
Acta Numerica (2009), pp. 1–131 c© Cambridge University Press, 2009

doi: 10.1017/S0962492906400015 Printed in the United Kingdom

Adaptivity with moving grids

Chris J. Budd
Centre for Nonlinear Mechanics,

University of Bath, Bath BA2 7AY, UK
E-mail: mascjb@bath.ac.uk

Weizhang Huang
Department of Mathematics,

University of Kansas,
Lawrence, Kansas 66045, USA
E-mail: huang@math.ku.edu

Robert D. Russell
Department of Mathematics,

Simon Fraser University,
Burnaby V5A 1S6, Canada

E-mail: rdr@cs.sfu.ca

In this article we look at the modern theory of moving meshes as part of
an r-adaptive strategy for solving partial differential equations with evolving
internal structure. We firstly examine the possible geometries of a moving
mesh in both one and higher dimensions, and the discretization of partial
differential equation on such meshes. In particular, we consider such issues
as mesh regularity, equidistribution, variational methods, and the error in
interpolating a function or truncation error on such a mesh. We show that,
guided by these, we can design effective moving mesh strategies. We then
look in more detail as to how these strategies are implemented. Firstly we
look at position-based methods and the use of moving mesh partial differen-
tial equation (MMPDE), variational and optimal transport methods. This
is followed by an analysis of velocity-based methods such as the geometric
conservation law (GCL) methods. Finally we look at a number of examples
where the use of a moving mesh method is effective in applications. These
include scale-invariant problems, blow-up problems, problems with moving
fronts and problems in meteorology. We conclude that, whilst r-adaptive
methods are still in a relatively new stage of development, with many out-
standing questions remaining, they have enormous potential for development,
and for many problems they represent an optimal form of adaptivity.

2 C. J. Budd, W. Huang and R. D. Russell

CONTENTS

1 Introduction 2
2 Moving mesh basics 10
3 Location-based moving mesh methods 44
4 Velocity-based moving mesh methods 83
5 Applications of moving mesh methods 91
References 121

1. Introduction

1.1. Motivation

Time-dependent systems of partial differential equations (PDEs) often have
structures that evolve significantly as the integration of the PDEs proceeds.
These can be interfaces, shocks, singularities, changes of phase, high vor-
ticity or regions of complexity. Associated with such structures are the
evolution of small length (and time) scales, rapid movement of the solution
features and the possibility of finite time blow-up of a component of the
solution. Frequently associated are also conservation laws, usually linked to
underlying symmetries. Examples of these phenomena occur in many appli-
cations, such as gas and fluid dynamics, conservation laws, nonlinear optics,
free boundary problems, combustion, detonation, meteorology, mathemat-
ical biology and nonlinear optics. To solve such PDEs numerically it is
typical to impose some form of spatial mesh and then to discretize the solu-
tion on this mesh by using a finite element, finite volume, finite difference,
or collocation method. However, this strategy may not be effective in the
case of structures that involve small length scales, leading to large localized
errors. In such cases it is often beneficial to use some form of non-uniform
mesh, adapted to the solution, on which to perform all of the computations.
The advantages of doing this can be a reduced overall error, better condi-
tioning of the system, and better computational efficiency. Unfortunately,
introducing the extra level of complexity to the system through adaptivity
can also lead to additional computational cost and possible numerical in-
stability. Mesh adaptation should thus be used with care and appropriate
analysis where possible.

1.2. Adaptivity on a moving mesh

Adaptive methods for solving partial differential equations broadly fit into
three categories. The most extensively developed are static regridding meth-
ods, in which a mesh is updated at each time level. The most widely used of
these are h-refinement methods, which form the basis of many commercial
codes. Usually such codes start with an initially uniform mesh, and then

Adaptivity with moving grids 3

locally coarsen or refine this by the inclusion or deletion of mesh points. The
strategy for doing this is normally guided by some a posteriori estimate of
the solution error, and may consider problems in which the error is due
to the solution geometry (such as re-entrant corners) or high derivatives.
In p-refinement methods some finite element discretization of the PDE is
used with local polynomials of some particular order. This order is then in-
creased or decreased in accordance with the solution error. These methods
may be combined with h-refinement methods and with careful a posteriori
estimates to give hp methods (Ainsworth and Oden 2000). The principal
objective of the hp methods is to obtain solutions within prescribed error
bounds by such refinement procedures. There is not usually an upper bound
on the number of points used in the calculation. Such methods have now
been developed to a high degree of sophistication. However, they are neces-
sarily rather complex, need not take advantage of any dynamic properties
of the underlying solution, and the a posteriori error estimates rely heav-
ily on certain assumptions on the solution which may be hard to verify for
strongly nonlinear problems.

The r-refinement (relocation refinement) moving mesh methods which
will form the substance of this article are a more recent development than
hp methods. Whilst not as widely used as h- or p-adaptive methods,
r-adaptivity has been used with success in many applications including
computational fluid mechanics (Tang 2005), phase field models and crys-
tal growth (Mackenzie and Mekwi 2007a), and convective heat transfer
(Ceniceros and Hou 2001). It also has a natural application to prob-
lems with a close coupling between spatial and temporal length scales,
such as in problems with symmetry, scaling invariance and self-similarity
(Barenblatt 1996, Budd and Williams 2006), where the mesh points be-
come the natural coordinates for an appropriately rescaled problem. Less is
known about the behaviour of r-adaptive methods than of the much more
extensively developed hp methods, and (at least in higher dimensions) they
have yet to become part of established large numerical codes. In particular,
as we shall see in this article, many outstanding open questions remain on
their convergence, the nature of the meshes that they generate and the error
estimates that can be obtained when using them to solve PDEs with rapidly
evolving structures. As a consequence, much of the analysis of such meth-
ods has been for one-dimensional problems, and the one-dimensional PDE
solver MOVCOL (Huang and Russell 1996, Russell, Williams and Xu 2007)
and the celebrated continuation code AUTO (for solving two-point bound-
ary value problems amongst others) both make use of r-adaptive methods.
However, r-refinement methods show great potential for solving a much
greater range of problems, as we hope to demonstrate in this article.

The r-refinement methods start with a uniform mesh and then move the
mesh points, keeping the mesh topology and number of mesh points fixed

4 C. J. Budd, W. Huang and R. D. Russell

as the solution evolves. Hence the use of the alternative name of moving
mesh methods for such procedures. The mesh points are then concentrated
into regions where the solution has ‘interesting behaviour’, usually typified
by a rapid variation of either the solution or one of its (higher) derivatives.
The objective of this approach is to get the smallest error possible for the
number N of mesh points used, and to try to obtain error estimates which
depend upon the value of N but not on the solution itself. For example,
if the solution evolves a boundary layer of width ε (with ε decreasing as
time advances), then ideally the mesh points should concentrate into this
boundary layer so that the solution error is independent of ε. The mov-
ing mesh methods typically work by generating a mapping from a regular
(logical or computational) domain into a physical domain in which the un-
derlying equation is posed. The location, or the velocity, of the mesh points
is then determined by solving a system of auxiliary partial differential equa-
tions, often called the moving mesh equations. In all cases a vector or a
scalar monitor function (or functions) is used to guide the position of the
mesh. The monitor function is usually designed to give an estimate of some
measure of the solution error which is then equidistributed over each mesh
cell. The monitor function is usually constructed in one of three ways. It
may depend upon a priori solution estimates (such as arclength or cur-
vature), on a posteriori error estimates (such as the solution residual, as
used in moving finite element methods (Baines 1994), or estimates of the
derivative jump across element boundaries (Tang 2005)), or on some un-
derlying physics related to the solution, such as the potential temperature
or the vorticity in a meteorological problem (Budd and Piggott 2005). In
the case of scale-invariant problems, such physical estimates are often op-
timal. When using such methods, much care has to be taken in preventing
mesh tangling and ensuring mesh regularity and isotropy (where relevant).
A discussion of this will form a significant part of Section 2. We also re-
quire that discretizations of the underlying PDE on such meshes (in either
the computational or the physical domain) should retain important prop-
erties of the underlying physical solution, such as conservation laws and
scaling structures (Tang 2005). Provided that these conditions are carefully
considered, r-adaptive methods can be used with considerable success for
many time-evolving systems. Examples of these include computational fluid
dynamics (Yanenko, Kroshko, Liseikin, Fomin, Shapeev and Shitov 1976),
groundwater flow (Huang and Zhan 2004, Huang, Zheng and Zhan 2002),
blow-up problems (Budd, Huang and Russell 1996, Budd and Williams 2006,
Ceniceros and Hou 2001, Ren and Wang 2000), chemotaxis systems (Budd,
Carretero-Gonzalez and Russell 2005), reaction–diffusion systems (Zegeling
and Kok 2004), the nonlinear Schrödinger equation (Sulem and Sulem 1999,
Ceniceros 2002, Budd, Chen and Russell 1999a), phase change problems
(Mackenzie and Robertson 2002, Mackenzie and Mekwi 2007a, Tan, Lim

Adaptivity with moving grids 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1. A logically rectangular mesh, moved to
concentrate points around a ring in an evolving singular
solution of the nonlinear Schrödinger equation. Note the
good radial symmetry of the adapted mesh around the ring.

and Khoo 2007), shear layer calculations (Tang 2005), gas dynamics (Li
and Petzold 1997, Li, Petzold and Ren 1998), hyperbolic conservation laws
with high Mach number (Li and Petzold 1997, Tang 2005, Stockie, Macken-
zie and Russell 2000, Tang and Tang 2003), problems with high vorticity
(Ceniceros and Hou 2001), magneto-hydrodynamics (Tan 2007) and me-
teorological problems (Budd and Piggott 2005). More details of such ap-
plications are given in Section 5. In Figure 1.1 we give an example of an
r-adaptive mesh which has evolved to capture the structure of a singular
solution of the nonlinear Schrödinger equation which has its support con-
centrated around a ring.

All r-adaptive methods have intimate connections with the geometry
of mapping one domain to another. They thus have intimate links with
problems in differential geometry such as optimal transport (Brenier 1991,
Gangbo and McCann 1996), mean curvature flows (Huang 2007) and har-
monic mappings (Dvinsky 1991). A natural application of such ideas arises
in image processing, and r-adaptivity has close connections with such im-
age processing procedures as image segmentation and image de-noising
(Sapiro 2003).

There are advantages and disadvantages to each of the strategies outlined
above. As discussed earlier, the hp methods have been in use for a long time

6 C. J. Budd, W. Huang and R. D. Russell

and are now well established in many commercial codes. There is a signifi-
cant body of analysis supporting their use. In contrast, r-adaptive methods
are more recent and are less well understood. A significant criticism which
has often been made of them is that their implementation usually requires
the solution of auxiliary partial differential equations for the mesh, which
must be solved in parallel to the underlying partial differential equation.
This requires significant additional computational cost. Furthermore, the
equations to be solved to determine a suitable mesh can often be very stiff,
and thus expensive to solve. Furthermore, the methods get the best esti-
mates for a given N rather than errors necessarily lower than a specified
tolerance. However, r-adaptive methods do have significant advantages in
certain applications. Firstly, from a computational point of view, it is con-
venient to work with the same number of mesh points and the same mesh
topology. This makes the linear algebra rather easier, as the matrices con-
sidered have a constant sparsity structure, and there is no need for any form
of nested data structure to keep track of the node points (an issue which
always complicates the use of h-refinement methods). The discretization
strategy on the mesh is also easier, especially with a finite element method,
as the constancy in the mesh topology and connectivity implies that there is
no possibility of hanging nodes. There are further, structural advantages to
r-refinement methods. One of these is that the movement of the mesh points
may well correspond to natural structures of the PDE itself. An obvious ex-
ample is Lagrangian-based methods for fluid flow problems, in which mesh
points move with the fluid flow. A further such example is given by the use
of r-refinement methods for PDEs with natural scaling symmetries, in which
the mesh points automatically follow the motion of natural similarity vari-
ables (and indeed the use of the r-refinement method becomes equivalent
to the use of an appropriate coordinate transformation). A third advantage
of r-refinement is that, under certain circumstances, the adaptive strategy
when coupled with the PDE can be regarded as one (large) dynamical sys-
tem, which may then be amenable to a combined analysis. One limitation
of having a fixed number of points means that it may never be possible to
resolve all of the fine structures of a PDE as it evolves (although it is surpris-
ing what can be done with often a relatively small number of mesh points).
Also, all r-adaptive methods are, in principle, prone to mesh tangling , in
which lines connecting the mesh points can cross over during the evolution.
This generally leads to severe instabilities in the system and a failure of
the solution routine. Mesh tangling is often associated with mesh racing ,
where some mesh points move very fast during the evolution, frequently
leading to a stiff set of equations to solve. The disadvantages of having to
solve an auxiliary set of partial differential equations are less severe than
they might originally appear to be. Firstly, the combined system of mesh
and underlying equations may be much smaller than the original system

Adaptivity with moving grids 7

defined on a uniform mesh for the same level of accuracy. Indeed, in Sec-
tion 5 we will give an example of the solution of focusing behaviour in the
one-dimensional nonlinear Schrödinger (Sulem and Sulem 1999) equation
(which can be written as four real first-order PDEs), where a discretization
of the PDE on a set of N = 81 moving mesh points is able to resolve singu-
lar structures with a length scale of 10−5, and outperforms discretizations
on uniform meshes with 105 mesh points. Hence the additional 81 auxil-
iary equations for the mesh gives a method which outperforms one with 105

equations, giving a very significant cost reduction. Secondly, although the
equations describing the mesh are indeed stiff in general, we do not need
(in general) to solve them exactly. After all, it is the underlying solution of
the PDE that we are interested in, and not the mesh on which it is solved.
Thus a quite rough approximation to the solution of the moving mesh equa-
tions will often deliver a mesh more than adequate for the task of resolving
the structures of the underlying PDE. Indeed, we will argue in Section 3
(and demonstrate by example in Section 5) that a relaxed version of the
moving mesh equations can be solved using a simple explicit method, will
deliver similar performance for much stiffer equations than the meshes ob-
tained by more computationally expensive methods. Indeed, they may well
be stable, more regular, and deliver a better mesh quality than solving the
exact equations for the mesh. Finally, one of the main applications of hp
methods is to solve otherwise regular PDEs on irregular domains, typically
with re-entrant corners, that introduce significant errors due to a lack of
solution regularity at the corner. The r-adaptive methods as described in
this paper are not really the right tool for this job (though see the results
in Touringy (1998)). However, a combination of h and r methods may well
prove optimal in this case, where the h method is used to mesh around the
corner and the r method to follow any evolving solution structure. Future
attempts to combine these two types of adaptive refinement in a general
context should prove to be most interesting.

1.3. Computation on moving meshes

The problem of computing solutions of PDEs using a moving mesh method
separates into three related problems.

(1) As described, we need some monitor function to guide the mesh evolu-
tion, which is typically constrained either to equidistribute this func-
tion, or to relax towards an equidistributed state. In practice, whatever
the choice of monitor function, some spatial (and temporal) smoothing
is usually employed.

(2) Having determined the monitor function, we must determine a mesh
which equidistributes this in some way. The equidistribution problem
itself is a nonlinear algebraic problem, and a variety of techniques have

8 C. J. Budd, W. Huang and R. D. Russell

been developed to solve this problem such as a variational method, the
geometric conservation law, moving mesh PDEs and optimal transport
methods.

(3) The underlying PDE is then discretized, either on the mesh in the
computational domain or in the original physical domain (in the lat-
ter case a finite element or finite volume method is usually employed
(Tang 2005)). The underlying partial differential equation and the
mesh equations can then be solved either simultaneously, typically
by using the method of lines (Huang, Ren and Russell 1994), or al-
ternatively (often by using a predictor–corrector method). The first
method avoids the need for any interpolation from one mesh to an-
other, but is usually associated with having to solve stiff differential
equations. Alternating solutions can be implemented using either the
quasi-Lagrange approach (Huang and Russell 1997b) or the rezoning
approach (Tang 2005). The former transforms time derivatives to those
along mesh trajectories and avoids interpolation of the physical solu-
tion from the old mesh to the new one. However, it has the disadvan-
tages that it has to deal with extra convection terms caused by mesh
movement and may cause a time lag in mesh movement. On the other
hand, the rezoning approach solves the physical PDE on a fixed mesh
over a time step but requires interpolation from one mesh to another
(which often has to be done very carefully to preserve conservation
laws). We will consider both methods in detail in this article.

We are currently in a situation where the mesh formulation problem, mesh
generation and the solution of PDEs on a moving mesh are generally well
understood in one spatial dimension. Reliable and efficient moving mesh
methods exist (and are implemented in a number of packages) which are
based on such formulations and can be used to solve time-evolving PDEs
in one spatial dimension, with associated error estimates in certain cases.
Indeed, for such problems the use of moving mesh PDEs to evolve the mesh
coupled with a method of lines approach has proved to be very effective, and
also amenable to analysis. In this article we will be able to give a detailed
description of the theory, implementation and application of such methods.
However, the problem of mesh movement, and the discretization of PDEs
on such meshes, is much less understood in higher dimensions, and this will
form the bulk of the discussion in this paper.

1.4. A historical survey

Moving meshes and the use of adaptive strategies to minimize estimates of
the solution error have a rich and diverse literature. Moving mesh methods
can be classified according to the mesh movement strategy into two groups
(Cao, Huang and Russell 2003): velocity-based methods and location-based

Adaptivity with moving grids 9

methods. The first group is referred to as velocity-based since the methods
directly target the mesh velocity and obtain mesh point locations by inte-
grating the velocity field. Methods in this group are more or less motivated
by the Lagrange method in fluid dynamics, where the mesh coordinates,
defined to follow fluid particles, are obtained by integrating flow velocity. A
major effort in the development of these methods has been to avoid mesh
tangling, an undesired property of the Lagrange method. This type of
method includes those developed in Anderson and Rai (1983), Cao, Huang
and Russell (2002), Liao and Anderson (1992), Miller and Miller (1981),
Miller (1981), Petzold (1987) and Yanenko et al. (1976). The method of
Yanenko et al. (1976) is of Lagrange type. In the work of Anderson and Rai
(1983), mesh movement is based on attraction and repulsion pseudo-forces
between nodes motivated by a spring model in mechanics. The moving fi-
nite element method (MFE) of Miller and Miller (1981) and Miller (1981)
has aroused considerable interest. It computes the solution and the mesh
simultaneously by minimizing the residual of the PDEs written in a finite
element form. Penalty terms are added to avoid possible singularities in the
mesh movement equations; see Carlson and Miller (1998a, 1998b). A way
of treating the singularities but without using penalty functions has been
proposed by Wathen and Baines (1985). Liao and Anderson (1992) and
Cai, Fleitas, Jiang and Liao (2004) use a deformation map approach. Cao
et al. (2002) develop the GCL method based on the geometric conserva-
tion law (see Section 4). Similar ideas have been used by Baines, Hubbard
and Jimack (2005) and Baines, Hubbard, Jimack and Jones (2006) for fluid
flow problems.

The second group of moving mesh methods is referred to as location-based
because the methods directly control the location of mesh points. Methods
in this group typically employ an adaptation functional and determine the
mesh or the coordinate transformation as a minimizer of the functional. For
example, the method of Dorfi and Drury (1987) can be linked to a func-
tional associated with equidistribution principle (Huang et al. 1994). The
moving mesh PDE (MMPDE) method developed in Cao, Huang and Russell
(1999b), Huang et al. (1994) and Huang and Russell (1997a, 1999) moves
the mesh through the gradient flow equation of an adaptation functional,
which includes the energy of a harmonic mapping (Dvinsky 1991) as a spe-
cial example. A combination of the MMPDE method with local refinement
is studied in Lang, Cao, Huang and Russell (2003). Li, Tang and Zhang
(2002) and Tang and Tang (2003) also use the energy of a harmonic map-
ping as their adaptation functional, but discretize the physical PDE in the
rezoning approach.

So far a number of moving mesh methods and a variety of variants have
been developed and successfully applied to practical problems; see the re-
view articles of Cao et al. (2003), Eisman (1985, 1987), Hawken, Gottlieb

10 C. J. Budd, W. Huang and R. D. Russell

and Hansen (1991), Thompson (1985), Thompson, Warsi and Mastin (1982)
and Thompson and Weatherill (1992), and the books of Baines (1994),
Carey (1997), Knupp and Steinberg (1994), Liseikin (1999), Thompson,
Warsi and Mastin (1985) and Zegeling (1993). In particular, Hawken et al.
(1991) give an extensive overview and references on moving mesh meth-
ods before 1990. In addition to the references cited above, we would also
like to bring the reader’s attention to the recent interesting work of Bank
and Smith (1997), Beckett, Mackenzie and Robertson (2001a), Budd et al.
(1996), Calhoun, Helzel and LeVeque (2008), Ceniceros and Hou (2001),
Chacón and Lapenta (2006), Lapenta and Chacón (2006), Di, Li, Tang and
Zhang (2005), Huang and Zhan (2004), Mackenzie and Robertson (2002),
Ren and Wang (2000), Stockie et al. (2000), Tang and Tang (2003) and
Zegeling and Kok (2004) on moving mesh methods and their applications.

