are discarded from the log posterior,

fRXq(xRXq(1, T ), z̃(1, T )) = − lnPRXq(z̃(1, T )|xRXq(1, T )) − lnPRXq(xRXq(1, T )). (20)

The first of the two terms in the objective function models memory in the channel, the second memory
in the state space (which includes memory in the driver source). Stochastic variation originates both in
the channel and the source (e.g. see [9]). The first term is determined by the codebook CRXq and noise
model NRXq, the second by the state transition model ARXq. The resultant decoder is the well-known
maximum a-posteriori (MAP) decoder where the posterior acts as a measure of ‘goodness-of-fit’. The
objective function may be compared with those derived in the variational analysis of other applications
such as weather prediction [4]. The remainder of this subsection considers how to obtain expressions for
the objective function under different receivers, and details the assumptions implicit in decoding images
using least sum squares minimisation.

3.4.1 Discrete channel with channel memory

All receivers RXq, q ∈ {3, 2, 1} may be modelled as hidden Markov processes of the form shown in
Figure 2. The noise process and state transition process are assumed stationary in time. The state
contains all information about the past which can influence the future. Then the posterior is,

PRXq(xRXq(1, T )|z̃(1, T )) =

T
∏

t=1

PRXq(z̃(t)|xRXq(t))PRXq(xRXq(t)|xRXq(t − 1)), (21)

where it is assumed that the state xRXq(0) is fully known, i.e. the history of driver variables and pre-noised
images is known back to a timestep index of −h, if required. The objective function becomes,

fRXq(xRXq(1, T ), z̃(1, T )) = −
T

∑

t=1

{lnPRXq(z̃(t)|xRXq(t)) + lnPRXq(xRXq(t)|xRXq(t − 1))}. (22)
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Both level 3 and level 2 receivers assume channel memory and source memory of duration no greater than
h and h + 1 timesteps respectively. Of course, the length of these memories may effectively be reduced
or eliminated by constraining the PMFs in NRXq and/or ARXq. For example, channel memory may be
eliminated in favour of source memory alone.

3.4.2 Discrete channel with no channel memory

The level 1 receiver assumes no channel memory, i.e. it assumes a discrete memoryless channel. This is
well known and is worthy of further consideration. Since by definition xRX1(t) = uRX1(t), ∀t,

fRX1(xRX1(1, T ), z̃(1, T )) = −
T

∑

t=1

{lnPRX1(z̃(t)|uRX1(t)) + lnPRX1(uRX1(t)|uRX1(t − 1))}. (23)

The assumption that the image is conditionally independent of previous variables given the current driver
variables is unrealistic for systems with channel memory. For the ionosphere, plasma accumulates with
time. Its response, as illustrated by its description, under the action of a given set of drivers, will vary
depending on its past driver values. However the discrete memoryless assumption is convenient and, at the
risk of reduced modelling accuracy, the likelihood PRX1(z̃(t)|uRX1(t)) may be regarded as summarising
all possible histories.

3.4.3 Discrete memoryless channel with spatially stationary Gaussian noise

The objective function for the discrete memoryless channel, as given in Equation 23, may be simplified to
yield the well-known sum squares and weighted sum squares objective functions. It is useful to consider
the additional constraints.

First, assume there is no source memory, i.e. there is conditional independence between successive values of
driver variables. The conditional independence assumption is severe and unrealistic for real-world systems.
Driver variables naturally change smoothly, albeit at a certain level of scale. For the ionosphere, on all
but the shortest time scales, any measurement of incident solar radiation may appear discontinous during
the arrival of a solar flare. However for the majority of time, this measurement varies smoothly between
consecutive timesteps, and the state transition model should favour such smooth changes. Without these
conditional dependencies, the receiver now models no memory, neither in the channel nor in the source.
Also, it is sometimes convenient to assume that the mapping uRX1(t) 7→ zRX1(t), ∀t ∈ [1, T ] is injective.
The injective assumption is reasonable, particularly when a vector of few driver variables maps into a
large image with many components. Then the objective function in Equation 23 becomes,

f ′
RX1(xRX1(1, T ), z̃(1, T )) = −

T
∑

t=1

{lnPRX1(z̃(t)|uRX1(t)) + lnPRX1(uRX1(t))}. (24)

The prior PRX1(uRX1(t)) should reflect the frequency of occurrence of different driver variables, averaged
over all possible previous driver sequences. In the example of the ionosphere, the prior may be calculated
using measurements collected over a full solar cycle.