1.5. Outline of this article

The purpose of this Introduction has been to give an underlying motivation
for the theory and application of (adaptive) moving meshes. In Section 2
we will consider in detail the geometry of possible meshes (with special
regard to equidistribution and isotropy), and the nature of discretizations of
differential equations on them. In Section 3 we then look in detail, and with
reference to many examples, at ‘location-based’ meshes in which the local
density of the mesh points is controlled by a monitor function. These include
moving mesh PDE (MMPDE) methods, variational methods and optimal-
transport-based methods. This discussion will look at moving meshes in
both one and higher dimensions and compare the strategies used for these
two cases. In Section 4 we will then look at velocity-based methods, such as
the geometric conservation law (GCL) methods and the moving mesh finite
element methods, in which the velocity of the mesh points, rather than their
position, is controlled. The concluding section, Section 5, will then look at
some examples in much more detail, considering scale invariance, blow-up
problems, problems with convection and moving fronts, phase change and
combustion problems, and problems arising in meteorology.

2. Moving mesh basics

In this section we will give an overview of the main aspects of adaptive
moving mesh generation, and will concentrate on the nature of the geome-
try of an adapted mesh, the equidistribution and variational approaches to
defining a mesh, and the relation of the mesh to solution (truncation and
interpolation) errors. The movement of the mesh and the way that it can
be coupled to a partial differential equation will be discussed briefly, but will
mainly be the subject of Sections 3 and 4.

Adaptivity with moving grids 11

As described in the Introduction, in an r-adaptive procedure a fixed num-
ber of mesh points are moved in response to some user-designed condition.
Any r-adaptive method has two main features, a description of the optimal
geometry of the mesh (which is related both to intrinsic properties of the
mesh regularity and to the structure of the underlying solution of the PDE)
and a strategy for evolving the mesh towards this optimal geometry. Op-
timal mesh geometries are typically expressed in terms of equidistribution
measures (related to the solution of the underlying PDE by monitor func-
tions) or using variational principles, and we review these here. Movement
strategies are generally methods for determining either the location of the
mesh points or the velocity of the mesh points. We discuss both briefly in
this section, and then in more detail in Sections 3 and 4.

Essential to mesh adaptation is the ability to control the shape, size and
orientation of mesh elements, and hence to control the error of the solution
of the underlying PDE. This is done in three steps. Firstly an estimate
of the solution error and/or mesh quality is made. Secondly the mesh is
aligned and moved according to this estimate. Thirdly the solution of the
underlying PDE is advanced on the new mesh. Typically this can be in
response to some structure of the solution of a PDE which is evolving in the
space supporting the mesh; however, there are more general circumstances
(such as in image processing) where we might wish to evolve a mesh in a
manner independent of any PDE.

In this section we will study the geometry of the meshes that arise from
various adaptive strategies, considering such aspects as local element size,
skewness and orientation as well as considering both isotropic and an-
isotropic meshes, and looking at solution error estimation and control.

2.1. Mesh-mapping functions

To describe an r-adaptive mesh we consider a fixed computational domain
ΩC ⊂ R

n, in which most of the computations associated with the PDE will
be made. The domain ΩC will have the usual Lebesgue measure and may
have a non-trivial topology. We now consider there to be a fixed mesh τC

on the computational domain. This can either be uniform or non-uniform,
depending on the nature of the underlying problem, and in the simplest
case will be a uniform set of logical rectangles. It can also be triangular,
and usually takes this form when a finite element or finite volume method
is used to discretize the PDE in the physical domain. Alternatively, if
a finite difference or a spectral method is used to discretize the PDE in
the computational domain then a regular rectangular mesh may be more
appropriate. Note that we have a lot of a priori freedom in the choice
of the computational domain ΩC , and hence when ΩC is simply connected
it is often convenient to consider it to be a logically rectangular domain,

12 C. J. Budd, W. Huang and R. D. Russell

so that
ΩC = [0, 1]n.

To describe a computational mesh in the case of such simply connected
domains we typically divide ΩC ⊂ R

n into Nn uniform, regular tetrahedra or
cuboids of side proportional to 1/N and volume proportional to 1/Nn, and
we will initially assume that this is the case. In the r-adaptive procedure
considered in this section we consider the mesh points to be joined in a
simple (logically rectangular or triangular) network, the topology of which
(and consequently the ordering of the nodes in the network) is fixed for most
(if not all) of the time during the computation. Indeed, it is this constancy
of ordering which makes the r-adaptive procedure very attractive for finite
element and related computations.

To derive a moving mesh, the computational domain with its associated
mesh is then mapped to a physical domain ΩP ∈ R

n, in which the under-
lying PDE is posed. We assume that there is an invertible, adaptive mesh
generating function

F : ΩC → ΩP

describing this map, so that F is smooth on the interior of ΩC and continuous
on ΩC . Throughout this article we will denote variables in ΩC by Greek
letters, e.g., ξ, and in ΩP by Roman letters, x, and consider the function
F(ξ, t) to be time-dependent. The action of the function F on the fixed
mesh τC generates a moving mesh τP in the physical domain. An example
of such a mesh is given in Figure 2.1, in which a uniform rectangular mesh
in ΩC is mapped to a mesh τP . (This map was constructed by using the
optimal transport method described in Section 3.)

In the case where τC is a uniform rectangular mesh, the resulting mesh
τP in the physical space is then (in the representative example of a two-
dimensional system) given by the points (Xi,j , Yi,j), where F = (x, y) and

Xi,j = x

(
i

N
,

j

N

)
, Yi,j = y

(
i

N
,

j

N

)
. (2.1)

We assume further that the boundary of ∂ΩC of ΩC is mapped by F to
the boundary of ∂ΩP of ΩP . In some r-adaptive strategies (such as the
multi-equidistribution and/or variational strategies described in Huang and
Russell (1999), the map F is augmented with a second map,

∂F : ∂ΩC → ΩP ,

which explicitly describes the map from one boundary to another. This
has the advantage of close control of the meshing strategy right up to the
boundary, but has the disadvantage of introducing extra complexity into
the system. In other algorithms, such as the optimal mapping strategy
(Delzanno, Chacón, Finn, Chung and Lapenta 2008, Budd and Williams

Adaptivity with moving grids 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ΩC ΩP

ξ x

yη

Figure 2.1. A typical map (x(ξ, η), y(ξ, η)) from a
computational domain ΩC to a physical domain ΩP .

2006), the boundary map is obtained automatically as part of the algorithm.
This is an attractive feature from the perspective of algorithmic complexity,
although it does lead to a reduction of control of the boundary points.

The great merit of this approach is that it transforms the problem of
finding (and describing) a mesh in ΩP (which in the case of h-adaptive
methods can require subtle data structures, including hierarchical trees)
into the much simpler problem of describing the function F. Much of this
article is devoted to deriving suitable equations for F and seeking effective
solution strategies for them. It goes without saying that it should not be
more difficult to find F than to solve the underlying PDE, and indeed that
many such functions F may give appropriate meshes on which to solve
the PDE. The properties of the mesh τP then follow immediately from the
structure of the map F. This simple observation is a key to the success
of r-adaptive methods, as it allows the use of powerful mathematical tools
to describe, construct and control the mesh behaviour. These include the
application of methods from differential geometry (especially the theory
of optimal transport) to describe the static structure of τP , and methods
from the theory of dynamical systems to describe its evolution. The latter
is especially appropriate when coupled to the partial differential equations
which are often solved to find F. The unity that r-adaptive meshes give
for both solving the underlying PDE, and finding the mesh, is a significant
advantage of r-adaptivity over other adaptive approaches.

14 C. J. Budd, W. Huang and R. D. Russell

2.2. Static mesh properties: skewness, regularity and smoothness

We consider first some immediate properties of the mesh τP which are re-
lated to the function F. Broadly speaking these divide into local and global
properties. The global properties relate to the isotropy of the mesh, or-
thogonality issues and the behaviour close to boundaries. We discuss these
presently.

The local properties relate to the size and shape of the elements of τP .
If τC is divided into logical regular rectangular or triangular elements τ e

C ,
then these are mapped to elements τ e

P in τP . These elements will then be
distorted rectangles/triangles, possibly with small angles at the vertices.
Locally we can characterize each such element by the size he of the largest
side and (in two dimensions) the radius ρe of the largest inscribed circle. If a
partial differential equation is discretized over τP using (say) a finite element
method in two dimensions, then the error in the solution has contributions
from the size and the shape of the elements, as well as from the derivatives
of the solution itself. For example, if the solution u is interpolated over
τ e
p by a piecewise linear interpolant Π(u), then the following a priori error

estimates are standard (Johnson 1987):

max
τe
p

|Π(u) − u| ≤ 2h2
e max

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣,

max
τe
p

∣∣∣∣ ∂

∂xi

(
Π(u) − u

)∣∣∣∣ ≤ 6
h2

e

ρe
max

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣.
(2.2)

An adapted mesh will usually aim to control the size and the shape of each
element so that, for any particular solution u, the overall error is controlled.
Thus, for example, if the second derivatives of u are large over τ e

p , then the
error (2.2) can be controlled locally by taking he to be small, and ensuring
that he/ρe remains bounded. We discuss these issues in detail later in this
section. (See Cao (2005, 2007a) and Chen, Sun and Xu (2007) for a very
complete analysis of this problem.)

Both the size and the shape of the mesh elements can be described in
terms of the local properties of F , and in particular its Jacobian J , given by

J =
∂F

∂ξ
. (2.3)

The following is immediate.

Condition 2.1. For the map to be locally well-posed we require that J
should be both bounded and invertible at all points in ΩC .

Adaptivity with moving grids 15

2.2.1. Mesh scaling
The local scaling factor 1/ρ of the transformation (also called the adaptation
factor) is given by

Λ ≡ 1/ρ = det(J) ≡ |J |.
Assuming that J has a full set of singular values λ1, . . . , λn, the local

stretching is given by the determinant

Λ = |λ1||λ2| · · · |λn|. (2.4)

The adaptation factor controls the (possibly higher-dimensional) area |τ e
P |

of the element τ e
P so that

ρ|τ e
C | = |τ e

P |. (2.5)

The area |τ e
p | implicitly enters into the expression (2.2). Indeed, in so-

called shape-regular two-dimensional meshes there exist constants α and β
such that, for all elements τ e

p ∈ τp, we have

α|τ e
p | ≤ h2

e ≤ β|τ e
p |.

Accordingly, many moving mesh methods (such as those based on equidistri-
bution or variational methods) aim to control the adaptation factor. Scale-
invariant methods relate the adaptation factor to local length scales of the
underlying PDE. It is easily possible for the adaptation factor to vary over
many orders of magnitude, particularly when the adaptive method is being
used to compute singular structures in the underlying PDE in which the
solution u and/or its derivatives vary over similar orders of magnitude.

2.2.2. Mesh skewness
In the case of one-dimensional meshes, control of the adaptation factor for
each element completely describes the mesh. In higher dimensions many
more mesh properties are important, such as the local rotation or the skew-
ness of the mesh. A special class of irrotational meshes control the local
element rotation by requiring that J is symmetric, so that

JT = J,

or equivalently that
∇ξ × F = 0.

This is by no means true of all such mappings, but it can be shown (Delzanno
et al. 2008, Brenier 1991) that meshes in an averaged sense closest to uniform
meshes have this property.

The shape of the element τ e
P , in particular the existence of any small

angles, is also important in the error estimate (2.2). A measure of this is
the local mesh skewness. A measure for the local skewness s of the mesh is

16 C. J. Budd, W. Huang and R. D. Russell

then given by

s =
max |λi|
min |λj | . (2.6)

Other measures of mesh skewness are also referred to as shape or qual-
ity measures. Liu and Joe (1994) investigate several shape measures for
tetrahedra and show that they are equivalent to each other. Denote the
four vertices of a tetrahedron τ e

P by a0, . . . , a3, and define the so-called edge
matrix as E = [a1 − a0, a2 − a0, a3 − a0]. Let ê be a regular tetrahedron
having the same volume as τ e

P . Denote the corresponding vertices and the
edge matrix of ê by â0, . . . , â3 and Ê, respectively. Then one of the shape
measures for τ e

P is defined by

η(τ e
P) =

3
[
det((EÊ−1)T (EÊ−1))

] 1
3

trace((EÊ−1)T (EÊ−1))
.

Notice that the η(τ e
P) ranges from 0 to 1, with η(τ e

P) = 1 for a regular
tetrahedron and η(τ e

P) = 0 for a flat tetrahedron. A geometric quality mea-
sure is introduced by Huang (2005a) for measuring the shape of a simplicial
element in any dimension. Let τ e

P be a simplicial element in n dimensions
and let K̂ be an n-simplex with unit edge length. There exists a unique
invertible affine mapping

Fe : K̂ → τ e
P , τ e

P = Fe(K̂).

Denote the Jacobian matrix of Fe by F ′
e. Then the geometric measure is

defined by

Qgeo(τ e
P) =

trace((F ′
e)

T F ′
e)

d[det((F ′
e)T F ′

e)]
1
d

.

Notice that Qgeo(τ e
P) ranges from 1 to ∞, with Qgeo(τ e

P) = 1 for a regular n-
simplex and Qgeo(τ e

P) = ∞ for a flat d-simplex. Interestingly, for tetrahedra
these two shape measures have the relation Qgeo(τ e

P) = 1/η(τ e
P). To see this,

we first notice that K̂ and ê are similar. Thus, the mapping Ge : ê → τ e
P is

related to Fe by

Ge = cFe, G′
e = cF ′

e

for some positive constant c. Then the edge matrices E and Ê are related by

E = G′
eÊ = cF ′

eÊ.

Using this relation we can rewrite η(τ e
P) as

η(τ e
P) =

3
[
det((F ′

e)
T F ′

e)
] 1

3

trace((F ′
e)T F ′

e)
=

1
Qgeo(τ e

P)
.

Adaptivity with moving grids 17

It is shown by Huang (2005a) that measures s defined in (2.6) and Qgeo are
mathematically equivalent.

Some other quality measures can be found in Liseikin (1999, Chapter 3),
Knupp (2001) and Shewchuk (2002). Again, a good adaptive method aims
to control some or all of these measures of skewness, either explicitly or im-
plicitly throughout the calculation, and we discuss this later in this section.
In the case of scale-invariant meshes we shall show that, whilst the adapta-
tion factor changes a great deal, the skewness hardly varies. More generally,
it should be noted that whereas the adaptation factor often changes a great
deal in a mesh, the skewness generally does not. To control terms in the
error expression (2.2) arising from large solution gradients, it is generally
more important to vary the adaptation factor. If this results in a locally
larger value of the skewness then this can usually be tolerated.

2.2.3. Mesh smoothness and regularity
The smoothness or regularity of a mesh is a measure of how much the mesh
elements vary over the mesh. This can be important since the accuracy and
error in the numerical solution of partial differential equations generally de-
pend upon the type of discretization, the quality of the mesh, the treatment
of boundary conditions, and so on. A uniform mesh has the highest degree
of regularity, which can lead to particularly low error estimates on such
meshes. It is sometimes claimed that only uniform meshes have such low
estimates, but in fact, as we shall see, they share this with sufficiently regu-
lar meshes. Although there is generally no simple relationship between the
smoothness of the mesh and the error (see Veldman and Rinzema (1992)),
for most problems and most discretization methods, abrupt variations in the
mesh will cause a deterioration in the convergence rate and an increase in
the error (Thompson et al. 1985), or indeed in the accuracy of the approxi-
mation of a function over the mesh. Moreover, most discrete approximations
of spatial differential operators have much larger condition numbers on an
abruptly varying mesh than they do on a gradually varying one, and these
ill-conditioned approximations may result in stiffness in the time integration
for time-dependent problems.

The smoothness of a mesh can be expressed in terms of the regularity of
the underlying mesh function F.

Definition. A mesh τP has degree of regularity r if F ∈ Cr(ΩC).

The regularity of F can often be achieved by determining F as a solution
of a PDE system or a minimizer of a functional as in variational mesh
generation methods. In many cases it is possible to have strong control
over the derivatives of F allowing guaranteed regularity of the mesh τP . It
should be noted that an obvious way to determine a mesh is to prescribe
the Jacobian function J exactly (Brackbill and Saltzman 1982). However,

18 C. J. Budd, W. Huang and R. D. Russell

it is in general very hard to do this, and instead some property of J (such as
its determinant) is prescribed, and this is then used to determine the mesh.

A mesh can also be made smoother by some direct methods. For example,
(weighted) Laplace smoothing is often used in hp adaptation (see Carey
(1997)). In this strategy, the coordinates of an interior mesh point are
adjusted so that they become the (weighted) average of the coordinates
of its neighbouring points. Typically this is carried out in a Jacobian or
Gauss–Seidel fashion. When this is the case, Laplace smoothing can be
viewed as the application of the Jacobian or Gauss–Seidel iteration to the
solution of a discretization of the partial differential equation

−∆ξ(x̂, ŷ) = (x, y), (2.7)

where ∆ξ is the Laplacian operator applied in the computational domain.
In r-adaptive methods based on equidistribution, on the other hand, a
smoother mesh is often obtained indirectly by smoothing the monitor func-
tion M used for controlling mesh adaptation and movement. We will de-
scribe this strategy presently.

When calculating solutions to a (partial) differential equation on a non-
uniform mesh it is essential that there is a strong control on the mesh
variation. For one-dimensional meshes for which we have a mesh function
x(ξ), mesh points Xi = x(i∆ξ) and local mesh spacing given by ∆i =
Xi+1 − Xi then the grid size ratio or local stretching factor r is given by

r =
∆i

∆i−1
. (2.8)

In a uniform mesh we have that r = 1. For many calculations on a non-
uniform mesh, we require instead that

r = 1 + O(∆i). (2.9)

Such grids are termed quasi-uniform (Li et al. 1998, Zegeling 2007, Kaut-
sky and Nichols 1980, Kautsky and Nichols 1982), and normally lead to
truncation (and approximation) errors of the same order as uniform meshes
(Veldman and Rinzema 1992). We note that

r = 1 +
∆i − ∆i−1

∆i
= 1 +

Xi+1 − 2Xi + Xi−1

Xi − Xi−1
.

Consequently, as ∆i ≈ ∆ξxξ, etc., we have

r = 1 + ∆i
xξξ

x2
ξ

+ O(∆2
i).

Thus the mesh is quasi-uniform provided that

Λ ≡ xξξ

x2
ξ

= O(1). (2.10)

Adaptivity with moving grids 19

The condition (2.10) plays an important role in our subsequent analysis of
the errors of computations on both static and moving non-uniform meshes.
The ratio between lengths of adjacent elements is also used in Dorfi and
Drury (1987) and studied by Verwer, Blom, Furzeland and Zegeling (1989).

The concept of quasi-uniformity has natural extensions to higher dimen-
sions augmented with small angle conditions. For example, in two dimen-
sions, if we have a triangulation τP then this is shape-regular , ensuring
control over small angles, if, for each element τe ∈ τp with area |τe|, longest
side of length he and interior circle of diameter ρe, we have a constant σ1

such that

max
τe

he

ρe
≤ σ1. (2.11)

Such a shape-regular mesh is then quasi-uniform if there is a second constant
σ2 for which

maxτe∈τp |τe|
minτe∈τP |τe| ≤ σ2. (2.12)

As in the one-dimensional case, quasi-uniform meshes have similar error
estimates to uniform ones (Johnson 1987). However, it is often much harder
to achieve this for time-dependent problems.

2.3. Mesh calculation, mesh tangling and mesh racing

The function F must be determined as part of the process of calculating τP .
This map can be calculated either explicitly or implicitly. In the explicit
method, an equation is derived for F which is expressed in terms of the
position of the mesh points. This (usually large and nonlinear) system is
then solved to find F and hence to determine the location of the mesh.
This procedure lies at the heart of a number of equidistribution position-
based methods for calculating the mesh, such as the moving mesh partial
differential equation, optimal transport and variational methods.Typically
such methods cluster the mesh points where high precision is required, and
the location of points of density of the mesh points moves as the solution
evolves (in a similar manner to a longitudinal wave passing down the length
of a spring, whilst the coils of the spring do not move very far from their
equilibrium positions).

In an alternative procedure, the velocity v of the mesh points in τP is
determined. This is given by

v = Ft. (2.13)

The mesh point positions are updated using this velocity. This approach
is very closely linked with particle and Lagrangian methods and includes
methods such as GCL, MFE and the deformation map method. (Using the
analogy above, such methods are like moving the whole spring.)

20 C. J. Budd, W. Huang and R. D. Russell

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

Figure 2.2. An example of a mesh which has
tangled whilst attempting to resolve a front.

In general, position-based methods tend to produce smoother meshes, and
are much less prone to the problem of mesh tangling than velocity-based
methods. Mesh tangling occurs when the lines connecting adjacent mesh
points intersect. An example of this is given in Figure 2.2, in which we see
an attempted calculation of a solution front for Burgers’ equation which has
led to a tangled mesh through the use of an inappropriately large time step
in evolving the mesh.

Mesh tangling can occur either locally or globally and can often arise
in Lagrangian-type methods computing solutions with high vorticity. It is
associated with a local loss of inevitability of the map F or, equivalently, at a
point for which Λ = det(J) = 0. If Λ is controlled throughout the evolution
of the mesh, then mesh tangling can be avoided. Position-based methods
usually try to do this (see the calculations using the optimal transport and
MMPDE methods), hence their robustness to mesh tangling. Of course,
control of Λ for all time is impossible, as any equations describing the time
evolution of F will inevitably be discretized in time. If this discretization is
too coarse then mesh tangling may result.