Next, consider that in addition to being temporally stationary, the noise process is invariant to the value
of zRX1(t), i.e. it is spatially stationary. Hence PRX1(nRX1(t)|uRX1(t)) = PRX1(nRX1(t)) simplifying the
noise model NRX1 considerably to the specification of a single PMF. This is unlikely for systems such as
the ionosphere where the response, or state, varies nonlinearly with the drivers. Additionally, assume the
noise model is a zero-mean discretised Gaussian so PRX1(nRX1(t)) = N(nRX1(t);0, R) where R is the
covariance3, and hence PRX1(z̃(t)|zRX1(t)) = N(z̃(t); zRX1(t), R). Unfortunately, Gaussianity is unlikely
for description variables, such as line integrals of electron content in the case of the ionosphere, which are
naturally nonnegative and where noise variance is expected to increase with absolute value.

3Estimation of the covariance is not included in the variational problem, and must be performed apriori.
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Finally, assume there is no prior preference in the driver variables so there is a uniform prior PRX1(uRX1(t))
over URX1. Again this is unreasonable for many real-world systems. For the case of the ionosphere, quiet
space weather occurs much more frequently than stormy space weather, and the prior over driver variables
should reflect this. The objective function for the discrete memoryless channel in Equation 24 may now
be simplified to the following, where irrelevant terms have been discarded,

f ′′
RX1(xRX1(1, T ), z̃(1, T )) =

T
∑

t=1

zRX1(t)
⊤R

−1(
1

2
zRX1(t) − z̃(t)). (25)

The more negative the objective function, the better is the ‘goodness-of-fit’. If the covariance R is
assumed diagonal, minimisation is equivalent to the conventional least weighted sum squares solution.
The diagonal elements, i.e. weights, represent the relative ‘importance’ of each component in the image.
If each component is of equal importance, R may be set to Identity and the minimisation yields the least
sum squares solution.

3.5 Search

Minimisation of the objective function over the full domain ⊗T
t=1XRXq of the receiver codebook requires

a search mechanism. If the codebook mapping is implemented by some deterministic empirical or math-
ematical model, any objective function of type fRXq(·) and its derivative are rarely known analytically.
Derivative-free optimisation techniques are then required. The simplest approach is full grid search. How-
ever computational cost increases exponentially with the number of driver variables, and the effective size
of ⊗T

t=1XRXq must often be reduced. Alternative approaches include numerical approximation of gradi-
ents (e.g. see the algorithms in [13]) and sampling-based methods. An example of a sampling scheme is
simulated annealing [16] which, although it converges to a global minimum, requires many evaluations of
the objective function. A variant of simulated annealing, called fast annealing [16], may be applied since
it is relatively easy to implement. To reduce computational cost, instant freezing may also be used, but
the technique becomes sensitive to its initialisation and is not a global optimiser.

Fast annealing yields a sequence of samples which ideally converge to a global minimum. Samples are
chosen according to a proposal distribution. A new sample is accepted if it yields a lower evaluation
of the objective function, or otherwise only with a certain probability. Unlike conventional simulated
annealing, the width of the proposal distribution shrinks with successive sampling. The rate of shrinkage
must be controlled to avoid premature convergence. The proposal distribution should be heavy-tailed to
increase the chance of convergence to other nearby, lower minima; however there is then always the risk
of premature convergence in poorer neighbouring minima. For simplicity of notation, let x ≡ xRXq(1, T ),
X ≡ ⊗T

t=1XRXq and f(·) ≡ fRXq(·, z̃(1, T )).

Given an initial sample x0, one possible implementation of fast annealing for an objective funtion f is as
follows.

1. Let k := 0 and xbest := x0.

2. Sample xk+1 ∼ P (xk+1 − xk).

3. Evaluate f(xk+1).

4. Calculate temperature4 Tk+1 ∈ R
+
0 .

5. Let ∆fk+1 := f(xk+1)− f(xbest). If ∆fk+1 < 0, then accept the sample, otherwise accept it with a
probability exp(−∆fk+1/Tk+1). If the sample is accepted, xbest := xk+1.

6. Let k := k + 1 and repeat from Step 2 until a stopping criterion is fulfilled.

4The notation R+ and R
+
0

denote positive real numbers, respectively without and with the extra inclusion of zero.
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Examples of stopping criteria include reaching a maximum limit on the number of iterations, or reaching
a maximum limit on the run of rejections (i.e. the number of consecutive failures to update xbest). The
temperatures are usually determined by a schedule, for example an exponentially decreasing schedule [16].
For instant freezing, Tk = 0, ∀k > 0; the algorithm above may be modified to exclude all references to
temperature, and a new sample is only accepted if it yields a nonincreasing, or alternatively strictly a
lower, value of the objective function.

Driver variables are discretised, but at often different levels, for consistency with the discrete channel
model. For ionospheric models, the solar radiation parameter F10.7 is continuous in the real world and
may be discretised to 2 decimal places, whereas the geomagnetic parameter Ap is an integer. The sampling
scheme must also restrict the range of samples between upper and lower bounds. Hence each component of
xk+1 is sampled in turn according to its own specific probability mass function. Denoting x = (x1, . . . , xd)
and xi ∈ [xi

min, xi
max], i ∈ [1, d], the sampling scheme for each xk+1 in Step 2 above may be implemented

as follows.

1. Let i := 1.

2. Sample xi
k+1 ∼ Pi(x

i
k+1 − xi

k; T i
k) where T i

k ∈ R
+ controls the width of the mass function.

3. If xi
k+1 > xi

max or xi
k+1 < xi

min, reject sample and return to Step 1.

4. If i < d, i := i + 1 and return to Step 2.

The rejection of the sample from any one component necessitates the rejection of samples from all previous
components, otherwise the sampling scheme would be biased. Ignoring end effects due to quantisation,
this ensures that the joint mass function within the lower and upper bounds would simply be a scaled
version of the equivalent portion of the joint mass function if there were no limits or bounds. Here, the
choice of heavy-tailed proposal distribution is a discretised version of the Cauchy distribution. Hence,

Pi(x
i
k+1 − xi

k; T i
k) =

∫

Y i
k+1

pi(y
i
k+1; T

i
k)dyi

k+1, (26)

where yi
k+1 ∈ R, Y i

k+1 = {yi
k+1 : xi

k+1 = quant[yi
k+1 + xi

k]}, quant[·] is the quantisation mapping and,

pi(y
i
k+1; T

i
k) =

1

π

(

T i
k

(T i
k)2 + (yi

k+1)
2

)

. (27)

Here T i
k ∈ R

+ controls the width of the proposal distribution and typically decreases with increasing
k according to some schedule, for example exponential or geometric. In practice the sampling may be
implemented5 as follows (see ‘Cauchy distribution” in [19]),

yi
k+1 = T i

k tan((c −
1

2
)π), (28)

where c ∈ R is sampled uniformly and randomly from its domain c ∈ [0, 1].

There may be different schedules for different components xi reflecting differences in dynamic range. To
reduce the number of tuning parameters it is possible to define,

T i
k = ak(xi

max − xi
min), ∀i. (29)

Only one schedule then needs specifiying, i.e. the schedule for the multiplicative factor ak. An example
is the following exponential schedule,

ak = a0 exp{−bk}, (30)

requiring (a0, b), where a0 ∈ R
+ and b ∈ R

+. The tuple (a0, b) specifies the initial width and rate of width
shrinkage of the proposal Cauchy distributions. It should be tuned to trade-off the quality of solution and
the time and computational resources available.

5In practice, some modifications are required to ensure values at lower and upper bounds are assigned the same probability
mass as midinterval values.
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4 Evaluation

It is sometimes useful to compare different codebooks for image-model coupling. Codebooks should not
be compared in isolation, but in the context of the accompanying noise model, state transition model,
objective function and search mechanism. The error rate associated with each full receiver is the risk
calculated as [5],

R(RXq) =
∑

z̃(1,T )∈⊗T
t=1

Z

R(x̂RXq(1, T )|z̃(1, T ))PTX(z̃(1, T )), (31)

where the conditional risk is as given in Equation 17. If each level q receiver is correct such that MRXq =
{CRXq,NRXq,ARXq} exactly replicates the statistical properties of the transmitter, then R(RX3) ≤
R(RX2) ≤ R(RX1). This relationship does not necessarily hold for incorrect receivers.