Mesh racing is related to mesh tangling and occurs if v is too large relative
to the evolutionary behaviour of the underlying system being solved (so that
the mesh evolves more rapidly than the solution of the underlying PDE).
Mesh racing can occur for a variety of reasons, such as an inappropriate

Adaptivity with moving grids 21

choice of adaptivity strategy, gross mesh distortion or problems when the
moving mesh interacts with a fixed boundary. In a purely Lagrangian setting
a moving mesh used to calculate (for example) a fluid flow might seek to
have v equal to the local velocity of the fluid particles. In practice, as we will
demonstrate, such a procedure can lead to mesh tangling in the presence
of flows with high vorticity, and mesh racing when the fluid particles leave
the boundary and the mesh labelling has to be reassigned. In practice (and
in a manner to be made precise presently) it is often optimal for the mesh
points to move in a similar manner to the particles, but not to follow their
motions too precisely.

The connectivity of a mesh reflects how adjacent nodes are connected
together. In an h-adaptive mesh connectivity can be a significant issue,
and changes every time a local mesh refinement step is implemented. This
causes additional overheads in setting up the equations of any discretization
on this mesh, as the connectivity matrix needs to be constantly updated.
In contrast, in an r-adaptive method, the connectivity of the moving mesh
is usually determined by the connectivity of the underlying computational
mesh, which usually does not change during the calculation, and we can
presume to be relatively simple. A significant benefit of this approach is
that various mesh-smoothing methods can use this constant connectivity
and can (for example) exploit fast spectral methods which take advantage
of the constant mesh connectivity in the computational domain. As an
example, if the functions (x(ξ, η), y(ξ, η)) determine a particular mesh, then
it is possible to construct a smoother mesh from this. One example is
given by

(x̂, ŷ) =
(
I − γ∆ξ

)−1(x, y), (2.14)

where ∆ξ is the Laplacian operator applied in the computational domain and
γ is chosen appropriately. An important reason for constructing a smoother
mesh is to avoid significant variation in mesh size between adjacent elements.
We presently consider the effect of this on the solution error. This procedure
was introduced by Huang and Russell (1997a). The Laplacian operator can
be inverted very rapidly on a simply connected uniform rectangular mesh by
using a fast spectral method, for example the fast cosine transform. This
smoothing procedure also damps out the creation of certain chess board
modes that can lead to a deterioration of the mesh quality.

2.4. Mesh topology

The discussion so far has been restricted to the use of moving meshes map-
ping one convex region, indeed logically rectangular regions, to logically
rectangular regions. There is no real problem mapping a logically rect-
angular region ΩC to another convex region. For example, the article by
Calhoun et al. (2008) describes in detail how a logically rectangular mesh

22 C. J. Budd, W. Huang and R. D. Russell

can be mapped to both circular and spherical domains. This is especially
useful for calculations in meteorology involving whole Earth models. How-
ever, moving mesh methods are not ideal for mappings to and from non-
convex regions, due to the inherent singularities associated with re-entrant
corners. See Dvinsky (1991) for a brief discussion of this point. The issue
of refining a mesh close to such a corner where the geometry of the solution
and the associated singularity is (of course) known a priori has been ex-
tensively covered in the literature of h-adaptive methods: see, for example,
Ainsworth and Oden (2000), Johnson (1987) and many other texts. This
approach can be very naturally coupled with a moving mesh approach by
using an h-adaptive method to construct a mesh in the computational do-
main, which is refined close to the re-entrant corner. This mesh can then be
mapped, in a similar manner to that described earlier, to a moving mesh in
the physical domain. We will not pursue this further here as this article is
largely concerned with the construction of meshes adapted to the evolving
structures of time-dependent PDEs.

2.5. Equidistribution and monitor functions

Having considered the general aspects of the mesh geometry and the mesh
function F, we now consider the issues associated with calculating appro-
priate functions F to give meshes with certain properties. There are sev-
eral general approaches to this, and we consider two closely related meth-
ods: equidistribution-based and variational-based. Both methods generate
meshes determined by suitable monitor functions, which are typically deter-
mined both by properties of the solution of the underlying partial differential
equation and by other considerations of the mesh regularity.

2.5.1. Equidistribution
At the heart of many r-adaptive methods is the concept of equidistribution,
introduced as a computational device by de Boor (1973). Equidistribution is
a widely used means of prescribing the optimum geometry of the mesh, but
many different strategies have been devised to move the mesh towards this
optimum state, leading to a variety of moving mesh methods. In a certain
sense, all meshes equidistribute some function, and to motivate equidistribu-
tion we consider the fundamental Radon–Nikodym theorem from measure
theory. To do this we consider an invertible mesh mapping function F which
maps an arbitrary set A in ΩC to an image set B = F (A) in ΩP . We can in-
duce a measure ν(B) on ΩP by ν(B) = |A|, where |A| is the usual Lebesgue
measure on ΩC . We then have the following.

Theorem 2.2. (Radon–Nikodym) If ν is a well-defined Borel measure
on ΩP , then there is a non-negative measurable function M : ΩP → R such

Adaptivity with moving grids 23

that

ν(B) =
∫

B
M(x) dx,

for any Borel subset B of ΩP , where dx is the usual Lebesgue measure on
ΩP . Furthermore M is unique up to sets of Lebesgue measure zero.

Proof. See Capiński and Kopp (2004).

The Radon–Nikodym theorem shows that for any invertible map F we
can find a unique function M(x) such that, for any set A ⊂ ΩC , we have

∫
A

dx =
∫

F (A)
M(x) dx. (2.15)

Note, however, that (other than the special case of one dimension) the
same function M may be associated with many different maps.

The function M(x) > 0 is a function of x and t, but is more usually
defined in terms of the solution u(x, t) of the underlying PDE, so that we
might have

M(x, t) ≡ M(x, u(x, t), ∇u(x, t), . . . , t).

In this context M is usually called a scalar monitor function, and is chosen
to be large when the mesh points need to be clustered, for example if the
solution of the underlying problem has a high gradient. In this case the
Lebesgue measure of the set B may be small even if the measure ν(B)
is not. This may occur, for example, in the neighbourhood of a solution
singularity or a sharp front. An obvious example of a monitor function is
some estimate of the truncation error in the calculation of the solution of the
underlying PDE, and this was the original motivation of the equidistribution
approach of de Boor (1973). Loosely speaking, equidistributing the error
in calculating the solution of a PDE over all mesh elements is a necessary
condition for finding a global minimum of that error (Johnson 1987)

Assume now that we know the scalar function M and consider how we
might determine an appropriate map F. To do this we introduce an arbi-
trary non-empty set A ⊂ ΩC in the computational domain, with a corre-
sponding image set F(A, t) ⊂ ΩP . The map F equidistributes the respective
scalar monitor function M if the Stieltjes measures of A and F(A, t), nor-
malized over the measure of their respective domains, are the same. This
implies that ∫

A dξ∫
ΩC

dξ
=

∫
F(A,t) M(x, t) dx∫
ΩP

M(x, t) dX
. (2.16)

24 C. J. Budd, W. Huang and R. D. Russell

It follows from a change of variable that∫
A dξ∫

ΩC
dξ

=

∫
A M(x(ξ, t), t)|J(ξ, t)|dξ∫

ΩP
M(x(ξ, t), t) dx

. (2.17)

As the set A is arbitrary, the map F(ξ, t) must (for all (ξ, t)) obey the
identity

M(x(ξ, t), t)|J(ξ, t)| = θ(t), where θ(t) =

∫
ΩP

M(X(ξ, t), t) dx∫
ΩC

dξ
. (2.18)

We shall refer to (2.18) as the equidistribution equation. This equation must
always be satisfied by the map F(ξ, t). It is the central equation of much of
mesh generation, and we shall show presently that it is strongly connected
to a variational representation of the mesh transformation.

2.5.2. Choice of a scalar monitor function
The choice of a scalar monitor function M appropriate to the accurate
solution of a PDE is difficult, problem-dependent, and the subject of much
research. We do not consider this in detail here but give a brief review of
various choices used for certain problem classes. The function M can be
determined by a priori considerations of the geometry or of the physics of
the solution. An example is the generalized solution arclength given by

M =
√

1 + c2|∇xu(x)|2, or alternatively M =
√

1 + c2|∇ξu(x(ξ))|2.
(2.19)

The first of these is often used to construct meshes which can follow moving
fronts with locally high gradients (Winslow 1967, Huang 2007). A careful
analysis of the application of arclength-based monitor functions to the res-
olution of the solution of singularly perturbed PDEs is given in Kopteva
and Stynes (2001). Ceniceros and Hou (2001) successfully used the second
monitor function (with u being the temperature) to resolve small scale sin-
gular structures in Boussinesq convection. It is also common to use monitor
functions based on the (potential) vorticity, or curvature, of the solution
(Beckett and Mackenzie 2000), and these have been used in computations
of weather front formation (Budd and Piggott 2005, Budd, Piggott and
Williams 2009, Walsh, Budd and Williams 2009). In certain problems,
moving fronts are associated with changes in the physics of the solution.
An example is problems with phase changes, where the phase front oc-
curs at those points (xm)i at a temperature T = Tm. In such cases it is
possible to construct meshes which resolve behaviour close to the phase
boundary by using the monitor function M = a/

√
b|x − xm| + c, where

|x−xm| = min |x− (xm)i| (Mackenzie and Mekwi 2007a). Alternatively, M
can be linked to estimates of the solution error. A significant calculation in

Adaptivity with moving grids 25

which M was determined in terms of a priori error estimates (typically pro-
portional to the higher derivatives of the solution or estimates of these) was
given in Dorfi and Drury (1987), and is discussed in more detail presently.
More recently, monitor functions determined by a posteriori error estimates
have been constructed. An example of these, in the context of a piecewise
linear finite element approximation uh to a function u, is M =

√
1 + αζ2,

where

|u − uh|21,ΩP
∼ ζ2(uh) ≡

∑
l: interior edge

∫
l
[∇uh.nl]2l dl (2.20)

and [.]l is the jump in the computed solution along the element edges. This
monitor function is used by Tang (2005) to compute solutions adaptively to
the Navier–Stokes equations with thin shear layers and/or high Mach num-
bers. Similarly, in a series of papers studying both isotropic and anisotropic
meshes (Huang 2001a, 2001b, 2005a, 2005b, 2007), Huang explicitly consid-
ers monitor functions which are designed to control the regularity, alignment
and quality of the mesh. These include monitor functions which are based
as estimates of the interpolation error of the computed solution, and we
consider them presently. Other measures of mesh quality can be incorpo-
rated into the monitor function including maximum and minimum angle
conditions (Zlamal 1968, Babuška and Rheinboldt 1979), conditions on as-
pect ratio and quantities that combine both shape and solution behaviour
(Berzins 1998). Finally, it is sometimes possible in the case of PDEs with
strong scaling structures (such as problems related to combustion and gas
dynamics) to find suitable monitor functions which give meshes reflecting
the natural scales of the problem (Budd and Williams 2006). We give an
example of these in Section 5, looking at a PDE which has solutions which
blow up in a finite time. In this case we need a fine mesh when the solution
is large, and take M(u) =

√
a2 + b2u2p, p > 0.

We note at this stage that most choices of monitor function need a degree
of smoothing and regularization to perform effectively, and we will consider
this presently.

2.5.3. Matrix-valued monitor functions
The monitor function defined above is a scalar measure and is effective
in the specification and generation of certain isotropic meshes. However,
much greater freedom in mesh calculation may be required when calculat-
ing anisotropic meshes, and in this case a matrix-valued monitor function
M can be used. In this case the meshes are defined via the metric deter-
mined by an n×n matrix-valued monitor function that specifies the shape,
size and orientation of the elements throughout the physical domain ΩP .
Huang (2007) defines a matrix-valued monitor function M(x) using the

26 C. J. Budd, W. Huang and R. D. Russell

identity

J−T J−1 =
(∫

ΩP

√
det(M) dy

|ΩC |
)− 2

n

M(x), (2.21)

which is closely linked to the equidistribution principle for the scalar func-
tion. Indeed, the mesh satisfies an equidistribution equation

|J |
√

det(M) =

∫
Ωp

√
det(M) dy

|ΩC | . (2.22)

It also follows an alignment condition
1
n

trace(J−1M−1J−T) = det(J−1M−1J−T)
1
n . (2.23)

A matrix monitor function M, together with a proper boundary cor-
respondence, then specifies a mesh via the conditions (2.22) and (2.23).
Presently we relate these conditions of alignment and equidistribution to
mesh quality and interpolation error, and show how to construct monitor
functions that give explicit control over mesh quality.

2.6. Moving mesh PDEs, variational principles and harmonic maps

2.6.1. Moving the mesh to an equidistributed state
The equidistribution equation must be solved to find a mesh which equidis-
tributes the monitor function M , and this equation must be augmented with
additional conditions to obtain a unique map F. Indeed, the equidistribu-
tion principle has different consequences in one dimension from higher di-
mensions. In one dimension it (together with boundary conditions) uniquely
defines the map F(ξ, t). In this case the strategies for moving the mesh are
all similar (or indeed trivially equivalent), and rely on either exactly solving
the equidistribution equation (2.18), or relaxing towards a solution of some
differentiated form of (2.18).

An important set of examples of the relaxation methods, which we will
consider in detail (both in one and higher dimensions) in Section 3,
are the variety of moving mesh PDE (MMPDE) methods. An example is
MMPDE6, given by

−εxξξ = (Mxξ)ξ. (2.24)

Here 0 < ε
 1 is a relaxation time over which the mesh evolves to the
equidistributed state.

However, uniqueness of the solution of the equidistribution equation is lost
in higher dimensions. Informally, this is because there is a unique interval
(up to translation) of prescribed length in one dimension, but there is an
uncountable number of sets of prescribed area in higher dimensions. Thus
the equidistribution principle needs to be augmented with some additional

Adaptivity with moving grids 27

conditions if it is to be applied in dimension n > 1. The determination of
these additional conditions is neither straightforward nor unique, and leads
to a variety of different methods for mesh generation, for which control of
mesh skewness and other geometric properties must also be considered. Two
examples of the additional conditions might be to impose an irrationality
condition in the computational domain so that ∇ξ × F = 0 (Budd and
Williams 2006) – which is the basis of the optimal transport methods – or
to require that the mesh velocity is irrotational in the physical domain so
that ∇x×v = 0 (Cao et al. 2002) – which is the basis of the GCL methods.
The augmented equations can then be solved in a number of ways to find the
mesh: by directly solving the nonlinear system, which can be expensive; by
differentiating the condition and solving the resulting differential equations
which leads to the GCL methods we will consider in Section 4; by relaxing
towards a solution of the system, which leads to the MMPDE methods in one
and higher dimensions; or to have a global variational principle associated
with the error and to find the gradient flow equations associated with it.
We consider the latter now, with more details in Section 3.

2.6.2. Variational methods in one dimension and links to equidistribution
An alternative strategy for determining a mesh, also based on an appro-
priate monitor function, is the variational method. In such a method the
stationary points determine the optimal mesh, and the associated gradi-
ent flow equations towards the stationary points determine a suitable mesh
motion strategy.

Suppose that I(ξ) is a certain functional and that the mesh generation
strategy is equivalent to minimizing I over a certain function space. Finding
the Euler–Lagrange equations then leads to a gradient flow equation to
evolve the mesh towards the equilibrium state (a stationary point of I),
which is given by

∂ξ

∂t
= −δI

δξ
. (2.25)

This can then lead directly to an MMPDE to move the mesh by introducing
some additional local control on the mesh movement in the form

∂ξ

∂t
= −P

τ

δI

δξ
, (2.26)

where P is a positive differential operator and τ > 0 is a parameter for
adjusting the time scale of the mesh movement. In one dimension, equidis-
tributing the scalar monitor function M is exactly equivalent to minimizing
the functional

I(ξ) =
1
2

∫ 1

0

1
M

(
∂ξ

∂x

)2

dx. (2.27)

28 C. J. Budd, W. Huang and R. D. Russell

If the function P in (2.26) is taken to be

P =
(

M

ξx

)2

,

then we obtain MMPDE5 (see Section 3 for an alternative derivation),

∂x

∂t
=

1
τ

∂

∂ξ

(
M

∂x

∂ξ

)
. (2.28)

This equation can be used to evolve the one-dimensional mesh towards
an equidistributed state. It also has a natural generalization to the PMA
equation derived from the optimally transported meshes we will consider in
Section 3.

2.6.3. Variational methods in higher dimensions
Motivated by (2.27) we can consider a generalization to two dimensions,
which is essentially a form of equidistribution in each coordinate direction
(Huang and Russell 1997b, 1999). This is given by

I(ξ, η) =
1
2

∫
ΩP

[∇ξTM−1∇ξ + ∇ηTM−1∇η
]
dx dy, (2.29)

where M is now a symmetric positive definite matrix-valued monitor func-
tion, which is a generalization of the original scalar monitor function. The
Euler–Lagrange equations which define the coordinate transformation at
the steady state are then given by

∇ · (M−1∇ξ) = 0, ∇ · (M−1∇η) = 0, (2.30)

where all derivatives are expressed in terms of the physical variables so that
∇ = (∂x, ∂y)T . A moving mesh PDE can then be obtained via the gradient
flow equations, given by

∂ξ

∂t
= −P

τ

δI

δξ
,

∂η

∂t
= −P

τ

δI

δη
, (2.31)

and we will give more details of this procedure in Section 3. A special case
of this system is given by

M = wI, (2.32)

where w is known as the (scalar) weight function. This corresponds to one-
dimensional equidistribution and in the steady state gives the equations

∇ ·
(

1
w

∇ξ

)
= 0, ∇ ·

(
1
w

∇η

)
= 0. (2.33)

Finding a mesh which satisfies this is called Winslow’s variable diffusion
method (Winslow 1967, 1981).

Adaptivity with moving grids 29

2.6.4. Harmonic maps
Another method closely related to (2.29) is the method based on harmonic
maps (Dvinsky 1991). It defines the coordinate transformation used for
mesh adaptation as a harmonic map minimizing the functional

I(ξ, η) =
1
2

∫
ΩP

√
det(M)

[∇ξTM−1∇ξ + ∇ηTM−1∇η
]
dx dy, (2.34)

where, once again, M is a matrix-valued monitor function. We note that in
this case the matrix-valued function M cannot be chosen to be a scalar mon-
itor function (see Winslow (1967)) as this would lead to no mesh adaptivity
in two dimensions. Brackbill and Saltzman (1982) generalize Winslow’s idea
and define the needed coordinate transformation by minimizing a combina-
tion of three functionals characterizing adaptivity, smoothness, and orthog-
onality, respectively. Its final functional takes the form

I(ξ, η) = θa

∫
ΩP

w|J |dx dy + θs

∫
ΩP

(∇ξT ∇ξ + ∇ηT ∇η) dx dy

+ θo

∫
ΩP

(∇ξT ∇η)2 dx dy, (2.35)

where w is the (scalar) weight function and θa, θs, and θo are positive param-
eters. Notice that the three integrals on the right-hand side have different
dimensions. As a consequence, the choice of the parameters may depend on
specific applications. Directional control is further considered by Brackbill
(1993). Variational methods have also been developed based on mechani-
cal models; see Jacquotte (1988), Jacquotte and Coussement (1992) and de
Almeida (1999). Dvinsky (1991) also discusses the advantages and disad-
vantages of formulating the harmonic map method in the physical domain
and in the computational domain. However, numerical results show that the
method formulated in the computational domain produces crossover meshes
for a non-convex physical domain, whereas the method formulated in the
physical domain leads to non-singular meshes.

2.7. Mesh quality, isotropy and alignment

The methods discussed in Section 2.6 are primarily based on physical and/or
geometric considerations. Although they have been applied with a degree
of success to numerical solution of a variety of PDEs, it is unclear how mesh
concentration is controlled precisely through the monitor function for these
methods. This is important because a clear understanding of the effect of the
monitor function on mesh concentration will lead to a better choice of the
monitor function as well as a better design of the mesh adaptation method
itself. Moreover, neither of the methods, or their choice of the monitor
function, is directly connected to any sort of error analysis. (A qualitative

30 C. J. Budd, W. Huang and R. D. Russell

analysis of the effect of the monitor function on mesh concentration is given
by Cao et al. (1999b) for the functional (2.29).)

A variational method based on appropriate functionals which addresses
these issues has been developed based on the equidistribution and align-
ment conditions (2.22) and (2.23) in Huang (2001b), Huang and Sun (2003)
and Huang (2007). Recall that, for a given matrix-valued monitor func-
tion M(x), the condition (2.22) specifies the size of elements while (2.23)
determines the shape and orientation of elements. The main idea of the
variational method in this context is to then generate a coordinate trans-
formation that closely satisfies these two conditions.

2.7.1. A functional for mesh alignment
First consider the alignment condition (2.23). Let the eigenvalues of the ma-
trix J−1M−1J−T be λ1, . . . , λn. By the arithmetic-mean/geometric-mean
inequality, the desired coordinate transformation can be obtained by mini-
mizing the difference between the two sides of the inequality

(∏
i

λi

) 1
n

≤ 1
n

∑
i

λi.

Notice that ∑
i

λi = trace(J−1M−1J−T) =
∑

i

(∇ξi)TM−1∇ξi,

∏
i

λi = det(J−1M−1J−T) =
1

(|J |√det(M))2
.

Then we have (
1

(|J |√det(M))2

) 1
n

≤ 1
n

∑
i

(∇ξi)TM−1∇ξi,

or equivalently

n
n
2

|J | ≤
√

det(M)
(∑

i

(∇ξi)TM−1∇ξi

)n
2

. (2.36)

Integrating the above inequality over the physical domain yields

n
n
2

∫
ΩC

dξ ≤
∫

ΩP

√
det(M)

(∑
i

(∇ξi)TM−1∇ξi

)n
2

dx.

Hence, the adaptation functional associated with mesh alignment for the
inverse coordinate transformation ξ = ξ(x) can be defined as

Iali(ξ) =
1
2

∫
Ω

√
det(M)

(∑
i

(∇ξi)TM−1∇ξi

)n
2

dx. (2.37)

Adaptivity with moving grids 31

We remark that the functional (2.37) can also be derived from the concept
of conformal norm in the context of differential geometry (Huang 2001b).
Moreover, in two dimensions (n = 2), (2.37) gives the energy of a harmonic
mapping (Dvinsky 1991). In this sense, the harmonic map method can be
understood as a functional associated with alignment. Similarly, we can
take squares on both sides of (2.36) and integrate the resulting inequality
over ΩP . We get

nn

∫
ΩP

√
det(M)

(|J |√det(M))2
dx ≤

∫
ΩP

√
det(M)

(∑
i

(∇ξi)TM−1∇ξi

)2

dx.

The resulting functional for alignment then takes the form

Ĩali(ξ) =
∫

ΩP

√
det(M)

(∑
i

(∇ξi)TM−1∇ξi

)2

dx

− nn

∫
ΩP

√
det(M)

(|J |√det(M))2
dx. (2.38)

2.7.2. A functional for equidistribution
We now consider the equidistribution condition (2.22). From Hölder’s in-
equality we have(∫

ΩP

√
det(M)

|J |√det(M)
dx

)2

=
(∫

ΩC

dξ

)2

≤
∫

ΩP

√
det(M)

(|J |√det(M))2
dx,

which leads to the functional for equidistribution given by

Ieq(ξ) =
∫

ΩP

√
det(M)

(|J |√det(M))2
dx. (2.39)

2.7.3. An adaptation functional based on equidistribution and alignment
We note that neither of the adaptation functionals defined in the previous
subsections can alone lead to a robust mesh adaptation method because
each of them represents only one of the mesh control conditions (2.23) and
(2.22). It is necessary and natural to combine them. A way to achieve this
goal is to take an average of the functionals (2.38) and (2.39), i.e.,

I(ξ) = θ

∫
ΩP

√
det(M)

(∑
i

(∇ξi)TM−1∇ξi

)n

dx

+ (1 − 2θ)nn

∫
ΩP

√
det(M)

(|J |√det(M))2
dx, (2.40)

where θ ∈ [0, 1] is a parameter. Notice that the two terms in the functional
have the same dimension. The balance between them is controlled by a

32 C. J. Budd, W. Huang and R. D. Russell

dimensionless parameter θ. When θ = 1/2, only the first term remains.
Regarding well-posedness, it is noted that the first term of the functional
is convex, and the existence, uniqueness, and the maximal principle for its
minimizer are guaranteed; e.g., see Reshetnyak (1989). It is unclear if this
result can apply to the whole functional.

2.7.4. Mesh quality measures: alignment and equidistribution
Mesh quality measures can also be developed based on the alignment and
equidistribution conditions (2.23) and (2.22). Indeed, for a given matrix-
valued monitor function M = M(x) and a coordinate transformation x =
x(ξ) (or its inverse), we can use

Qali =
[

trace(JTMJ)

n det(JTMJ)
1
n

] n
2(n−1)

, (2.41)

Qeq =
|J | √

det(M)|ΩC |∫
ΩP

√
det(M) dy

(2.42)

to measure how closely the coordinate transformation (i.e., mesh) satisfies
the alignment and equidistribution conditions (2.23) and (2.22), respec-
tively. We note that Qali is equivalent to

Q̂ali =
[

trace(J−1M−1J−T)

n det(J−1M−1J−T)
1
n

] n
2(n−1)

. (2.43)

The quantity Qali ranges from 1 to ∞, with Qali ≡ 1 for the identity
mapping, while Qeq takes values in (0,∞), with maxx Qeq = 1 implying an
equidistributing mesh. Interestingly, Qali reduces to an equivalence of Qgeo

when M = Id. In this sense, Qali can be viewed as a geometric quality
measure in the metric specified by M.

2.8. Error control and associated monitor functions

The measures for mesh quality and geometry described in Section 2.7 have
largely been constructed in the absence of a clear application. For the
majority of this article we are considering the effectiveness of a mesh for
computing the solution of a partial differential equation. In this case we
are expecting to impose some form of discretization of the system on the
mesh. From this discretization we hope to solve a (typically rapidly evolv-
ing) partial differential equation. The mesh so constructed should attempt
to minimize error (such as the truncation or the interpolation error) in some
way. In this subsection we consider three forms of error, namely static trun-
cation error, static interpolation error and dynamic errors, and in the first
two cases look at monitor functions which lead to reduced errors. The dif-
ficulty in implementing such a procedures is, of course, that not only is

Adaptivity with moving grids 33

it difficult to measure (or indeed to precisely define) the error during the
calculation and adapting the mesh accordingly, but also some of the ‘best’
adaptive meshes for solving time-dependent problems lead to very stiff dif-
ferential equations, thus significantly increasing the computational cost of
the process and in some cases making the whole calculation significantly
unstable. However, it is intuitively reasonable that for solutions with small
length scales over part of the domain, and larger length scales elsewhere, we
might expect to gain significant efficiency by using a smaller mesh in the
region of high variation. Exactly this observation motivated the important
early work of Dorfi and Drury (1987).

2.8.1. Static truncation error and ‘optimal’ meshes
The most natural reason for using an adaptive mesh in the context of solv-
ing a PDE is to control the overall error in any discretization. It is a
surprisingly difficult problem to obtain such an estimate in the context of a
(non-uniform) moving mesh. Typically there are contributions to the local
truncation error from the local mesh scale, the variation of the mesh from
one element to the next, and also the effects of the mesh motion, which
all need to be taken into consideration. It is also difficult to then extrapo-
late from a local to a global error estimate in such cases. Accordingly, we
will confine ourselves to giving a flavour of this analysis by looking at some
simple one-dimensional problems for which we can perform the technical
calculations needed to analyse the error. Following this we will return to
more general ideas shortly. Accordingly, as examples of two steady-state
problems for which adaptivity may be required, we may wish to solve the
Poisson equation

−∆u = f(x, y, z, . . .) (2.44)

for a potentially singular right-hand side f . Alternatively we may seek to
solve the singular diffusion equation

−εu′′ − c(x)u′ = f(x), ε
 1. (2.45)

An ideal mesh with N points, used to compute the function u, is one
which leads to low errors – ideally, in the case of (2.45), to errors which are
ε-independent and depend only upon N . Such a mesh should also keep com-
putational costs low. Essentially we can consider two types of non-uniform
mesh for the computation. One type is an optimal, fitted or a priori mesh,
which is prescribed in advance of the calculation and gives best possible er-
rors for that computation in some appropriate norm. Important examples
of this class are the Shishkin and Bakhvalov meshes for the singularly per-
turbed problems (2.45) and optimal meshes for Poisson-type problems. In
Babuška and Rheinboldt (1979), a general analysis of such meshes is made
in the context of finite element calculations in one dimension. An adap-
tive mesh, on the other hand, attempts to approximate an optimal mesh

34 C. J. Budd, W. Huang and R. D. Russell

through equidistributing a suitable monitor function determined during the
computation.

It is important to note at this stage that the error in discretizing a differ-
ential equation (or indeed in interpolating the solution to that equation or a
function in general) is a combination of the error that would occur on a uni-
form mesh together with further errors that arise from the non-uniformity
of the mesh (variation in the size of the elements) and (in more than one
dimension) the mesh skewness. The latter errors have to be treated with
great care as they can easily dominate the truncation error on the uniform
mesh and make an adapted mesh worse than useless in solving the under-
lying problem. However, in contrast, a common error in many numerical
analysis texts is to assume either that these errors add together to give a
larger error, or that, for example, the error due to the non-uniformity of
the mesh is always at a lower order than the error on the uniform mesh
and thus dominates the overall calculation. In fact, provided that the mesh
function is suitably smooth, for example if (in one dimension) the mesh is
quasi-uniform and obeys the condition (2.9), then the three errors can be
at the same order when expressed in terms of 1/Np. In an ‘optimal’ mesh
it may be possible for the errors to cancel each other out to leading or-
der. However, such meshes are usually very hard to construct and require
a lot of a priori information about the solution. Adaptive meshes generally
work by bounding the leading order error (regardless of the behaviour of
the underlying solution).

We start by looking at both optimal and adaptive non-uniform meshes on
which we can pose finite difference discretization of the Poisson equation:

− d2u

dx2
= f(x). (2.46)

If the mesh is a function x(ξ) of the computational variable, then in the
computational domain we have

− 1
J

(
uξ

J

)
ξ

= f(x(ξ)), J = xξ. (2.47)

The equation (2.47) can then be discretized in the computational domain
for which we use the approximations

Uj ≈ u(Xj), Xj = x(j∆ξ), fj = f(Xj).

A natural centred difference approximation to (2.47) then takes the form

− 2
(∆ξ)2

(Uj+1−Uj

Xj+1−Xj
− Uj−Uj−1

Xj−Xj−1

)
Xj+1 − Xj−1

= fj , (2.48)

with
∆i = Xi+1 − Xi.

Adaptivity with moving grids 35

We now assume that the mesh function x(ξ) has regularity C2 and exactly
equidistributes a scalar monitor function M .

Lemma 2.3.

(i) The local truncation error T of the above discretization is given in the
original variables by

T =
∆2

i

3

[
xξξ

x2
ξ

uxxx +
uxxxx

4

]
+ O(∆3

i), (2.49)

and in the computational variables by

T =
∆ξ2x2

ξ

3

[
−Mξuxxx

Mxξ
+

uxxxx

4

]
+ O(∆ξ3). (2.50)

(ii) The truncation error is of second order if the mesh is quasi-uniform so
that condition (2.10) is satisfied.

(iii) The truncation error is zero to leading order if the mesh equidistributes
the monitor function

Mopt = (uxxx)1/4 = (−fx)1/4. (2.51)

Proof. Let ∆j = Xj+1 − Xj . A simple Taylor expansion gives

Uj+1 = Uj + ∆ju
′ +

∆2
j

2
u′′ +

∆3
j

6
u′′′ +

∆4
j

24
u′′′′ + O(5),

Uj−1 = Uj − ∆j−1u
′ +

∆2
j−1

2
u′′ − ∆3

j−1

6
u′′′ +

∆4
j

24
u′′′′ + O(5),

where all derivatives of u are expressed in terms of x. Hence, expanding
the left-hand side of (2.48), we obtain (after some manipulation) that the
truncation error is given by

T =
1
3
(
∆j − ∆j−1

)
u′′′ +

1
12

∆3
j + ∆3

j−1

∆j + ∆j−1
u′′′′ + O(3).

This error has two components. The second is the usual component (of order
∆2

j) which is seen on a uniform mesh. The first is an additional error due
to the variation in the size of the mesh. In many texts this is considered to
be large (as it is apparently of higher order); however, if ∆j varies smoothly
over the domain then it is actually of the same order as the second error.
Since, to leading order,

∆j = ∆ξxξ,

we have, to leading order,

T = (∆ξ)2
(

1
3
xξξu

′′′ +
1
12

x2
ξu

′′′′
)

+ O(∆ξ3).

36 C. J. Budd, W. Huang and R. D. Russell

Setting (to leading order) ∆j = ∆ξxξ gives (2.49). Now, from the equidis-
tribution equation we have

xξ =
θ

M
.

Hence Mξxξ + Mxξξ = 0. Substituting for M in the above gives (2.50).
Result (ii) follows immediately from the expression (2.49)
The optimal form of M in (iii) arises from setting the leading-order term

to zero and integrating. Note that this latter calculation can break down if
uxxx vanishes at some point.

An almost identical calculation to the above leads to the following result.

Lemma 2.4.

(i) If we consider using the standard central difference approximation to
ux given by

ux =
Ui+1 − Ui−1

Xi+1 − Xi−1
,

then the truncation error is given in the physical coordinates by

T =
∆2

i

2

[
xξξ

x2
ξ

uxx +
1
3
uxxx

]
+ O(∆3

i), (2.52)

or in the computational coordinates by

T =
∆ξ2x2

ξ

2

[
−Mξuxx

Mxξ
+

1
3
uxxx

]
+ O(∆ξ3). (2.53)

(ii) This error is of second order on a quasi-uniform mesh, and is zero to
leading order on an ‘optimal mesh’ given when

M =
(
uxx

)1/3
. (2.54)

These calculations, both of the errors in approximating ux and uxx and
of the possible optimal meshes, are revealing in a number of ways. Firstly,
they show that in all such calculations there is a subtle interplay between
the mesh variability and the mesh size. This is even more marked in the
case of singular perturbation problems. By choosing M very carefully we
can exploit this to give very high accuracy and an optimal mesh. In general
this is not usually possible. Indeed this calculation requires an accurate
knowledge of the third derivative of the function u.

Secondly, we can also see from (2.50) the effect of choosing other types
of monitor function as part of an adaptive calculation. The optimal mesh
eliminates the truncation error to leading order. However, the truncation
error is actually an estimate for the second derivative (with respect to x) of
the solution error between the calculated solution Uj and u(Xj). To obtain

Adaptivity with moving grids 37

a true estimate, this expression needs to be integrated. A useful expression
for the error for both (2.46) and (2.45) (see Andreev and Kopteva (1998))
is then given by the next lemma.

Lemma 2.5.

‖Uj − u(Xj)‖∞ ≤ C max
[
∆2

i max
[Xi,Xi+1]

|u′′| + ∆2
i

]
. (2.55)

Given suitable a priori estimates, this error can be bounded by using a
monitor function M which controls this via the expression

∆2
i

(
max

[Xi,Xi+1]
|u′′| + 1

)
= ∆ξ2x2

ξ

(
max

[Xi,Xi+1]
|u′′| + 1

)

= ∆ξ2
(

max
[Xi,Xi+1]

|u′′| + 1
)
θ2/M2.

This motivates the choice of the curvature-dependent monitor function given
by

M =
√

1 + |u′′|2.
Such a function has been used by Blom and Verwer (1989); see also Macken-
zie and Robertson (2002), Chen (1994), Huang and Sun (2003) and Kopteva
(2007). In this case the error becomes a function of ∆ξ only and does not
depend upon the solution. Hence it has the great advantage of yielding a
mesh for which large variations in u′′ (for example at boundary layers) do
not affect accuracy. This is good enough for most calculations. Observe,
however, the difference between using the curvature-based monitor func-
tion to bound the error, and the optimal monitor function for the Poisson
equation which eliminates this error to leading order.

Similar issues arise in the case of the singularly perturbed problems (2.45).
For example, it is possible to get very sharp estimates on the solution in
certain cases (such as when c(x) = 1). In the latter case (Andreev and
Kopteva 1998) we have the following result.

Lemma 2.6.

‖Uj − u(Xj)‖∞ ≤ C
[‖min{∆2

i /ε2, 1} e−xi−1/ε‖∞ + max ∆2
i

]
. (2.56)

This error can be completely controlled to be proportional only to ∆ξ2

using a Bakhvalov mesh. For such problems it can also be shown (Kopteva
2007) that, if the monitor function is chosen to be a discrete arclength of
the form

M =
√

1 + u2
x,

then, provided that the solution has converged closely to an equidistributed
one, the computed solution is first-order accurate with errors O(∆ξ), inde-
pendent of the value of ε.

38 C. J. Budd, W. Huang and R. D. Russell

It is interesting to point out that uniform convergence has been obtained
by a number of researchers for equidistributing meshes determined a priori
by the exact solution or the singularity information of the exact solution
for singularly perturbed differential equations: e.g., see Sloan et al. (Qiu
and Sloan 1999, Qiu, Sloan and Tang 2000), Mackenzie et al. (Mackenzie
1999, Beckett and Mackenzie 2000, Beckett, Mackenzie, Ramage and Sloan
2001b, Beckett and Mackenzie 2001a, 2001b, Mackenzie and Mekwi 2007b),
and Huang (2005c). Convergence results are also obtained for a posteriori
equidistributing meshes determined by computational solutions for differ-
ential equations in Babuška and Rheinboldt (1979), Kopteva and Stynes
(2001), He and Huang (2009) and Huang, Kamenski and Lang (2009).

2.8.2. Static interpolation error
In higher dimensions it is very hard to obtain reliable estimates for the trun-
cation error when solving a general PDE. A somewhat easier, but still very
important, question to address is whether a mesh is suitable to approximate
the solution of the PDE, in particular to interpolate the solution. We now
consider this question.

Suppose that the solution of the differential equation (or indeed any ap-
propriate function defined in the physical domain) is given by u(x, y, . . .).
For the case of a problem in two dimensions we can define the point values
of u on the non-uniform mesh by

Ui,j = u
(
Xi,j , Yi,j

)
.

A natural measure of error is the interpolation error obtained by approx-
imating u on the mesh with suitable functions using the above point val-
ues. Significant progress in finding meshes with good properties in reducing
the interpolation error of a solution has been made in this direction in
the past decade. Formulae giving the optimal monitor function to mini-
mize this error over a suitable mesh have been developed based on inter-
polation error estimates by Huang and Sun (2003) in the Hm-norm, Chen
et al. (2007) in the Lq-norm, Huang (2005a, 2005b) in the Wm,q-norm,
and Cao (2005, 2007a, 2007b, 2008) for higher-order interpolation in two
dimensions. Formulae have also been developed based on an a posteriori
error estimate for one dimension (He and Huang 2009), a hierarchical basis
a posteriori error estimate (Huang et al. 2009), and semi a posteriori er-
ror estimates for variational problems (Huang and Li 2009). Formulae for
the monitor functions in these cases can be obtained as follows (Huang and
Sun 2003, Huang 2005a). A so-called anisotropic error bound, taking into
consideration the directional effect of the error or solution derivatives, is first
developed. This error bound can be regarded as a function of the monitor
function M when only meshes satisfying the alignment and equidistribution

Adaptivity with moving grids 39

conditions (2.23) and (2.22) are concerned. Then the optimal monitor func-
tion is obtained by minimizing the bound among all possible matrix-valued
functions M. Consider a simple situation where a function u ∈ H2(ΩP) is
interpolated by piecewise linear polynomials on a simplicial mesh (of N ele-
ments) and the error is measured in L2-norm. Then an anisotropic asymp-
totic bound (as N → ∞) can be obtained from the interpolation theory of
Sobolev spaces (Huang and Sun 2003), namely

‖eh‖2
L2(ΩP) ≤ Cα2N− 4

n

∫
ΩP

(
trace

(
JT [I+α−1|H(u)|]J))2 dx + h.o.t., (2.57)

where H(u) denotes the Hessian of the function u, |H(u)| =
√

H(u)T H(u),
and α > 0 is an arbitrary number which serves as a regularization parameter,
whose value will be determined later. Note that a rigorous bound can be
obtained. But in this situation the derivation has to be associated with a
discrete form; e.g., see Huang (2007). Since the procedure is the same for
both, for simplicity we use the non-rigorous continuous form. Noticing that
a mesh satisfying (2.23) and (2.22) (and a proper boundary correspondence)
is a function of M, we can regard the integral on the right-hand side of (2.57)
as a function of M, namely

B(M) =
∫

ΩP

(
trace

(
JT [I + α−1|H(u)|]J))2 dx. (2.58)

In the following analysis, we consider only meshes satisfying (2.22) and
(2.23) and derive the optimal monitor function by minimizing B(M) among
all possible matrix-valued functions M. First we notice that (2.23) is math-
ematically equivalent to

1
n

trace(JTMJ) = det(JTMJ)
1
n . (2.59)

A direct comparison of (2.59) suggests that M can be chosen in the form

M = θ(x)[I + α−1|H(u)|], (2.60)

where θ = θ(x) is a scalar function. For matrix-valued monitor functions in
this form, (2.59) reduces to

1
n

trace(JT [I + α−1|H(u)|]J) = det(JT [I + α−1|H(u)|]J)
1
n .

Inserting this into (2.58) and using Hölder’s inequality, we have

B(M) = n2

∫
ΩP

|J | 4
n det(I + α−1|H(u)|) 2

n dx

= n2

∫
ΩC

[|J |det(I + α−1|H(u)|) 2
n+4

]n+4
n dξ

40 C. J. Budd, W. Huang and R. D. Russell

≥ n2|ΩC |− 4
n

[∫
ΩC

|J |det(I + α−1|H(u)|) 2
n+4 dξ

]n+4
n

(2.61)

= n2|ΩC |− 4
n

[∫
ΩP

det(I + α−1|H(u)|) 2
n+4 dx

]n+4
n

. (2.62)

We note that equality in (2.61) holds when the mesh satisfies

|J |det(I + α−1|H(u)|) 2
n+4 =

1
|ΩC |

∫
ΩP

det(I + α−1|H(u)|) 2
n+4 dy.

Comparing this with the equidistribution condition (2.22), we have√
det(M) = det(I + α−1|H(u)|) 2

n+4 .