However the error rate penalises the decoding of variables, with values which differ from those in the
transmitter, with the same loss independent of the degree of difference. This may be misleading. A
better ‘measure’ is the mutual information between the sequence of true driver variables uTX(1, T ) and
the sequence of received driver variables uRXq(1, T ). Perfect coupling, or lossless transmission, maximises
this measure. Any attempt to improve, learn or adapt models should aim to increase this measure. Using
[11], the mutual information may be expressed as,

I(uRXq(1, T ); uTX(1, T )) = H(uTX(1, T )) − H(uTX(1, T )|uRXq(1, T )), (32)

where the first and second terms on the right hand side are respectively source and conditional entropies.
Since the source entropy is fixed, the following simpler ‘measure’ may instead be used. Using [11],

F (MRXq) = −H(uTX(1, T )|uRXq(1, T ))

=
∑

uRXq(1,T )∈⊗T
t=1

URXq

PRXq(uRXq(1, T ))
∑

uTX(1,T )∈⊗T
t=1

UTX

P (uTX(1, T )|uRXq(1, T ))

lnP (uTX(1, T )|uRXq(1, T )), (33)

where,

−H(uTX(1, T )) ≤ F (MRXq) ≤ 0. (34)

In a decision theoretic context, maximising this function corresponds to minimising the risk subject to
the loss function l(uTX(1, T ), uRXq(1, T )) = − lnP (uTX(1, T )|uRXq(1, T )). Although this loss function
differs from that under which the MAP decoder is optimal, this mismatch between comparison and
application/decoding simplifies the implementation of decoders. Rearranging and introducing the latent
variables z̃(1, T ),

F (MRXq) =
∑

uRXq(1,T )∈⊗T
t=1

URXq

∑

z̃(1,T )∈⊗T
t=1

Z

∑

uTX(1,T )∈⊗T
t=1

UTX

P (uRXq(1, T ), z̃(1, T ), uTX(1, T ))

lnP (uTX(1, T )|uRXq(1, T )). (35)

Making some conditional independence assumptions reasonable for such a communication channel,

F (MRXq) =
∑

uRXq(1,T )∈⊗T
t=1

URXq

∑

z̃(1,T )∈⊗T
t=1

Z

∑

uTX(1,T )∈⊗T
t=1

UTX

PRXq(uRXq(1, T )|z̃(1, T ))

PTX(z̃(1, T )|uTX(1, T ))PTX(uTX(1, T )) lnP (uTX(1, T )|uRXq(1, T )). (36)

Unfortunately it is difficult to estimate the distributions defined on the transmitter variables. However the
quantity may be approximated by assuming the transmitter and receiver codebooks are injective and the
noise process nTX(t) is negligible. Then z̃(t) ≈ zTX(t), ∀t ∈ [1, T ]. Drawing ℓ samples of type uTX(1, T )
according to the prior PTX(uTX(1, T )) then,

F (MRXq) ≈
1

ℓ

ℓ
∑

l=1

∑

uRXq(1,T )∈⊗T
t=1

URXq

PRXq(uRXq(1, T )|z̃l(1, T )) lnPRXq(z̃l(1, T )|zRXq(1, T )),(37)
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where z̃l(1, T ) is injectively mapped through the transmitter codebook from the ith sample drawn accord-
ing to PTX(uTX(1, T )). The decoder assumes all the probability mass is located at the decoded solution
ẑRXq(1, T ) so,

F (RXq) ≈
1

ℓ

ℓ
∑

l=1

PRXq(ẑRXq(1, T )|z̃l(1, T )) lnPRXq(z̃l(1, T )|ẑRXq(1, T )), (38)

which yields an expression for the whole receiver RXq. Since the expression is only dependent on the
receiver, the quality of the estimate depends on the veracity of the receiver’s components including the
effectiveness of its search algorithm in finding the global minimum. Unfortunately, the distributions
conditional only on driver variables may not be directly available from the decoder, and must be obtained
by suitable marginalisation of unwanted components in the state vectors. In the context of ionospheric
modelling, each of the ℓ samples may be a sequence collected from a different day’s data. When ℓ is small,
alternative measures which penalise model complexity should also be considered, for example stochastic
complexity (e.g. see [6]). It is difficult to evaluate a model based on a single sample, i.e. when ℓ = 1,
though useful insight is still possible.