From this and (2.60), the optimal matrix-valued monitor function to mini-
mize the interpolation error is given by

M = det(I + α−1|H(u)|)− 1
n+4 [I + α−1|H(u)|]. (2.63)

Inserting (2.62) into (2.57), the interpolation error bound for a mesh satis-
fying (2.23) and (2.22) with optimal M given in (2.63) is then

‖eh‖2
L2(ΩP) ≤ Cα2N− 4

n

[∫
ΩP

det(I +α−1|H(u)|) 2
n+4 dx

]n+4
n

+ h.o.t. (2.64)

We now discuss how to choose α. We first notice that conditions (2.57)
and (2.62) are invariant under scaling transformations of M of the form
M → cM, for any positive constant c. Thus, if |H(u)| is strictly positive
definite on ΩP , we can take α → 0 in (2.63) and (2.64). This gives

M = det(|H(u)|)− 1
n+4 |H(u)|, (2.65)

‖eh‖2
L2(ΩP) ≤ CN− 4

n

[∫
ΩP

det(|H(u)|) 2
n+4 dx

]n+4
n

+ h.o.t. (2.66)

When |H(u)| vanishes locally, the monitor function cannot be defined by
(2.65) since the right-hand side is not positive definite. In this case, a posi-
tive α should be used. Huang (2001b) suggests that α be defined implicitly
via ∫

ΩP

det(I + α−1|H(u)|) 2
n+4 dx = 2|ΩP |. (2.67)

It is easy to show that (2.67) has a unique solution for α. A simple iteration
method such as the bisection method can be used for solving this equation.
Moreover, when α is defined in this way, M is invariant for scaling trans-
formation of |H(u)|. Furthermore, it is shown in Huang (2001b) that about
fifty per cent of the mesh points are then concentrated in regions where

Adaptivity with moving grids 41

det(I + α−1|H(u)|) 2
n+4 is large. Finally, the error bound reads as

‖eh‖2
L2(ΩP) ≤ Cα2N− 4

n . (2.68)

From (2.67) it is not difficult to show that, for n ≤ 4, α is bounded as
[

1
2|ΩP |

∫
ΩP

det(|H(u)|) 2
n+4 dx

]n+4
2n

≤ α ≤
[

1

n
2n

n+4 |ΩP |

∫
ΩP

(
trace(|H(u)|)) 2n

n+4 dx
]n+4

2n

. (2.69)

2.8.3. Dynamic error
Usually when we apply a moving mesh method we are interested in solving a
time-evolving PDE. This leads to additional dynamic errors (Li and Petzold
1997, Li et al. 1998) such as oscillations around rapidly evolving fronts or
miscalculations of the front speed. These depend significantly on the way
in which the mesh is updated and coupled to the PDE. We consider these
in more detail in the next section when we look at how the moving mesh
equations are coupled to the underlying PDE.

2.9. Monitor function smoothing and regularization

Having considered the mesh quality, we now return to further considera-
tions of the monitor function and of mesh smoothness. Recall that for one-
dimensional problems it is essential that the mesh should be quasi-uniform
in order to have a low truncation error. Smoothing a mesh either directly
or indirectly through smoothing/averaging aims to achieve this.

2.9.1. The Dorfi and Drury method
A direct approach to smoothing a one-dimensional mesh derived from an
equidistribution principle is proposed in Dorfi and Drury (1987), and is
often called the Dorfi and Drury method. In this method, if

ni = (∆Xi)−1 ≡ (
Xi+1 − Xi

)−1
,

then a smoother mesh is given by computing n̂i where

n̂i = ni − γ
(
ni+1 − 2ni + ni−1

)
(2.70)

for a suitable constant γ. A variant of this, considered in Li and Petzold
(1997), is given by updating the mesh differences by

∆X̂i =
i+p∑

j=i−p

θ|i−j|∆Xi

42 C. J. Budd, W. Huang and R. D. Russell

for a suitable constant 0 < θ < 1. There are many other strategies for direct
mesh smoothing. For example it is possible to use a posteriori estimates of
the solution on the mesh to do this (Bank and Smith 1997).

2.9.2. Monitor function smoothing
Alternatively we can generate a smoother mesh by averaging the monitor
function prior to the mesh calculation. Suppose that point values of (a
scalar or matrix-valued) monitor function Mi,j are given. A Jacobian-type
strategy, also referred to as averaging or low-pass filtering in the literature,
is commonly used, e.g., see Dorfi and Drury (1987), Verwer et al. (1989)
and Huang and Sloan (1994). When a rectangular computational mesh is
used, this smoothing can be conveniently expressed as

M̂i,j =
∑1

k=−1

∑1
l=−1 Mi+k,j+lγ

|k|+|l|∑1
k=−1

∑1
l=−1 γ|k|+|l| ,

where γ ∈ (0, 1) is a parameter. This type of local smoothing of the moni-
tor function can be viewed as an approximation of Laplace-operator-based
smoothing:

(I − λ−2∆ξ)M̂ = M,

where λ is a parameter. In one dimension, Huang and Russell (1997a) show
that, when λ is chosen as a value of order O(N), where N is the number
of sub-intervals, a mesh equidistributing M̂ is locally quasi-uniform, indeed
there exists a reasonably small constant ν ≥ 1 such that

1
ν
≤ Xj+1 − Xj

Xj − Xj−1
≤ ν ∀j.

Another interesting strategy is to use a reference Jacobian matrix (Knupp
1996, Knupp, Margolin and Shashkov 2002) where a new mesh is generated
to have a close Jacobian matrix to the reference one that is typically ob-
tained from a reference, often non-smooth mesh.

2.9.3. 50:50 meshes and the Mackenzie regularization
A recurring problem with r-adaptive meshes which equidistribute a poorly
chosen monitor function is that they can concentrate points in areas of
particular identified interest where high resolution is needed, but leave other
regions sparse of points. This can lead not only to low resolution in such
areas, but also to a severe lack of mesh regularity and consequent large
errors caused by a too rapid mesh variation. An example of such would
be the calculation of the solution of a system which is blowing up in finite
time with a large peak, in which all of the mesh points are concentrated
in the peak alone. Such problems can be significantly reduced if the mesh
is designed so that roughly half of the points are concentrated in the areas

Adaptivity with moving grids 43

where high resolution is required, and half where it is not. Such meshes
are called 50:50 meshes (see Budd et al. (2005), Huang (2001a), Huang
et al. (2002)) and a regularization of M to ensure that such meshes arise in
practice has been proposed by Beckett and Mackenzie (2000). To show how
such problems arise in a calculation in n dimensions, suppose that we have
a scalar monitor function M for which

∫
ΩP

M dx = θ. Consider now the
situation in which there are two subsets A and B of ΩP , with ΩP = A ∪ B
so that the monitor function is designed to concentrate points in a small
region A (so that A may be the support of a singularity or of a front). The
preimage A′ = F−1(A) ⊂ ΩC represents those points in the computational
domain which are mapped to A, with a similar set B′. Suppose now that
|A′| and |B′| are the areas of these sets in ΩC , with respective areas |A| and
|B| in ΩP . These areas measure the proportion of mesh points allocated
to the corresponding sets A and B. Note that in most applications of an
adaptive method, where mesh points have to be concentrated into a small
region we would expect that

|A′| = O(1), |A| = o(1), |B′| = O(1), |B| ≈ |ΩP |. (2.71)

Problems arise with mesh regularity and solution resolution away from
the set A if |B′|
 |A′|. It follows immediately from the equidistribution
principle that if θ =

∫
ΩP≡A∪B M dx then

Λ =
|A′|
|B′| =

∫
A M dx∫
B M dx

=
θ∫

B M dx
− 1.

Furthermore,

|A′| =

∫
A M dx

θ
.

It follows from the conditions on A′ and A in (2.71) that over the set A we
have M � θ. However, if the monitor function is so constructed such that
over the set B we have M
 θ and hence

∫
B M dx
 θ (so that the integral

of M is concentrated in A), then Λ will be very large and the mesh will lose
regularity. Indeed, we will have |A′| ≈ 1. Exactly such problems arose in
some of the blow-up calculations reported in Budd et al. (1996). In such
cases we must replace M by the regularized function introduced by Beckett
and Mackenzie (2000) and given by

M̂ = M +
θ

|ΩP | . (2.72)

Observe that over the set A we have M̂ ≈ M , and over B we have M̂ ≈
θ/|ΩP |, and trivially ∫

ΩP

M̂ dx = 2θ.

44 C. J. Budd, W. Huang and R. D. Russell

Consequently, when we make use of the regularized monitor function M̂ to
define the mesh we have

|A′| =

∫
A M̂ dx

2θ
≈

∫
A M dx

2θ
≈ 1

2
,

and

Λ ≈ 2|ΩP |
|B| − 1 ≈ 1.

This gives the desired 50:50 quality to the mesh.

3. Location-based moving mesh methods

In this section we will look in greater detail at the various methods described
in Section 2 under the general heading of location-based methods. These are
those methods which determine the location (or more precisely the density)
of the mesh points, typically through solving some form of nonlinear dif-
ferential equation through some form of gradient flow method. The latter
can be hard to solve. However, the advantage of these methods is that they
tend to give meshes with good global properties, avoiding excessive skew-
ness. We will consider in detail the various methods outlined in the previous
section, such as MMPDE-based methods, variational methods and optimal
transport methods.

3.1. MMPDE methods in one dimension

Methods based on moving mesh partial differential equations (MMPDEs)
are now universally used as a means of r-adaptivity in one dimension, and
have been incorporated into codes such as MOVCOL and AUTO. There are
many different MMPDEs, which together encapsulate most of the methods
used to derive adaptive meshes in one dimension.

We consider a one-dimensional map x(ξ, t) from [0, 1] to [a, b] with associ-
ated mesh points Xi = x(i∆ξ, t), which equidistributes the monitor function
M . This map satisfies the equidistribution equation

Mxξ = θ, x(0, t) = a, x(1, t) = b, θ =
∫ b

a
M dx. (3.1)

Lemma 3.1. The equidistribution equation (3.1) has a unique monotone
increasing solution x(ξ, t) for all M > 0.

Proof. Integrating (3.1) with respect to ξ and changing variables gives∫ x

a
M dx′ = θξ or

∫ Xi

Xi−1

M dx =
1
N

∫ b

a
M dx. (3.2)

Now, as M > 0 the left-hand side of this expression is a monotone increasing

Adaptivity with moving grids 45

function of x. It immediately follows that x is a unique monotone increas-
ing function of ξ. Observe further that this function is as smooth as the
function M .

This simple observation makes equidistribution relatively easy in one di-
mension.

The most direct way to enforce equidistribution is to solve (3.1) directly.
However, this has the disadvantage that it requires the calculation of the
integral θ. This can be avoided by a further differentiation with respect
to ξ, and thus solving the moving mesh equation (together with boundary
conditions) given by

(Mxξ)ξ = 0, x(0, t) = a, x(1, t) = b. (3.3)

To determine an equidistributed mesh, the equation (3.3) can be dis-
cretized over the computational domain and then solved. This discretiza-
tion does not have be done to high accuracy in order to obtain a regular
mesh suitable for solving the underlying PDE. A typical such discretization
takes the form

Ei ≡ 2
∆ξ2

(
Mi+1/2(Xi+1 − Xi) − Mi−1/2(Xi − Xi−1)

)
= 0,

Mi+1/2 =
1
2
(Mi + Mi+1). (3.4)

However, the solution of the system (3.4) requires solving a system of
nonlinear equations, which is usually difficult and requires the use of some
form of iterative procedure. See Pryce (1989), Xu, Huang, Russell and
Williams (2009), He and Huang (2009), Kopteva and Stynes (2001) and
Kopteva (2007) for a discussion of such methods, and conditions for them
to converge to a solution.

This problem can be avoided by instead introducing a natural time evo-
lution into the mesh equations. Differentiating the equidistribution equa-
tion (3.3) with respect to time gives the (so-called) MMPDE0 (Huang
et al. 1994):

d
dt

(
(Mxξ)ξ

)
= 0. (3.5)

Instead we may also differentiate (3.1) with respect to time (Adjerid and
Flaherty 1986). This leads directly to the GCL method described in the
next section. The resulting equation then takes the form

∂

∂ξ
(Mxt) + Mtxξ = θt. (3.6)

This equation can then also be differentiated with respect to ξ to eliminate
the θ contribution, giving MMPDE1 (Huang et al. 1994), where it is assumed
that we can find Mt, although in practice this may not be easy.

46 C. J. Budd, W. Huang and R. D. Russell

Starting from any mesh (uniform or otherwise), we can evolve the mesh by
solving MMPDE0 (3.5) or MMPDE1. Unfortunately, a uniform mesh does
not necessarily satisfy the equidistribution equation (3.1). Furthermore,
even if a mesh does exactly satisfy it at some time, solving a discretized form
of (3.5) inevitably leads to meshes that drift away from an equidistributed
state. Both of these can lead to problems with mesh crossing (the one-
dimensional version of mesh tangling) which occurs when xξ = 0.

As an example of this, which also demonstrates the general applicability
of the method, we consider solving (3.5) starting from an initially uniform
mesh on [0, 1] for which xξ = 1. In this calculation we will assume that
we have a time-evolving monitor function M(x, t) with M(x, 0) ≡ M0(x).
It follows from integrating (3.5) with respect to t and applying the initial
conditions that, for all time, we have

(Mxξ)ξ = M0
ξ .

Hence, integrating again we have

Mxξ = M0 + B(t),

for some function B(t). This can be determined by integrating this expres-
sion with respect to ξ to give

Mxξ = M0 + θ(t) − θ(0).

As M0 > 0 it follows that if θ is increasing in time then xξ > 0. However, if
θ decreases with t then it is quite possible for xt to vanish (initially at the
point where M0 takes its minimum value) and for mesh crossing (tangling)
to result.

Such problems can be avoided (both in one and in higher dimensions)
by introducing a relaxation time into the solution of (3.3). The philosophy
behind doing this is that the equation (3.3) need not be solved exactly to
obtain a mesh which is perfectly reasonable for any computation. What is
more important is that the mesh evolves at least as fast as any significant
features of the solution. Exactly the same philosophy applies to moving
meshes in any number of dimensions. Thus it is possible to consider meshes
which relax towards an equidistributed mesh, provided the relaxation time
is smaller than the natural time scale of the solution. Ideally the relaxation
time should be of a similar order to that of the solution evolution. This
prevents the mesh equations becoming unnecessarily stiff. Various different
forms of mesh relaxation are possible.

The most obvious way of relaxing towards an equidistributed state was
proposed by Anderson and Rai (1983), who computed the mesh through a
relaxation equation, based on considering pseudo-forces between the mesh
points, given by

εẋ = (Mxξ)ξ, (3.7)

Adaptivity with moving grids 47

where ε > 0 is presumed to be small. Alternatively, we can consider the
original equidistribution equation in integral form. If a mesh is not exactly
equidistributed then we can determine the residual

R =
∫ x

a
M dx − ξ

∫ b

a
M dx.

If we then set εẋ = −R and differentiate this expression twice with respect
to ξ, we obtain

ε(ẋ)ξξ = −(Mxξ)ξ. (3.8)

This equation was originally derived in Adjerid and Flaherty (1986). The
equations (3.7) and (3.8) are known respectively (Huang et al. 1994) as
MMPDE5 and MMPDE6. We can combine them to give the (smoothed)
moving mesh equation considered in Huang and Russell (1997a) (see also
the discussion in Section 2), which takes the form

ε

(
1 − γ

∂2

∂ξ2

)
ẋ = (Mxξ)ξ. (3.9)

Here γ > 0 can be chosen to give some control over the smoothness of the
mesh. The equation (3.9) (and its various discretizations) is very dissipa-
tive, and leads to extremely stable meshes under most discretizations. The
equation (3.9) also has natural extensions to higher dimensions, both in
the context of the methods described in Huang and Russell (1997a) and
Ceniceros and Hou (2001) and also in the optimal transport methods we
consider later in this section. Other smoothed versions of the MMPDEs
have also been considered by Huang and Russell (1997a). One of them is
given by

ε

(
1 − γ

∂2

∂ξ2

)
∂

∂ξ

(
−

(
∂x

∂ξ

)−2 ∂ẋ

∂ξ

)
= −

(
1 − γ

∂2

∂ξ2

)
∂

∂ξ

(
∂x

∂ξ

)
. (3.10)

Huang and Russell (1997a) have proved that the solutions (i.e., the coordi-
nate transformation and the mesh) to the continuous equation (3.10) using
a central finite difference discretization have the properties both of local
quasi-uniformity and no node-crossing.

Note. Many other MMPDEs have been derived, such as MMPDE2, given by

(Mẋ)ξξ = −(Mtxξ)ξ − 1
ε
(Mxξ)ξ.

However, we will focus our discussion on the more widely used (3.9).

The moving mesh equation evolves a mesh towards an equidistributed
state satisfying (3.3). When implementing the MMPDE method, the equa-
tion (3.9) is typically discretized over the computational space, leading to a
set of ordinary differential equations for the location of the mesh points Xi.

48 C. J. Budd, W. Huang and R. D. Russell

These can then be solved using standard stiff ODE software, e.g., by using
an SDIRK (singly diagonally implicit Runge–Kutta) method. A simple such
semi-discretization of (3.9) is given by

ε

(
Ẋi − γ

Ẋi+1 − 2Ẋi + Ẋi−1

(∆ξ)2

)
= Ei(t), (3.11)

where the equidistribution measure Ei(t) is as given in (3.4). This leads
(on inversion of the simple tri-diagonal system on the right-hand side of
this equation) to a simple set of ODEs for the location of the mesh points.
Alternatively, a simple full discretization of (3.9) for a mesh Xn

i evaluated
at the time tn = n∆t is proposed in Ceniceros and Hou (2001), and takes
the form

ε

(
Xn+1

i − γ
Xn+1

i+1 − 2Xn+1
i + Xn+1

i−1

(∆ξ)2

)
=

ε

(
Xn

i − γ
Xn

i+1 − 2Xn
i + Xn

i−1

(∆ξ)2

)
+ ∆tEn

i . (3.12)

These equations for the mesh can then be solved together with a suitable
discretization of the underlying PDE, either simultaneously or alternately.
We will give more details of this procedure later in this section in the context
of moving meshes in higher dimensions, but we note at this stage that the
simultaneous solution method is both possible and effective in such one-
dimensional problems.

The method for evolving the mesh is typically implemented in two stages.

(1) Starting from an initially uniform mesh in the physical space, we evolve
this to equidistribute the monitor function at the initial time over ΩP .
To do this we set M0(x) ≡ M(x, 0), with xξ = a + (b − a)ξ, and
solve (3.46) with M fixed to equal the function M0, with ε = 1 for
0 < t < T , where T is a fixed time. In this first calculation t is
an artificial time during which the uniform mesh evolves toward an
equidistributed mesh for which the right-hand side of (3.9) is zero.
It follows from the earlier results that, provided M0 > 0, such a mesh
exists, and we show presently that it is stable. In this initial calculation
the right-hand side of (3.9) is initially relatively large, and taking ε = 1
prevents the numerical calculation of the solution of the ODEs for
the mesh point locations from being unnecessarily stiff. The value
of T is chosen large enough to allow the mesh to relax toward the
equidistributed state.

(2) We then solve (3.9) with the true time-dependent monitor function
M(x, t), with t now actual time. For this calculation we typically set
ε = 0.01. We show presently that the resulting mesh is then ε-close to a
mesh which exactly equidistributes M(x, t), provided that M does not

Adaptivity with moving grids 49

change too rapidly with time. As this procedure starts from a mesh
which exactly equidistributes M(X, 0), the right-hand side of (3.9) is
always close to zero and the resulting differential equations are not
especially stiff.

Observe that this algorithm has the convenience of starting from a uniform
mesh. This is a significant advantage over methods based on (3.5), or related
methods such as the GCL method described in Section 4.

We will discuss later in this section the exact mechanism by which this
algorithm for moving the mesh is coupled to the solution method for the
underlying PDE.

This procedure has been criticized (for example, see Tang (2005)) for
being imprecise about the way that ε is defined and the possibility of having
to solve a very stiff system of equations. However, it can be given a very
precise meaning. In the second stage of this calculation we are trying to
find a mesh which is close to an equidistributed mesh. The natural time
scale τ over which this mesh evolves is given simply by

τ ≈ ε

M
. (3.13)

The key factor governing the choices of both ε and M is then to ensure that
τ is smaller than but of the same order as the natural evolutionary time
scale of the underlying PDE. In Section 5 we will show that in the context
of PDEs with a strong scaling structure, this allows a natural choice to be
made for both ε and M .

We now substantiate some of the claims made above, as well as stating
another important property of the solutions of the moving mesh PDE (3.9).

Theorem 3.2.

(i) If Mt = 0, then the equidistributed mesh is a solution of (3.9) and is
linearly stable.

(ii) If Mt = O(1), then an initially ε-close to equidistributed solution of
(3.9) remains ε-close for all subsequent times.

(iii) At all times the solution of (3.9) satisfies xξ > 0, so that mesh crossing
(tangling) does not occur.

Note. This applies for exact solutions of (3.9). If an overly coarse dis-
cretization is used to approximate these solutions then (iii) above may be
violated (Smith 1996).

Proof. (i) Let x̂ be an equidistributed mesh satisfying (M(x̂)x̂ξ)ξ = 0,
with x̂t = Mt = 0. It follows immediately that ε(˙̂x − γ ˙̂xξξ) = (Mx̂ξ)ξ so
that x̂ satisfies the equidistribution equation. Now set x = x̂ + R(ξ, t) with

50 C. J. Budd, W. Huang and R. D. Russell

R
 1 and R(a) = R(b) = 0. To leading order, R satisfies the equation

ε(Ṙ − γRξξ) = (MRξ)ξ + (MxxξR)ξ = (MRξ + MξR)ξ = (MR)ξξ.

Therefore
εṘ = (1 − γ∂2

ξ)−1(MR)ξξ ≡ G(MR)ξξ. (3.14)

Here G is a positive compact operator and, as M > 0, ER ≡ (MRξξ) is a
uniformly elliptic operator with a negative real spectrum. It follows that R
must decay to zero. Hence the equidistributed solution is locally stable.

(ii) To prove this result, consider a slowly varying monitor function M(x, t)
and an exact solution x̂ of the equidistribution equation (Mx̂ξ)ξ = 0. If
x = x̂ + εR is a solution of (3.9) then, extending the calculation in (3.14),
we see that R satisfies the equation

ε(ẋ − γẋξξ) + O(ε2) = ε(MR)ξξ + O(ε2).

Hence, we have
(MR)ξξ = ˙̂x − γ ˙̂xξξ + O(ε).

But as (Mx̂ξ)ξ = 0, we have

(M ˙̂xξ)ξ = −(Mtx̂ξ)ξ.

As the operator Eφ ≡ (Mφ)ξξ is uniformly elliptic, it follows that provided
Ṁ is of order one, then ˙̂x and hence R and its derivatives are also of order
one. Consequently, the solution x of (3.9) stays ε-close to the solution of
the equidistribution equation.

(iii) To show this we need to show that xξ cannot vanish. This result is a
consequence of the maximum principle. In the case when γ = 0, we have,
on differentiating (3.9), that

ẋξ = Mξξxξ + 2Mξxξξ + Mxξξξ.

Suppose that xξ is initially positive everywhere, and as x evolves it vanishes
for a first time at (without loss of generality) the point ξ = 0. Then locally
close to this point we have xξ = aξ2 + O(ξ3) for some a > 0. Hence

ẋξ = aξ2Mξξ + 2aξMξ + aM + O(ξ).

Thus ẋξ > 0 at this point and time. Hence xξ must remain positive. The
more general result follows from the positivity of the compact operator G.

3.1.1. Coupling a one-dimensional MMPDE method to a PDE
In one dimension, MMPDE methods can be very effectively coupled to an
underlying PDE system by using a variety of different methods, includ-
ing finite difference, finite element, collocation and spectral methods. The

Adaptivity with moving grids 51

mesh equations and the PDE equations can then be solved together or al-
ternately. We will discuss this in more detail presently in the context of
moving mesh methods in higher dimensions, but it is appropriate to make
some preliminary remarks here.

3.1.2. Finite difference methods
To motivate the discussion of appropriate discretizations, we assume that
the underlying PDE system takes the form

ut = f(t, x,u,ux,uxx). (3.15)

If x(ξ, t) is itself a time-dependent function of a computational variable ξ
then (3.15) can be cast into the Lagrangian form in the moving coordinate
system given by

du
dt

= f(t, x,u,ux,uxx) + uxxt. (3.16)

The MMPDE governing the mesh motion gives a direct value for xt. A
method effective for solving (3.16) (in one-dimensional problems) is to use a
semi-discretization. In this approach we discretize the differential equation
(3.16) in the computational coordinates together with a similar discretiza-
tion of the MMPDE (3.9). In such a semi-discretization we set

Xi(t) ≈ x(i∆ξ, t) and Ui(t) ≈ u(Xi(t), t).

As a simple example of the use of a finite difference method we can then
take

ux ≈ Ui+1 − Ui−1

Xi+1 − Xi−1
and uxx ≈

Ui+1−Ui

Xi+1−Xi
− Ui−Ui−1

Xi−Xi−1

Xi+1−Xi−1

2

. (3.17)

These discretizations can then be substituted into (3.16) and the resulting
set of ODEs for Xi and Ui solved along with one of the discretizations of
(3.9). We discuss presently, and in more detail, the various alternating
and simultaneous approaches for discretizing in time and then solving the
resulting combined system.

On a static mesh, the truncation errors in calculating these finite differ-
ence approximations were given in the expressions (2.49) and (2.52). Pro-
vided that the stretching condition (2.10) is satisfied, then these errors are
of second order.

We note, however, that additional errors may arise from the additional
convective terms arising from the mesh movement, in particular the term

uxxt (3.18)

arising in (3.16). This additional term leads to both theoretical and prac-
tical difficulties in applying the moving mesh methods. From a theoretical

52 C. J. Budd, W. Huang and R. D. Russell

perspective it is very possible that certain desirable properties of the equa-
tion (3.15) (such as symmetries, Hamiltonian structure and/or conservation
laws) may not be inherited by the Lagrangian form (3.16). A practical dif-
ficulty, observed by Li et al. (1998), arises from certain discretizations of
(3.18). In particular it was shown in this paper that it is possible that these
can lead to instabilities and degrade the accuracy of the calculation. For
example, if a centred finite difference approximation is used to discretize
ux, then from the expression (2.52) we have an additional truncation error
given to leading order by (Li et al. 1998)

ẋ
∆2

i

2

[
xξξ

x2
ξ

uxx +
1
3
uxxx

]
. (3.19)

It was observed in Li et al. (1998) that as xξξ can be negative and Ẋ
large, then the term Xξξuxx/xξ2 can be anti-diffusive (even dominating the
diffusive terms in the underlying PDE), and hence destabilizing, and also
potentially quite large. It was considered in Li et al. (1998) that this con-
tributed to some large errors and instabilities arising in their calculation of
the front solutions to Fisher’s equation. Such problems were also observed
in calculations of the nonlinear Schrödinger equation reported in Ceniceros
(2002). Various strategies can be used to overcome such problems. These
include increasing the mesh density in the unstable (wave front) region (Qiu
and Sloan 1998), using a higher-order upwind strategy such as an ENO or
Roe scheme (Li and Petzold 1997, Li et al. 1998) or a higher-order (fourth-
order) centred difference scheme (Ceniceros 2002). (Alternatively, a static
rezoning method can be used, as discussed in the next subsections.) An
alternative strategy in one dimension is to use collocation, which deals with
errors on non-uniform meshes very effectively, and we now describe this.

3.1.3. Collocation methods
Spline collocation gives a powerful method of discretizing the underlying
partial differential equation in the physical domain, which has significant
advantages over finite difference and finite element methods. In particular,
it affords a continuous representation of the solution and its derivatives, pro-
vides a higher order of convergence, easily handles boundary conditions, and
gives errors independent of local mesh grading, so that by using collocation
we are able to avoid the problem of approximating high-order derivatives
over a widely non-uniform mesh (Saucez, Vande Vouwer and Zegeling 2005).
It also discretizes the PDE in the physical domain ΩP and avoids the prob-
lems with the additional advective terms for the mesh movement described
in Section 3.1.2. A very effective spline collocation discretization proce-
dure coupled to various possible MMPDEs is adopted in the moving mesh
collocation code MOVCOL, described in Huang and Russell (1996) (with

Adaptivity with moving grids 53

extensions to higher-order systems using higher-degree Hermite polynomi-
als, given in the code MOVCOL4 (Russell et al. 2007)) and this package
has been used in many tests of adaptive methods in one dimension: see,
for example, Huang and Russell (1996) and Budd et al. (1999a). Spline
collocation methods for second-order PDEs (see Ascher, Christiansen and
Russell (1981)) typically use a basis of third-degree cubic Hermite polyno-
mials to give a piecewise smooth approximation U(x, t) over a series of N
intervals x ∈ [Xi(t), Xi+1(t)] to the solution u(x, t) of the underlying partial
differential equation and its associated boundary conditions The collocation
points are then chosen to be the Gauss points within the intervals. The in-
terval points are precisely the mesh points moved by solving the MMPDE.
The physical solution u(x, t) is approximated on the moving mesh by the
piecewise cubic Hermite polynomial

U(x, t) = Ui(t)φ1(s(i)) + Ux,i(t)Hi(t)φ2(s(i))

+ Ui+1(t)φ3(s(i)) + Ux,i+1(t)Hi(t)φ4(s(i)), (3.20)

for x ∈ [Xi(t), Xi+1(t)], i = 1, 2, . . . , N −1, where Ui(t) and Ux,i(t) denote
the approximations to u(Xi(t), t) and ux(Xi(t), t), respectively. The local
coordinate s(i) is defined by

s(i) := (x − Xi(t))/Hi(t), Hi(t) := Xi+1(t) − Xi(t), (3.21)

and the piecewise cubic shape functions are defined by

φ1(s) := (1 + 2s)(1 − s)2, φ2(s) := s(1 − s)2,

φ3(s) := (3 − 2s)s2, φ4(s) := (s − 1)s2.
(3.22)

For x ∈ [Xi(t), Xi+1(t)], i = 1, . . . , N − 1, we then have

Ux(x, t) =
1
Hi

(
Ui

dφ1

ds
+ Ux,iHi

dφ2

ds
+ Ui+1

dφ3

ds
+ Ux,i+1Hi

dφ4

ds

)
,

(3.23)

Uxx(x, t) =
1

H2
i

(
Ui

d2φ1

ds2
+ Ux,iHi

d2φ2

ds2
+ Ui+1

d2φ3

ds2
+ Ux,i+1Hi

d2φ4

d2s

)
,

(3.24)

Ut(x, t) =
dUi

dt
φ1 +

(
dUx,i

dt
Hi + Ux,i

dHi

dt

)
φ2

+
dUi+1

dt
φ3 +

(
dUx,i+1

dt
Hi + Ux,i+1

dHi

dt

)
φ4

− Ux(x, t)
(

dXi

dt
+ s(i) dHi

dt

)
, (3.25)

54 C. J. Budd, W. Huang and R. D. Russell

where φj , (dφj/ds) and (d2φj/d2s), j = 1, . . . , 4, are functions of s(i). These
expressions for U and its derivatives can then be directly substituted into
(3.15), and the expression

Ut = f(t, x,U,Ux,Uxx)

evaluated at the two Gauss points Xij = Xi + sjHi, j = 1, 2, where

s1 =
1
2

(
1 − 1√

3

)
, s2 =

1
2

(
1 +

1√
3

)
.

This, when coupled to the boundary conditions of the underlying PDE,
leads to a set of ordinary differential equations for Ui,Ui,x which can then
be coupled directly to the ODEs for the moving mesh given, for example,
by (3.11). In certain circumstances, such as when the underlying PDE has
a conservation form, it is also possible for the collocation scheme to satisfy
an analogous discrete conservation law. This procedure is implemented in
MOVCOL and is described in detail in Huang and Russell (1996) The result-
ing ODEs are somewhat stiff, and are typically solved using an appropriate
stiff solver such as an SDIRK (singly diagonally implicit Runge–Kutta) or
a BDF (backward differentiation formula) method. In MOVCOL they are
solved using a BDF method in the code dassl (Petzold 1982).

3.1.4. Spectral methods
Spectral methods provide an attractive alternative to finite difference and
finite element methods for numerical solution of PDEs. They involve ap-
proximation by global basis functions, such as trigonometric or algebraic
polynomials. For problems with smooth solutions the convergence rate of
spectral methods is faster than algebraic, as the number of grid points in-
creases, and the significance of this so-called spectral convergence is that
a specified accuracy can usually be achieved using fewer grid points than
would be required by the algebraically convergent finite difference or fi-
nite element approaches. However, if a solution has a steep region such as a
boundary layer or an interior layer, spectral methods will achieve high accu-
racy only if the number of grid points is sufficiently high to permit resolution
of the localized phenomena. To overcome this difficulty, a common approach
is to apply a coordinate transformation that is designed to smooth out re-
gions of high gradient. Such a transformation can be generated numerically
and adaptively through a moving mesh method. Another benefit of using
a moving mesh method is that PDEs can be conveniently discretized on
the computational domain where a rectangular or cubic mesh is often used.
Adaptivity of this type has proved successful, producing highly accurate
solutions to problems that have steep, smooth solutions using a reasonably
small number of grid points, although some care must be taken that the nu-
merically generated coordinate transformation should be made sufficiently

Adaptivity with moving grids 55

smooth to avoid possible deterioration of accuracy: see, e.g., Mulholland,
Huang and Sloan (1998), Wang and Shen (2005), Feng, Yu, Hu, Liu, Du
and Chen (2006) and Tee and Trefethen (2006). While preliminary results
are promising, much further investigation is needed to determine the full
potential of these adaptive spectral methods.

3.2. MMPDEs and variational methods in n dimensions

3.2.1. Description of some variational-based methods
In the variational and MMPDE approaches of mesh adaptation in n di-
mensions, briefly described in Section 2, adaptive meshes are also generated
as images of a computational mesh under a coordinate transformation from
the computational domain to the physical domain. Such a coordinate trans-
formation is determined by an adaptation functional, which is commonly
designed to measure the difficulty in the numerical approximation of the
physical solution. The functional often involves mesh properties and em-
ploys a monitor function to control mesh quality and mesh concentration.
The key to the development of variational and MMPDE methods is the for-
mulation of the adaptation functional. Direct-use standard-error estimates
are often not appropriate since they often lead to non-convex functionals
in two and higher dimensions. Instead, most of the existing methods have
been developed based on physical, geometric, mesh quality control, and/or
other considerations.

The functional can be formulated in terms of either the coordinate trans-
formation x = F(ξ, t) or its inverse transformation ξ = F−1(x, t). The latter
has been used more commonly than the former because it is less likely to
produce mesh tangling for non-convex domains (e.g., see Dvinsky (1991)).
In the latter case, the adaptation functional takes the general form

I(ξ) =
∫

ΩP

G(M, ξ, ∇ξi) dx, i = 1, . . . , n, (3.26)

where G is a continuous function of its arguments, M is the (scalar or
matrix-valued) monitor function, and ∇ is the gradient operator with re-
spect to the physical coordinate x. Once a functional has been defined,
an MMPDE can be obtained as described in (2.26) as the gradient flow
equation of the functional (Huang and Russell 1997b, 1999), i.e.,

∂ξi

∂t
= −P

ε

∂I

∂ξi
, i = 1, . . . , n, (3.27)

where P is a positive differential operator and ε > 0 is a parameter for
adjusting the time scale of mesh movement. For the general form (3.26),
this becomes

∂ξi

∂t
=

P

ε

(
∇ · ∂G

∂(∇ξi)
− ∂G

∂ξi

)
, i = 1, . . . , n. (3.28)

56 C. J. Budd, W. Huang and R. D. Russell

For example, Winslow’s variable diffusion method (Winslow 1981), as de-
scribed in Section 2, takes this form with

I(ξ) =
1
2

∫
ΩP

1
w

∑
i

(∇ξi)T ∇ξi dx, (3.29)

where w is the weight function prescribed by the user. We can also con-
sider the generalized version of this method described in Huang and Russell
(1997b, 1999), given by

I(ξ) =
1
2

∫
ΩP

∑
i

(∇ξi)TM−1∇ξi dx, (3.30)

where M is a matrix-valued monitor function in d dimensions. (Obviously,
(3.30) reduces to (3.29) when M = wI.)

Since ξ = ξ(x, t) does not explicitly define the location of mesh points, a
mesh equation for x(ξ, t) is commonly used in actual computation. Such an
equation can be obtained by interchanging the dependent and independent
variables in (3.27) or (3.28) and in the case of the variational principle (3.30)
in two dimensions, we obtain the following MMPDE:

∂

∂t

(
x
y

)
= − 1

ε|J |√det(M)

(
xξ

yξ

) {
∂

∂ξ

[
1

|J |det(M)

(
xη

yη

)T

M
(

xη

yη

)]

− ∂

∂η

[
1

|J |det(M)

(
xη

yη

)T

M
(

xξ

yξ

)]}

− 1
ε|J |√det(M)

(
xη

yη

){
− ∂

∂ξ

[
1

|J |det(M)

(
xξ

yξ

)T

M
(

xη

yη

)]

+
∂

∂η

[
1

|J |det(M)

(
xξ

yξ

)T

M
(

xξ

yξ

)]}
. (3.31)

This MMPDE can be easily discretized to move the mesh. For details of
this derivation, and a series of computations using it, see Huang (2001a).
Most of these variational methods can be straightforwardly extended from
two dimensions to n dimensions.

A disadvantage of all of the above-mentioned methods, such as the MM-
PDEs given in (3.31), is that the computations have to be done on a highly
nonlinear system. Ceniceros and Hou (2001) also consider a variational
principle using a scalar monitor function, but this time in the computational
domain. After certain further simplifications this leads (in two dimensions)
to the equations

∇ξ · (M∇ξx) = 0, ∇ξ · (M∇ξy) = 0. (3.32)

Now all derivatives are expressed in terms of the computational variables so
that ∇ξ = (∂ξ, ∂η)T , and the monitor function is considered as a function

Adaptivity with moving grids 57

of the computational coordinates, i.e., M = M (ξ, η). A relaxation method
is proposed by Ceniceros and Hou (2001) to solve (3.32), which leads to a
set of moving mesh PDEs of the form

xτ = ∇ξ · (M∇ξx), yτ = ∇ξ · (M∇ξy). (3.33)

This system is significantly simpler than (3.31) and can be easily discretized.
The above equation, when discretized, is rather stiff and can also benefit
from a degree of mesh smoothing. A low-pass filter smoothing is applied to
the monitor function by Ceniceros and Hou (2001). Smoothing can also be
applied directly to the mesh itself, e.g.,

(1 − γ∆ξ)xτ = ∇ξ · (M∇ξx), (1 − γ∆ξ)yτ = ∇ξ · (M∇ξy), (3.34)

where γ > 0 is related to M (typically, if a time step of ∆t is used then
γ = ∆t max(M)). We note that in one dimension this system is exactly
that given by (3.9). The MMPDE method (3.34) in discretized form has
been used with success in a number of different applications, including Tang
(2005), Zegeling (2007), Ceniceros (2002) and some of the examples in Sec-
tion 5.

The harmonic map method of Dvinsky (1991) given in (2.34) uses the
functional

I(ξ) =
1
2

∫
ΩP

√
det(M)

∑
i

(∇ξi)TM−1∇ξi dx, (3.35)

while the method of Brackbill and Saltzman (1982) (cf. (2.35)) takes the
form

I(ξ) = θa

∫
ΩP

w|J |dx + θs

∫
ΩP

∑
i

(∇ξi)T ∇ξi dx (3.36)

+ θo

∫
ΩP

∑
i�=j

((∇ξi)T ∇ξj)2 dx.

Following Winslow (1967), Thompson et al. (1985) use a system of elliptic
differential equations for generating body-fitted, adaptive meshes. They
propose using the Poisson equations

∇2ξi = Pi(x)

to control the mesh concentration and direction, where Pi, 1 ≤ i ≤ d, are
control functions. The system can be interpreted as the Euler–Lagrange
equation of the quadratic functional

I(ξ) =
∫

ΩP

∑
i

(|∇ξi|2 − Piξi) dx. (3.37)

Knupp and his co-workers (Knupp 1995, Knupp 1996, Knupp and Robi-
doux 2000, Knupp et al. 2002) determine the coordinate transformation

58 C. J. Budd, W. Huang and R. D. Russell

such that its Jacobian matrix is as close as possible to a reference Jacobian
matrix in the least-squares sense. One of the functionals they use is

I(ξ) =
∫

ΩP

∥∥∥∥∂ξ

∂x
− K

∥∥∥∥
2

F

ds, (3.38)

where ‖ · ‖F is the Frobenius norm and K = K(x) is the user-prescribed,
reference Jacobian matrix. A detailed discussion on how to choose the
matrix K is given in Knupp (1996); see also Knupp and Robidoux (2000)
for a broader discussion on algebraic properties of the Jacobian matrix.

The method of Huang (2001b) given in Section 2 (cf. (2.40)) augments the
above variational principles with an additional contribution based on mesh
quality control of equidistribution alignment, and orientation. The choice
of the monitor function M in this method, based on interpolation error
estimates, was extensively studied in Huang and Sun (2003) and Huang
(2005a). The idea of mesh quality control was also used by Branets and
Carey (2003) in developing their grid-smoothing variational method.

3.2.2. Examples of meshes generated
We now consider using certain of these methods described above to generate
a series of meshes. In Section 3.3 we compare these results to the meshes
generated by using an optimal transport algorithm.

Example 1. This example is to generate adaptive meshes for a given
weight function,

w(x, y) = 1 + 10 exp
(
−50

(
y − 1

2
− 1

4
sin(2πx)

)2)
, in Ω ≡ (0, 1)× (0, 1).

The monitor function is chosen to be M = wI. Adaptive meshes are shown
in Figure 3.1 using the harmonic mapping method, Winslow’s method and
the variational method with alignment control given in (2.40) with θ = 0.1).

Example 2. In this example we generate adaptive moving meshes for the
weight function

w(x, y, t) = 1 + 10 exp
(
−50

∣∣∣∣
(

x − 1
2
− 1

4
cos(2πt)

)2

+
(

y − 1
2
− 1

4
sin(2πt)

)2

−
(

1
10

)2∣∣∣∣
)

.