For the level 1 receiver, as in Section 3.4, assume the noise process for the memoryless channel is zero-
mean discretised Gaussian and stationary in time and space. Furthermore, assume that there is no source
memory and that the prior PRX1(ẑRX1(t)) is uniform. Then,

F (RX1) ≈
1

ℓ

ℓ
∑

l=1

[

T
∏

t=1

PRX1(ẑRX1(t)|z̃l(t))
]

T
∑

t=1

lnPRX1(z̃l(t)|ẑRX1(t)), (39)

where,

PRX1(ẑRX1(t)|z̃l(t)) =
PRX1(z̃l(t)|ẑRX1(t))

∑

zRX1∈ZRX1
PRX1(z̃l(t)|zRX1)

, (40)

and PRX1(z̃i(t)|ẑRX1(t)) = N(z̃i(t); ẑRX1(t), R).

5 Sensitivity

Sensitivity of a sequence of true images zTX(1, T ) to the different drivers in uTX(1, T ) is of scientific
interest. For example, during a geomagnetic storm, what drivers are most influential in producing the
particular electron content patterns in the ionosphere? If the true real-world process is nonlinear, sen-
sitivity must typically be evaluated at each sequence of driver variables of interest. Using the Fisher
information (see “Fisher information” in [19]),

Jij(uTX(1, T );MTX) =
∑

zTX(1,T )∈⊗T
t=1

ZTX

δ2 lnP (zTX(1, T )|uTX(1, T ))

δ[uTX(1, T )]iδ[uTX(1, T )]j
P (zTX(1, T )|uTX(1, T )),

(41)

where [uTX(1, T )]i is the ith component in the sequence of driver variables, and MTX refers to the real-
world process. The finite differences must be evaluated at the particular driver sequence of interest.
Relating to drivers, δ denotes discrete differences but under the assumption that all values in the relevant
component in uTX(1, T ) are uniformly spaced. Since the true images are unknown,

Jij(uTX(1, T );MTX) ≈
∑

z̃(1,T )∈⊗T
t=1

Z

δ2 lnP (z̃(1, T )|uTX(1, T ))

δ[uTX(1, T )]iδ[uTX(1, T )]j
P (z̃(1, T )|uTX(1, T )). (42)

Unfortunately, the transmitter distributions are also unknown, so the Fisher information must be approx-
imated at the receiver,

Jij(uTX(1, T );MTX) ≈ Jij(uRXq(1, T );MRXq)
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=
∑

z̃(1,T )∈⊗T
t=1

Z

δ2 lnPRXq(z̃(1, T )|xRXq(1, T ))

δ[uRXq(1, T )]iδ[uRXq(1, T )]j
PRXq(z̃(1, T )|xRXq(1, T )).

(43)

The Fisher information defined upon the receiver is subject to the receiver’s statistical assumptions. Since
the Fisher information is defined on MRXq, it does not evaluate the sensitivity of the decoded solution
x̂RXq(1, T ) or ûRXq(1, T ). In terms of the objective function, and assuming PRXq(xRXq(1, T )) is uniform,

Jij(uRXq(1, T );MRXq) = −
∑

z̃(1,T )∈⊗T
t=1

Z

δ2fRXq(z̃(1, T ), xRXq(1, T ))

δ[uRXq(1, T )]iδ[uRXq(1, T )]j
PRXq(z̃(1, T )|xRXq(1, T )).

(44)

Then given a single sample z̃l(1, T ) and a level 1 receiver,

Jij(uRX1(1, T );MRX1) ≈ −
δ2fRX1(z̃l(1, T ), uRX1(1, T ))

δ[uRX1(1, T )]iδ[uRX1(1, T )]j
, (45)

noting xRX1(1, T ) = uRX1(1, T ). In this case the Fisher information may be ‘estimated’ using the negative
Hessian of the objective function. However such an ‘estimate’ may be misleading since it is ‘tuned’ to one
particular image sequence only.

6 Discussion

The selection of driver and image variables for URXq and Z respectively is critical. If the selection is
not sufficiently descriptive, then the noise distributions implied in the transmitter may be very broad
due to the effect of latent variables. Too much useful information may then be lost in the encoding
process. Unfortunately, the choice is often restricted by the particular receiver codebook, e.g. empirical
or mathematical model, used.