The monitor function is chosen as M = wI. Adaptive meshes obtained using
MMPDEs based on the methods in Example 1 are shown in Figures 3.2,
3.3, and 3.4.

Adaptivity with moving grids 59

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(a) Harmonic mapping

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(b) Winslow’s method

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(c) New functional

Figure 3.1. Example 1. Adaptive moving meshes obtained by the
harmonic mapping method, Winslow’s method, and the method
based on equidistribution and alignment control (2.40) (θ = 0.1).

60 C. J. Budd, W. Huang and R. D. Russell

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(a) t = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(b) t = 0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(c) t = 0.5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(d) t = 0.75

Figure 3.2. Example 2. Adaptive moving meshes obtained
by MMPDEs based on the harmonic mapping method.
The circles shown in this and the following figures indicate
the locations where the mesh concentration is anticipated.

Adaptivity with moving grids 61

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(a) t = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(b) t = 0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(c) t = 0.5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(d) t = 0.75

Figure 3.3. Example 2. Adaptive moving meshes obtained
by MMPDEs based on Winslow’s method.

62 C. J. Budd, W. Huang and R. D. Russell

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(a) t = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(b) t = 0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(c) t = 0.5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

(d) t = 0.75

Figure 3.4. Example 2. Adaptive moving meshes obtained
by MMPDEs based on the method with equidistribution
and alignment control (2.40) (θ = 0.1).

Adaptivity with moving grids 63

Example 3. This example generates an adaptive mesh for a given ana-
lytical solution

u(x, y) = tanh
(

30
(

x2 + y2 − 1
8

))

+ tanh
(

30
(

(x − 0.5)2 + (y − 0.5)2 − 1
8

))

+ tanh
(

30
(

(x − 0.5)2 + (y + 0.5)2 − 1
8

))

+ tanh
(

30
(

(x + 0.5)2 + (y − 0.5)2 − 1
8

))

+ tanh
(

30
(

(x + 0.5)2 + (y + 0.5)2 − 1
8

))

defined in [−2, 2] × [−2, 2]. An adaptive mesh with a monitor function
is based on isotropic and anisotropic estimates error in interpolating this
function. This is expected to concentrate around five circles. Results are
shown in Figure 3.5.

Example 4. This example generates a three-dimensional adaptive mesh
for

u(x, y, z) = tanh(100((x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2) − 0.0625)

defined in the unit cube. An adaptive mesh with a monitor function is based
on the error in interpolating this function. This is expected to concentrate
near the sphere centred at (0, 0, 0) with radius 0.25. Results are shown in
Figure 3.6.

3.3. Optimal transport methods

3.3.1. Derivation of the optimal transport equations
Optimal transport methods are a very natural generalization of MMPDE
methods in one dimension, that retain much of the simplicity of the one-
dimensional approach (such as always solving scalar equations and auto-
matic calculation of the mesh on a boundary) whilst being general enough
to deliver meshes of provable mesh quality (with many of the proofs follow-
ing directly from the one-dimensional case). They have the disadvantage of
being less flexible than some of the moving mesh methods described above.
However, in practice they can give very regular meshes for a wide range of
possible monitor functions. The key idea behind an optimal mesh is that
it should be one which is closest to a uniform mesh in a suitable norm,
consistent with satisfying the equidistribution principle. The simplest such

64 C. J. Budd, W. Huang and R. D. Russell

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

y

(a) Miso, (l, m) = (2, 1)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

y

(b) Mani,2, (l, m) = (2, 1)

Figure 3.5. Example 3. Adaptive meshes of size N = 81 × 81
obtained using the variational method (2.40) (θ = 0.1) for different
monitor functions based on isotropic and anisotropic interpolation
error estimates.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

X Y

Z

xy

z

(a) Winslow’s type; (k, m) = (1, 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Winslow’s type; (k, m) = (1, 1)

Figure 3.6. Example 4. An adaptive mesh of size N = 65 × 65 × 65
obtained using the variational method (2.40) (θ = 0.1) for a monitor
function based on interpolation error. (a) Cut-away plot of the
mesh. (b) Plane projection of slice at Kz = 32 of the mesh in (a).

Adaptivity with moving grids 65

norm is the least-squares norm given by

I =
∫

ΩC

|F(ξ, t) − ξ|2 dξ. (3.39)

Minimizing I subject to the equidistribution principle is in fact the cele-
brated Monge–Kantorovich problem from differential geometry. This prin-
ciple is often called optimum transport, as it leads to a transformation, the
creation of which takes a minimum amount of work as a deviation from the
identity. Intuitively, this is likely to deliver a regular mesh, as this mesh
will be as close (in an averaged sense) to the most regular possible mesh,
i.e., a completely uniform one. Remarkably, this minimization problem has
a unique solution with a very elegant expression for the transformation.

Theorem 3.3. There exists a unique optimal mapping F(ξ, t) satisfying
the equidistribution equation. This map has the same regularity as M .
Furthermore, F(ξ, t) is the unique mapping from this class which can be
written as the gradient (with respect to ξ) of a convex (mesh) potential
P (ξ, t), so that

F(ξ, t) = ∇ξP (ξ, t), ∆ξP (ξ, t) > 0. (3.40)

Proof. See Brenier (1991) or Caffarelli (1992, 1996) for an abstract proof
and Delzanno et al. (2008) for a proof in the context of adaptive mesh
generation.

The following is then immediate.

Lemma 3.4. The map F is irrotational so that ∇ξ × F = 0, and the
Jacobian of F is symmetric.

Significantly, the transformation above is an example of a Legendre trans-
formation (Sewell 2002). Such transformations include translations and
linear maps by positive definite symmetric matrices. We now show how to
calculate such a transformation.

3.3.2. Properties of optimally transported meshes
It is immediate that if x = ∇ξP then

∂X
∂ξ

= H(P),

where H(P) is the Hessian of P . Additionally, if the measure M ∈ W 2(ΩP)
is strictly positive on its supports (assumed to be convex), then the potential
P ∈ W 2

loc(ΩC), and satisfies, in the classical sense, the Monge–Ampère
equation

M(∇ξP, t)H(P) = θ(t). (3.41)

66 C. J. Budd, W. Huang and R. D. Russell

Here H(P) denotes the determinant of the Hessian matrix of P . This is
a famous equation in differential geometry. Solving it defines the map F
uniquely. In order to solve it we must specify boundary conditions for the
solution. In general applications of mesh generation we consider bounded
domains mapping to bounded domains. We can then prescribe a boundary
condition where equation (3.41) is supplemented with the condition that
the boundary must map to the boundary. Suppose that the points on the
boundary of ΩC satisfy the implicit equation GC(ξ) = 0 and those on the
boundary of ΩP satisfy the implicit equation GP (X) = 0, we then have the
following (nonlinear) Neumann boundary condition for (3.41):

GP (∇ξP, t) = 0 if GC(ξ, t) = 0. (3.42)

The existence, uniqueness and regularity of the solutions of (3.41) and
(3.42) has been well studied (Brenier 1991, Caffarelli 1992, Caffarelli 1996).
From the point of view of grid generation this puts us into the nice situation
of being able to infer properties of the mesh from those of a function P with
known regularity. We have the following very important result.

Theorem 3.5. If both ΩC and ΩP are smooth, convex domains then
(3.41) and (3.42) have a unique solution (up to an additive constant), which
is as regular as the monitor function M . This in turn leads to a unique reg-
ular mesh.

Proof. This follows immediately from the results of Brenier (1991) and
Caffarelli (1992, 1996).

If ΩC or ΩP are not smooth then there is a possible loss of mesh regularity.
In the case of solutions which are logical rectangles, this is not severe and
applies only at the corners, where it can be shown (Cullen 1989) that P ∈ C3

and F ∈ C2. This is sufficient regularity for most applications.
An immediate consequence of this result is that the solution of the Monge–

Ampère equation defines a map not only from ΩC to ΩP , but also between
the boundaries of the respective domains. This is a desirable property from
the perspective of mesh generation as we do not have to consider separate
equations for the mesh on the boundary. This is in contrast to the varia-
tional methods described in Section 3.3.1, which require separate equations
to describe the mesh on the boundaries. As an example, we can consider
meshes on logical cubes, taking

ΩC = [0, 1]d = ΩP . (3.43)

The boundary conditions above then reduce to

Pξ = 0, 1 if ξ = 0, 1, Pη = 0, 1 if η = 0, 1. (3.44)

The boundary condition (3.44) applied in two dimensions implies the
orthogonality of the grid lines at the boundaries of the square. To see this,

Adaptivity with moving grids 67

consider the bottom boundary of the square in the physical domain, for
which Y = 0. A grid line Γ which intersects this side is given by

Γ = {(x, y) : 0 ≤ η ≤ 1, ξ fixed}.
The tangent to this line in the physical domain is given by τ = (xη, yη)T ,
and, trivially, the tangent to the bottom boundary of the square by the vec-
tor t = (1, 0)T . However, on the bottom boundary, the function P satisfies
the identity Pη(ξ, 0) = 0 and by definition x = Pξ. It follows immediately
that when η = 0,

xη(ξ, 0) = Pηξ(ξ, 0) = 0,

so that on the lower boundary τ · t = 0. Thus the mesh is orthogonal
to the lower boundary. Similar results apply to the other sides as well.
The condition of mesh orthogonality at the boundary of the square is often
desirable in certain circumstances (Thompson et al. 1985). However, it
may cause problems when resolving features, such as fronts, which intersect
boundaries at an angle. In such cases it may be useful to refine the mesh
close to the boundary, either by introducing a finer computational mesh
there, or by locally increasing the value of the monitor function M at mesh
points adjacent to the boundary.

Mesh symmetries. Some very desirable properties of the mesh follow im-
mediately from the properties of the Monge–Ampère equation. It is triv-
ial to see that the equation is invariant under translations in (ξ, η). It is
also easy to see that (in a similar manner to the Laplacian operator) the
Monge–Ampère equation is also invariant under any orthogonal map such
as a rotation or a reflection This is because the Monge–Ampère equation
is the determinant of the Hessian, which transforms covariantly under such
maps. This simple observation implies that (away from boundaries) the
meshes generated by solving the Monge–Ampère equation should have no
difficulty aligning themselves to structures, such as shocks, which may oc-
cur anywhere in a domain and at any orientation. It is immediate that the
Monge–Ampère equation is also invariant under scaling transformations of
the form ξ → λξ, η → µη, P → νP , provided that M is chosen carefully.

Mesh skewness. The regularity of the mesh generated by this approach gives
a useful feature in seeing control in the variation of the element size across
the domain. In general the meshes generated by the Monge–Ampère equa-
tion have good regularity properties and are effective in interpolating func-
tions (Delzanno et al. 2008). It is possible to make some estimates for the
resulting skewness of the mesh in terms of the properties of the function P .
Consider a two-dimensional problem for which the map from ΩC to ΩP has

68 C. J. Budd, W. Huang and R. D. Russell

the Jacobian J . A measure for the skewness s of the mesh in ΩP is given by

s =
λ1

λ2
+

λ2

λ1
=

(λ1 + λ2)2

λ1λ2
− 2 =

trace(J)
det(J)

− 2 =
∆(P)2

H(P)
− 2, (3.45)

where λ1 and λ2 are the (real and positive) eigenvalues of J . The skew-
ness can be estimated in certain cases. One example of this arises in the
scale-invariant meshes for the local singularities blow-up problems studied
in Section 5, in which a sequence of meshes are calculated which, close to
the singularity, take the form P (ξ, t) = Λ(t)P̂ (ξ) for an appropriate scaling
function Λ(t). It is immediate that

∆(P)2

H(P)
− 2 =

∆(P̂)2

H(P̂)
− 2,

so that the skewness of the rescaled mesh is the same as the original. Hence,
if an initially uniform mesh is used then the mesh close to the singularity
will retain local uniformity.

3.3.3. Solution of the Monge–Ampère equation
The equation (3.41) can be solved either directly (Delzanno et al. 2008) or
by a relaxation method.

The direct method. The Monge–Ampère equation (Evans 1999, Gutiérrez
2001) belongs to the class of fully nonlinear second-order equations and
has two sources of nonlinearity. Firstly, the Hessian H(P) is nonlinear in
the second derivatives (except in the one-dimensional case). Secondly, the
monitor function in general depends nonlinearly on the first derivatives of
P (either directly or through the solution of the original PDE). For any
suitably smooth positive monitor function the equation has a unique solu-
tion, which is a convex function. Linearization of the equation shows that
it is elliptic in the space of convex functions. The Monge–Ampère equation
arises from prescribing the product of the eigenvalues (the determinant) of
the Jacobian matrix of a gradient mapping. If we prescribe the sum of the
eigenvalues (the trace) then we obtain a standard Poisson equation. For the
Poisson equation, multigrid methods can find the solution of a discretiza-
tion on a grid with O(N) unknowns using O(N) operations. Methods for
solving the Monge–Ampère equation aim to obtain the same computational
complexity.

Oliker and Prussner (1988) propose a specially designed discretization
and iterative method which explicitly preserve the convexity of the iter-
ates. Benamou and Brenier (2000) transform the Monge–Ampère equation
into a time-dependent fluid mechanics problem, which is solved using an
iterative method based on an augmented Lagrangian approach. Dean and
Glowinski (2003, 2004) propose finite element discretizations based on an

Adaptivity with moving grids 69

augmented Lagrangian approach and a least-squares formulation respec-
tively. Feng and Neilan (2009) consider the nonlinear second-order equa-
tion as the limiting equation of a singularly perturbed fourth-order quasi-
linear equation. Chartrand, Vixie, Wohlberg and Bollt (2007) show that
the Monge–Ampère equation can be reformulated as an unconstrained op-
timization problem, which can be solved by a gradient descent method.
A special property of the mappings generated by the Monge–Ampère equa-
tion is that they are irrotational, i.e., the curl is zero. Haker and Tannen-
baum (2003) propose a gradient descent method that uses a Poisson solve
in each step to ‘remove the curl’. The nonlinear multigrid method devel-
oped in Fulton (1989) for the semigeostrophic equation should be easily
adapted to our problem. A Newton–Krylov-multigrid method is proposed
in Delzanno et al. (2008). The above methods all try to solve the fully
nonlinear Monge–Ampère equation directly. It was a remarkable achieve-
ment of Kantorovich to show that the problem can be relaxed to a linear
one by considering not a transport map ξ → x = F(ξ), but a transport
plan G(ξ,x) indicating the amount of material to be transported from
ξ to x (Rachev and Rüschendorf 1998, Evans 1999). Robust methods
exist for solving the corresponding linear programming problem, but to
the best of our knowledge these methods typically require O(N2) opera-
tions (Kaijser 1998, Balinski 1986), which is unacceptable except for small
problems.

The parabolic Monge–Ampère (PMA) method. An alternative approach mo-
tivated by the discussion of the MMPDEs given earlier, is to introduce a
parabolic regularization to (3.41) so that the gradient of solutions of this
evolve toward the gradient of the solutions of (3.41) over a (relatively) short
time scale. This method also couples naturally to the solution of a time-
dependent PDE. Accordingly we consider using relaxation to generate an
approximate solution of (3.41), which evolves together with the solution
of the underlying PDE. Accordingly we consider a time-evolving function
Q(ξ, t) with associated mesh X(ξ, t) = ∇ξQ(ξ, t), with the property that
this mesh should be close to that determined by the solution of the Monge–
Ampère equation. To do this we consider a relaxed form of (3.41) taking
the form of a parabolic Monge–Ampère equation (PMA) of the form

ε(I − γ∆ξ)Qt =
(
H(Q)M(∇ξQ)

)1/n
. (3.46)

To find a moving mesh, we start with an initially uniform mesh for which

Q(ξ, 0) =
1
2
|ξ|2.

The function Q then evolves according to (3.46). In (3.46) the scaling power
1/n is necessary for global existence of the solution. This is because if Q
is scaled by a factor L(t) then the Hessian term H(Q) scales as L(t)n.

70 C. J. Budd, W. Huang and R. D. Russell

If M is constant, then equation (3.46) without the power law scaling admits
a variables-separable solution for which Lt = CLn. If n > 1 then this
equation has solutions which blow up in a finite time. The rescaling prevents
this possibility. The operator on the left of this system is a smoothing
operator, similar to the operator used in (2.14), (3.9), which reduces the
stiffness of this system when it is discretized. Observe that the term θ(t) has
not been included in (3.46). Indeed this term arises naturally as a constant
of integration. The PMA equation (3.46) has many properties in common
with the moving mesh equation (3.9). In particular, if M is independent of
time then the solution of (3.41) corresponds to a stable solution of (3.46).
Indeed, we have the following results.

Lemma 3.6.

(a) Suppose that Mt = 0 and the Monge–Ampère equation (3.41) admits
a (steady) convex solution P (ξ) with associated map X(ξ) for which
H(P) > 0, so that P satisfies the equation

M(∇P)H(P) = θ.

Then:

(i) the PMA equation (3.46) admits a time-dependent solution

Q(ξ, t) =
θ1/nt

ε
+ P (ξ) (3.47)

for which ∇ξQ = ∇ξP = x(ξ);

(ii) the resulting mesh is locally stable.

(b) If M is slowly varying, then the solution of (3.46) remains ε-close to a
solution of (3.41) for all time.

Proof. This is given in Budd and Williams (2009) and is very similar to
the corresponding proof given for the stability of (3.9)

It is also possible to show (Budd and Williams 2009) that, throughout
the evolution of the mesh, if H(Q) and ∆Q are initially positive then they
stay positive for all time. This application of the maximum principle guar-
antees that the map generating the mesh is locally invertible for all time,
and hence no mesh tangling can occur. This is a very useful feature of
such r-adaptive methods, and we will see numerical examples of this in the
following calculations.

3.3.4. Discretizing the parabolic Monge–Ampère equation (3.46)
To discretize (3.46) in space we can impose a uniform grid of mesh size ∆ξ
on the computational space and assume that Q and Qt take point values

Adaptivity with moving grids 71

Qi,j(t), i, j = 0 . . . N , etc., on this grid. The Hessian operator H(Q) can be
discretized with central differencing using a nine-point stencil interior to the
domain ΩC to evaluate all second derivatives in H(Q). For the boundary
points, the central differences are replaced by Taylor series expansions, using
the respective conditions Qξ = 0 or Qξ = 1, and so on. The gradient ∇Q is
calculated similarly, so that the right-hand side of (3.46) can be determined.
To determine the values of Qt at the mesh points we then invert the operator
(I − γ∆ξ). As the system is posed on a uniform (rectangular) mesh in the
computational domain, this inversion can be done very rapidly by using a
fast spectral solver based upon the discrete cosine transform (invoking the
Neumann boundary conditions for Qt). Knowing Qt we may then determine
xt by taking the gradient.

3.3.5. Examples of meshes generated using the PMA method
To give some flavour of the behaviour of moving mesh methods, we now con-
sider some meshes generated using the PMA method for a known monitor
function M(x, y, t), choosing examples which can be compared with other
methods presented both in the literature and in other sections of this arti-
cle. In all of these following calculations we take ε = 0.01, and the ODEs
obtained by the discretization described above are solved in MATLAB using
the routine ode45. All runs took under 5 minutes on a standard desktop
computer.

Example 1. We first take a case motivated by Cao et al. (2002) (see also
Section 4) with a monitor function localized over a moving circle of the form

M1(x, y, t) = 1 + 5 exp(−50|(x − 1/2 − 1/4 cos(2πt))2

+ (y − 1/2 − sin(2πt)/2)2 − 0.01|).
This can be a severe test of a moving mesh method, and the meshes cal-
culated from this using the (velocity-based) geometric conservation law
method (Cao et al. 2002) have a high degree of skewness. To compute
a corresponding moving mesh using the parabolic Monge–Ampère method
(and also the solutions in all of the examples in this subsection) we use a
uniform computational mesh to solve (3.46) with N = 30 mesh points in
each direction and mapping the unit square to the unit square. We see from
this calculation that the resulting mesh closely follows the moving circle
with no evidence of skewness or irregularity. Note the orthogonality and
regularity of the mesh at the boundary of the domain. Notice further that
in Figure 3.7 the solution partially exits the domain with no ill consequence,
and that the grid at t = 10 is virtually indistinguishable from that at t = 0.
It is clear from these figures that the mesh generated has excellent regu-
larity. Observe the high degree of mesh uniformity close to the solution
maximum.

72 C. J. Budd, W. Huang and R. D. Russell

(a) t = 0 (b) t = 1/4

(c) t = 1/2 (d) t = 10

Figure 3.7. Example 1. Snapshots at t = 0 (a), t = 1/4 (b),
t = 1/2 (c), t = 10 (d). As the solution is advected, the grid
follows the maxima of the solution and does not ever fall
behind or become distorted.

Adaptivity with moving grids 73

Example 2. In an example taken directly from Cao et al. (2002), we
consider a monitor function localized on a sine wave of the form

M2(x, y, t) = 1 + 5 exp(−50|(y − 1/2 − 1/4 sin(2πx) sin(2πt)|),
and proceed to use exactly the same method as described in Example 1.
See Figure 3.8.

In this example we again see that the PMA method has generated a very
regular and periodic (in time) mesh.