In designing the receiver, the codebook is intuitively most important and effort should first be directed
at improving this. The choice of noise model and state transition model should be data-dependent, since
they should be learnt from data. This influences the choice of objective function and level of receiver. The
simpler receivers should be more robust if there is a lack of good quality data. However it is important
to understand the assumptions implicit in the simpler receivers, and that the objective function may in
effect ‘penalise the same mismatch more than once’. Of course, the level 3 and level 2 receivers reduce
to the level 1 receiver if the level 1 assumptions hold in the transmitter. The choice of hs, hc and h
may be driven by limitations in data rather than scientific knowledge. If the receiver codebook mapping
is bijective, then the inverse problem of decoding state variables x̂RXq(1, T ) for a noisy image sequence
z̃(1, T ) has a unique solution, providing the objective function has a single global minimum. If the receiver
is modelled as a HMM, then a full Viterbi decoder [15] would be very computationally expensive unless
the codebook mapping was precomputed and implemented in lookup tables. One of the fundamental
limitations of the channel model proposed is its inability to model noise sources which are not additive,
for example convolutional noise.

The receiver codebook has been defined using a single deterministic model. However multiple models may
be used in parallel where the data fusion occurs at the level of zRXq(1, T ) or xRXq(1, T ). For ionospheric
modelling, the fusion may additionally use geographic information where alternative ionospheric models
are weighted differently at different global locations, for example according to their ability to model low
latitude or polar/auroral processes.

Similar ‘receivers’ have been developed in nonlinear time series analysis, for example the nonlinear au-
toreggresive (NLAR) model [3], nonlinear moving average (NLMA) model [18] and state-dependent model
(SDM) [14]; these however assume the state is not hidden but directly observed. Variable order Markov
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models (VMMs) [2] also regard states as observed and hence only encode source, rather than both channel
and source, memory. The ARMA-filtered hidden Markov model [12] assumes various linear dependencies,
for example that the observation is linearly dependent on the mean vectors of previous states and an in-
novation which is also dependent on previous states. The ARMA-filtered HMM may possibly be regarded
as a constrained special case of the level 2 receiver, at least in concept if not mathematically. There are
similarities between the view of the ionosphere in [7] and the ‘transmitter’ described above, but without
development in terms of a discrete communication channel.

Image-model coupling is simply an attempt to recognise or classify an image in terms of its driver variables,
or regress an image onto its drivers. The application of further techniques from machine learning and
decision theory [5] may be useful. The framework described should be applicable to other tasks in image-
model coupling, or indeed classification and regression.

Besides the application to the ionosphere, the approach assuming channel memory may be useful for other
geophysical systems which include integrator-like processes or exhibit ‘sluggish responses’. Possibilities
include long-term climate modelling, the gradual build-up of stresses along fault lines prior to an earth-
quake, the accumulation of water vapour resulting in a hurricane, or sustained rainfall producing flooding.
As stated, a challenge for such systems is the selection of driver and image variables. For example, drivers
for the ionosphere should include measures of solar and geomagnetic activity since it is known the sun
and geomagnetic state of the Earth influence the distribution and movement of ionospheric plasma [8].
However if a 3-dimensional map of electron density measurements is used as the image, but the resolu-
tion is too coarse, the ability of the receiver to ‘recognise’ small-scale structures is inhibited. A simple
ionospheric application, ignoring channel memory and with a very simple noise model, is detailed in [17].

7 Conclusions

Presented above is an information theoretic framework describing image-model coupling when the true-
world system has memory. Examples of such systems include the ionosphere and other geophysical systems
with a ‘sluggish response’. A discrete channel model is used to help quantify the match between images
and model output, and analyse the coupling. The approach is statistical in nature. It should be possible to
harness any increased availability of data to derive objective functions which better reflect the spatial and
temporal statistical relationships in the true underlying process, and thereby improve coupling accuracy.
However for complex systems such as the ionosphere it is probably more beneficial to first direct effort
at improving the accuracy of the proposed model (i.e. the codebook). It is hoped that the framework
described above may encourage the further use of statistical and information-based ‘tools’ in image-model
coupling and its analysis. In general, image-model coupling may be used to help us better understand the
underlying processes which produce the effects being imaged, but also better understand the limitations
of the models themselves. A practical application of some of these concepts, using a very simple objective
function, is presented for ionospheric modelling in [17].

A Distributions implicit in the transmitter

The noisy image z̃(t) may be regarded as sampled from a distribution, the functional form of which varies
with scale, i.e. the number of conditional variables. An expression for the fully marginalised distribution
may be derived under the following assumptions, consistent with the transmitter illustrated in Figure 1.

• Each driver variable in UTX ⊗ U ′
TX is linearly independent of all other driver variables.

• Each description variable in Z ⊗ Z ′ is linearly independent of all other description variables.

• Measurement noise is stationary temporally, and spatially with regard to zTX(t). Hence
PTX(nTX(t)|zTX(t)) = PTX(nTX)∀zTX(t).
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• The current noisy image z̃(t) is fully and uniquely determined by an initialisation hc timesteps
previous where hc ∈ N0, the history of driver variables since then, and the current measurement
noise, i.e. the following mapping is injective,

(uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc), z

′
TX(t − hc), nTX(t)) 7→ z̃(t). (46)

If this condition does not exist, then a value of hc is chosen such that the history of driver variables
prior to timestep (t − hc) has no significant effect on the current description.

• Temporal causality is assumed so only past events influence the current description.

So,

PTX(z̃(t)|uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc), z

′
TX(t − hc)) = PTX(nTX)δ(nTX, z̃(t) − zTX(t)),

(47)

where δ(·, ·) is the Kronecker delta. Introducing redundant variables into the list of conditional variables,

PTX(z̃(t)|uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc, t), z

′
TX(t − hc, t))

= PTX(z̃(t)|uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc), z

′
TX(t − hc)). (48)

Marginalising over the unknown description and driver variables, and substituting from above,

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

=
∑

u
′

TX
(t−hc,t)∈⊗

hc+1

i=1
U ′

TX

∑

z
′

TX
(t−hc,t)∈⊗

hc+1

i=1
Z′

TX

PTX(u′
TX(t − hc, t), z

′
TX(t − hc, t))

PTX(z̃(t)|uTX(t − hc, t), u
′
TX(t − hc, t), zTX(t − hc, t), z

′
TX(t − hc, t))

=
∑

u
′

TX
(t−hc,t)∈⊗

hc+1

i=1
U ′

TX

∑

z
′

TX
(t−hc,t)∈⊗

hc+1

i=1
Z′

TX

PTX(nTX)δ(nTX, z̃(t) − zTX(t))

[

hc−1
∏

a=0

PTX(z′
TX(t − a)|z′

TX(t − hc, t − a − 1), u′
TX(t − hc, t − a))]PTX(z′

TX(t − hc)|u
′
TX(t − hc))

[

hc−1
∏

a=0

PTX(u′
TX(t − a)|u′

TX(t − hc, t − a − 1))]PTX(u′
TX(t − hc)). (49)

Then at a still coarser scale,

PTX(z̃(t)|uTX(t))

=
∑

uTX(t−hc,t−1)∈⊗
hc
i=1

UTX

∑

zTX(t−hc,t)∈⊗
hc+1

i=1
ZTX

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

PTX(uTX(t − hc, t − 1), zTX(t − hc, t))

=
∑

uTX(t−hc,t−1)∈⊗
hc
i=1

UTX

∑

zTX(t−hc,t)∈⊗
hc+1

i=1
ZTX

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

[

hc−1
∏

a=1

PTX(zTX(t − a)|zTX(t − hc, t − a − 1), uTX(t − hc, t − a))]

PTX(zTX(t)|zTX(t − hc, t − 1), uTX(t − hc, t − 1))PTX(zTX(t − hc)|uTX(t − hc))

[

hc−1
∏

a=1

PTX(uTX(t − a)|uTX(t − hc, t − a − 1))]PTX(uTX(t − hc)),

(50)

where PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t) is as given in Equation 49 above. This expression gives an
indication of the complexity implied in the distribution PTX(z̃(t)|uTX(t)). Much of the complexity derives
from the conditional probability terms introduced in marginalising over, or ‘averaging out’, all possible
histories. Of course the expression is simplified if the deeper dependencies do not exist, for example if hc

is small, or if the source memory length is much shorter than the channel memory length, i.e. hs << hc.
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