Example 3. In this example we consider a monitor function localized on
the support of two travelling linear fronts moving toward each other and
show the resulting mesh in Figure 3.9. For this we take

x0 = t, y0 = 0.2 + t/2, u0 = γ sech(λ(x − x0 + y − y0)),
x1 = 1 − t, y1 = 0.8 − t/2, u1 = γ sech(λ(x − x1 + y − y1)),
M3(x, y, t) = 1 + u0 + u1,

with γ = 5 and λ = 100. We note that the fronts pass through each other
without generating spurious oscillations in the mesh. Note also that the
solution points do not follow the front (moving in and out of the region
of high mesh density), but that the density of the solution points does.
Observe that the mesh automatically aligns itself along the front. A close-
up of the mesh close to the front is given in Figure 3.11 (see p. 77). This
shows very good resolution of the local structure close to the front and a
smooth transition from a uniform mesh to one refined at the front. If γ is
large, then close to the front we see a mesh compression proportional to γ
orthogonal to the front, with a local skewness of s = γ. The PMA method in
this case thus generates a smooth mesh, for which the degree of skewness can
be controlled via the choice of γ. More details of this calculation are given
in Walsh et al. (2009). We can also see the effects of mesh orthogonality
close to the boundaries of the domain.

Example 4. In this example we look at a monitor function localized on
the support of two fronts meeting at an angle: see Figure 3.10. The be-
haviour of the mesh close to the front is similar to that in the last example.
Significantly, there is no mesh tangling as the two fronts intersect. In Fig-
ure 3.12 we show a close-up of the intersection region, showing the high
degree of mesh regularity. For this we take

x0 = t, y0 = 0.2 + t/2, u0 = γ sech(λ(x − x0 + y − y0)),
x1 = 1 − t, y1 = 0.8 − t, u1 = γ sech(λ(x − x1 + (y − y1)/2)),
M4(x, y, t) = 1 +u0 + u1.

74 C. J. Budd, W. Huang and R. D. Russell

(a) t = 0 (b) t = 1/3

(c) t = 2/3 (d) t = 1

Figure 3.8. Example 2. Snapshots at t = 0 (a), t = 1/3 (b),
t = 2/3 (c), t = 1 (d). In this figure we see both the
smoothness and the periodic (in time) form of the mesh.

Adaptivity with moving grids 75

(a) t = 0 (b) t = 0.495

(c) t = 0.525 (d) t = 0.75

Figure 3.9. Example 3. Snapshots at t = 0 (a), t = 0.495 (b),
t = 0.525 (c), t = 0.75 (d). Here we have simulated two fronts
passing through each other in parallel, and see no difficulties
with the resulting mesh. Note the way that the mesh
automatically aligns itself parallel to the front.

76 C. J. Budd, W. Huang and R. D. Russell

(a) t = 0 (b) t = 0.2

(c) t = 0.525 (d) t = 1.4

Figure 3.10. Example 4. Snapshots at t = 0 (a), t = 0.2 (b),
t = 0.525 (c), t = 1.4 (d). Here we have simulated two linear
travelling fronts passing through each other at an angle and
see no difficulties in generating and moving the mesh.

Adaptivity with moving grids 77

0.26 0.28 0.3 0.32 0.34 0.36
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Figure 3.11. Example 3. A close-up of the mesh close to
the front, showing the transition from a uniform mesh to
one compressed by a factor γ orthogonal to the front.

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Figure 3.12. Example 4. A close-up of
the region where the two fronts intersect.

78 C. J. Budd, W. Huang and R. D. Russell

Further examples in which we couple the PMA algorithm to generate
moving meshes for certain partial differential equations are presented in
Section 5.

3.4. Adaptive discretization of PDEs in higher spatial dimensions

We now extend the discussion earlier in this section, in which we looked
at coupling an MMPDE to a one-dimensional PDE, to consider the harder
problem of coupling a moving mesh method (derived either from a vari-
ational approach or from a Monge–Ampère-based approach) to a partial
differential equation in several spatial dimensions, which we assume has
the form

ut = f(t,x,u, ∇u, ∆u). (3.48)

Obviously, in this case the errors in using a non-uniform mesh are more
pronounced, and the additional convective terms introduced by the mov-
ing mesh are potentially destabilizing. A moving mesh method becomes
an adaptive method when it is coupled to a discretization of a partial dif-
ferential equation. There is no unique way to perform this coupling, and
it depends upon whether the PDE is discretized in the computational do-
main (typically with a finite difference method) or in the physical domain
(typically with a finite element or a finite volume method). The nature
of the coupling also depends upon whether or not the adaptive method is
going to be coupled to existing software (such as a standard CFD method).
The former usually involves some form of interpolation of the solution to
map it onto a mesh suitable for the existing solver to use. The coupling of
the mesh to the underlying PDE should also preserve important structures
of the PDE; in particular, any conservation laws or solution symmetries
should ideally be preserved in the coupled system. This can be done in
various ways: see Tang (2005), Huang (2007) for reviews of these. The
quasi-Lagrangian approaches (which avoid interpolation) allow directly for
mesh movement, and express the PDE in Lagrangian variables, generalizing
the expression (3.16):

u̇ = f(t,x,u, ∇xu, ∆xu) + ∇xu · ẋ, (3.49)

where u̇, ẋ denote derivatives with respect to time, with the computational
variable ξ fixed. The MMPDEs and (3.49) can then both be discretized
on the computational mesh and solved simultaneously. As described earlier,
this procedure is generally the method of choice when used in calculations
in one spatial dimension (Huang and Russell 1996). However, it is much
harder to use in higher dimensions as the coupled system can be very stiff
and the equations are very nonlinear. This method has the advantages
that there is no need to interpolate a solution from one mesh to the next
as the mesh evolves, and also that the mesh can inherit useful dynamical

Adaptivity with moving grids 79

properties of the solution such as scaling structures (Budd et al. 1996, Budd
and Williams 2006, Baines et al. 2006). Alternatively, the moving mesh
equations and (3.49) can be solved alternately (Huang 2007, Huang and
Russell 1999, Ceniceros and Hou 2001). This reduces the stiffness problems
but can lead to a lag in the mesh movement.

Alternatively, a rezoning method can be used (Tang 2005). In such meth-
ods, the MMPDEs are solved to advance the mesh by one time step. The
current solution u is then interpolated onto this new mesh in the physical
domain, and the original PDE (3.48) solved on the new mesh in this domain
(often using a finite element or finite volume method). The advantage of
this method is that standard software can be used to solve the PDE, but
at the expense of an interpolation step. We now describe these methods in
more detail.

3.4.1. Simultaneous solution in the computational domain
We first briefly detail the implementation of the simultaneous solution
method solving the MMPDEs and (3.49) by using finite differences in the
computational domain. To do this we associate each mesh point in the fixed
computational mesh with a solution point Ui,j(t). To discretize (3.49) we
transform the derivatives in the physical domain to ones in the computa-
tional domain. For example, in two dimensions, if we have general trans-
formation F with Jacobian J then the derivatives of u can be expressed in
terms of the computational variables in the following manner:

ux =
1
J

(
yηuξ − yξuη

)
, (3.50)

uy =
1
J

(−xηuξ + xξuη

)
,

uxx =
1
J

(
yη

(
J−1yηuξ

)
ξ
− yη

(
J−1yξuη

)
ξ
− yξ

(
J−1yηuξ

)
η

+ yξ

(
J−1yξuη

)
η

)
,

uyy =
1
J

(
xη

(
J−1xηuξ

)
ξ
− xη

(
J−1xξuη

)
ξ
− xξ

(
J−1xηuξ

)
η

+ xξ

(
J−1xξuη

)
η

)
.

As the computational domain has a uniform mesh, and the Jacobian J may
be determined directly from the mesh mapping F , it follows that (3.50) can
be discretized to high accuracy in space using a standard finite difference or
finite element discretization. The solution u is then determined by solving
(3.46) and (3.49) together using an appropriate ODE solver such as SDIRK
or a predictor–corrector method. Examples of the use of this method are
given in Section 5.

3.4.2. Alternating solution in the computational domain
The alternating solution method is often used in higher-dimensional calcula-
tions to alternatively solve the system and to move the mesh. This method

80 C. J. Budd, W. Huang and R. D. Russell

avoids the highly nonlinear coupling of the mesh and the physical solution
and preserves many structures such as ellipticity and sparsity in each of
the mesh and physical PDEs. This can lead to significant efficiency gains,
but at the disadvantage of a possible lag in the movement of the mesh and
possible mesh instabilities.

Suppose that the physical solution un, the mesh xn, and a solution time
step ∆tn are known at a time tn. The alternating solution procedure is
typically implemented as follows.

(1) The monitor function Mn(x) = M(tn,un,xn) is calculated using un

and xn.

(2) The MMPDE is discretized in space and then integrated over the time
[tn, tn + ∆tn] to give a new mesh xn+1 at the time tn + ∆tn]. The
underlying solution un is not changed during this calculation. This
calculation can be done by using the (fixed) monitor function Mn,
or by updating it during the integration by using linear interpolation
(Huang 2007).

(3) The physical PDE (3.49) is then discretized in (computational) space
and integrated using an SDIRK or similar method. In this calculation,
the convective terms involving xt use the approximation

ẋ =
xn+1 − xn

∆tn
.

The mesh used in the discretization is calculated by using linear inter-
polation so that

x(t) = xn + (t − tn)ẋ.

(4) It may be necessary to use the new solution un+1 to update the monitor
function Mn and to iterate from step (2) above in order to gain better
control of the grid. In this case repeat these steps until the new mesh
does not change.

(5) This procedure is then repeated from step (1) above.

Ceniceros and Hou (2001) use this method together with the MMPDE (3.34)
(without updating the monitor function between time steps) to solve prob-
lems involving vortex singularities in the Boussinesq equations.

3.4.3. Rezoning in the physical domain
There are various problems associated with solving the Lagrangian form of
the PDE (3.49) in the computational domain. A significant one of these
is that certain properties of the original PDE may be lost when it is put
into the Lagrangian form and coupled to a moving mesh equation. Two
examples of this occurring are the loss of a conservation form of the equation

Adaptivity with moving grids 81

(for example when adaptive methods are used to solve the Euler equations)
or the loss of a Hamiltonian structure when solving problems such as the
KdV or the NLS equations. These problems can be avoided by completely
decoupling the solution of the PDE and the moving mesh equations over
each time step, so that when solving the PDE the mesh is regarded as being
static. The PDE can then be solved over that time step using a method
(for example the finite volume method for problems with a conservation
law) that preserves the significant features of the solution. The rezoning
method can be briefly described as follows.

(1) At time step tn let the solution be un and the mesh xn. Calculate the
corresponding monitor function Mn.

(2) Using this monitor function, solve the moving mesh PDE over the time
interval [tn, tn + ∆tn] to give a new mesh xn+1.

(3) Interpolate the solution un onto the new mesh xn+1, to give an inter-
polated solution ûn.

(4) If necessary, repeat steps (2) and (3), updating M until the new mesh
does not change.

(5) Starting from ûn solve the original PDE (3.48). Typically, in the phys-
ical domain using high-resolution standard software such as the finite
volume method) over the time interval [tn, tn + ∆tn], doing all the
calculations on the new mesh xn+1.

(6) Repeat this from step (1).

This method is of course closely related to the quasi-Lagrangian approach.
To see this in a one-dimensional example, suppose that the mesh velocity
is ẋ and the underlying solution is u with Un

i ≈ u(Xn
i , tn); then in step (3)

we have

Ûn
i ≈ u(Xn+1

i , tn) = u(Xn
i + δtnẋ) ≈ Un

i + ∆tnuxẋ.

Thus, if we use a simple forward Euler method to approximate the solution
of (3.48) we obtain

Un+1
i = Ûn

i + ∆tnfi = Un
i + ∆tnuxẋ + ∆tnfi = Un

i + δtn
(
fi + uxẋ

)
,

which is of course the result of applying the forward Euler method to the
Lagrangian form of the PDE given by (3.49).

The key to the success of this approach is the interpolation step (3),
and an interpolation scheme that preserves some quantities of the solution
is often necessary. We summarize some rezoning methods based on this
approach for solving conservation laws in one and two dimensions, using
the finite volume method, which are described in Tang (2005) and Tang
and Tang (2003).

82 C. J. Budd, W. Huang and R. D. Russell

A one-dimensional calculation. Suppose that the ith new grid point at time
tn+1 is Xn+1

i . In a finite volume method the key quantities are the cell
averages given by

Uj+1/2 =
1

Xj+1 − Xj

∫ Xj+1

Xj

u dx, Xj+1/2 =
1
2
(Xj + Xj+1).

If these are known on the mesh xn then they can be interpolated onto
the new mesh xn+1. Suppose that the new mesh points satisfy Xn+1

j+1/2 ∈
[Xn

k−1/2, X
n
k+1/2]; then, naively, this can be done via the formula

Ûn
j+1/2 = Un

k+1/2 +
Un

k+1/2 − Un
k−1/2

Xn
k+1/2 − Xn

k−1/2

(Xn+1
j+1/2 − Xn+1

k+1/2).

Unfortunately, this simple linear interpolation does not conserve discrete
solution mass, in the sense that∑

Ûn
j+1/2

(
Xn+1

j+1 − Xn+1
j

) �=
∑

Un
j+1/2

(
Xn

j+1 − Xn
j

)
,

and consequently leads to unsatisfactory results (Tang and Tang 2003) when
used to solve hyperbolic conservation laws. An improved method in Tang
and Tang (2003) mimics in part the discussion above for the relation be-
tween the quasi-Lagrangian method and the rezoning method. Suppose
that xn+1 = xn + δt ẋ; then it follows from an application of the Reynolds
transport theorem that, to leading order,

(Xn+1
j+1 − Xn+1

j)Ûn
j+1/2 ≈

∫ Xn+1
j+1

Xn+1
j

ûn dx

≈ (Xn
j+1 − Xn

j)Un
j+1/2 + ∆t((ẋUn)j+1 − (ẋUn)j).

This prompts the use of the conservative (to leading order) interpolation
formula given by

(Xn+1
j+1 − Xn+1

j)Ûn
j+1/2 = (Xn

j+1 − Xn
j)un

j+1/2 + ∆t((ẋUn)j+1 − (ẋUn)j),
(3.51)

which automatically conserves discrete mass. Tang and Tang (2003) use
this method with success to solve conservation laws of the form

ut + f(u)x = 0

with the PDE being integrated using a MUSCL method (LeVeque 1990)
and using the MMPDE (3.9) to advance the mesh.

Two-dimensional calculations. In two dimensions, Tang and Tang (2003)
use the moving mesh method described in Ceniceros and Hou (2001) to ad-
vance the mesh (X, Y) from time tn to time tn+1 using the MMPDE (3.34).

Adaptivity with moving grids 83

In this calculation we suppose that

(xn+1, yn+1) = (xn, yn) + ∆t(ẋ, ẏ).

Cell averages at time tn over a (time-evolving mesh cell) of area An
j+1/2,k+1/2

are now given by Un
j+1/2,k+1/2, etc., and the normal mesh speed relative to

the surfaces of the mesh cell is given by

v = ẋnx + ẏny, where the unit normal is given by (nx, ny).

The conservative interpolation scheme proposed is

An+1
j+1/2,k+1/2Û

n
j+1/2,k+1/2 = An

j+1/2,k+1/2U
n
j+1/2,k+1/2 (3.52)

+ ∆t
([

(vUn)j+1,k+1/2 + (vUn)j,k+1/2

]
+

[
(vUn)j+1/2,k+1 + (vUn)j+1/2,k

])
.

This scheme preserves discrete mass to leading order. Again a MUSCL
method can be used to advance the solution of the PDE. This method is
then used to solve the double-Mach reflection problem and various other
problems with contact discontinuities arising in the solution of the Euler
equations.

4. Velocity-based moving mesh methods

In this section we will look in some more detail at velocity-based methods
for moving meshes. These are also called Lagrangian methods, and they
rely on calculating the mesh point velocities and from this the mesh point
locations. In some ways these methods are very natural, since in (say) fluid
mechanics calculations, natural solution features are often convected with
the flow, and it is natural to evolve the mesh points to follow the flow itself.
(Note the huge popularity of the semi-Lagrangian and the characteristic
Galerkin methods.) However, velocity-based methods can easily have se-
vere implementation problems, and overcoming them remains a challenging
issue. These include significant mesh tangling, with associated skewness,
and also a tendency to create meshes which lag behind the solution. In-
deed, it is very possible for such meshes to have unstable movement, to
move well away from equidistributed solutions and to lead to permanently
distorted skewed and even frozen meshes, even after the significant solution
structures have long gone. Some examples of this type of behaviour will
be presented in our discussion of the GCL method. For these reasons the
overall performance of these methods is, in general, not as good as that
of the position-based methods described in the last section, and hence we
will spend less time discussing them. We now describe three velocity-based
methods: the moving finite element method (MFE), the geometric conser-
vation law method (GCL), and the deformation map method.

84 C. J. Budd, W. Huang and R. D. Russell

4.1. Moving mesh finite element methods

The moving finite element method was originally developed by Miller and
Miller (1981) and Miller (1981), and represents a very important class of
velocity-based moving mesh methods, with much underlying theory and
many applications. See, for example, Adjerid and Flaherty (1986), Baines
et al. (2005), Beckett et al. (2001a), Cao, Huang and Russell (1999a), Carl-
son and Miller (1998a, 1998b), Di et al. (2005), Lang et al. (2003), Li et al.
(2002) and Wathen and Baines (1985). A very complete survey of these and
related methods is given in Baines (1994) and we will only describe them
briefly here. The MFE method determines a mesh velocity ẋ = v through
a variational principle coupled to the solution of a PDE by using a finite
element method. Specifically, we consider the time-dependent PDE

∂u

∂t
= Lu, (4.1)

with L a spatial differential operator. The continuous version of the MFE
determines the solution and the mesh together by minimizing the residual
given by

min
v, Du

Dt

I

[
v,

Du

Dt

]
≡

∫
ΩP

(
Du

Dt
− ∇u · v − Lu

)2

W dx. (4.2)

Here the function W is a weight function for which

W = 1

in the usual version of MFE described in Miller and Miller (1981) and Miller
(1981); alternatively, we can take

W =
1

1 + |∇u|2 ,

for the weighted form of MFE described in Carlson and Miller (1998a,
1998b). Observe that MFE is naturally trying to advect the mesh along
with the solution flow. Of course, in practice this equation is discretized
using a Galerkin method.

This method is elegant, and when tuned correctly works well (Baines
1994). However, it does have significant disadvantages. One of these is that
the functional derivative of I with respect to v can become singular, and
regularization is needed in practice.

4.2. Geometric conservation law (GCL) methods

The geometric conservation law (GCL) methods are based upon a direct dif-
ferentiation of the equidistribution equation with respect to time, to derive
an equation for the mesh velocity. In its simplest form the method assumes
that the monitor function M is normalized so that the integral of M over

Adaptivity with moving grids 85

ΩP is constant (typically unity). If A is an arbitrary measurable set in ΩC

it follows that
I =

∫
A

dξ =
∫

B
M dx,

where B = F (A). Now, even if A is fixed, then, as the mesh is moving the
set B will typically change with time, with the points on the boundary of B
moving with velocity v. An application of the Reynolds transport theorem
implies that

d
dt

∫
B

M dx =
∫

B
Mt dx +

∫
∂B

Mv · dS =
∫

B
(Mt + ∇ · (Mv)) dx.

However, as A is fixed, it follows that dI/dt = 0. Furthermore, the set A
is arbitrary. It follows that M and hence v must satisfy the (geometric)
conservation law

Mt + ∇ · (Mv) = 0. (4.3)

If M is known, then (4.3) gives an equation for the (mesh) velocity v.
This equation must be augmented with the boundary condition

v · n on ∂ΩP . (4.4)

The equations (4.3) and (4.4) have a unique solution in one dimension but
many solutions in higher dimensions. To determine v uniquely, additional
conditions must be imposed. In the derivation of the optimal transport
methods we saw the use of an additional condition on the curl of the so-
lution in the computational space. In the various forms of the geometric
conservation law (GCL) methods the curl of the velocity is imposed in the
physical space. In particular, for a suitable weight function w and a back-
ground velocity field u, the condition

∇ × w(v − u) (4.5)

is imposed, so that for an appropriate potential function φ we have

v = u +
1
w

∇φ.

Here φ is unknown, and we presume that u is specified in advance. Substi-
tuting into the conservation law, it then follows that φ satisfies the elliptic
partial differential equation

∇ ·
(

M

w
∇φ

)
= −Mt − ∇ · (Mu), (4.6)

with the boundary condition on ∂ΩP given by

∂φ

∂n
= −wu · n.

This equation is a scalar linear equation for φ when posed (and solved) in

86 C. J. Budd, W. Huang and R. D. Russell

the computational space. Unlike the MFE methods, this partial differential
equation is well-defined for all time. In a similar manner to the optimal
mesh methods, we need only solve a scalar equation; however, unlike the
optimal mesh methods this equation is linear in the physical coordinates.
Observe, further, that unlike certain of the MMPDE-based and variational-
based methods described in Section 3, this system automatically deals with
the mesh location on the boundaries. Having determined φ from this equa-
tion, the mesh velocity v can be determined directly, and the mesh then
found from integrating the equation xt = v with respect to time using, for
example, an SDIRK method. This time integration to give x has the disad-
vantage of possibly introducing mesh tangling, and of mesh points moving
out of the domain during the course of the integration, if an appropriately
coarse discretization is used. This method is described in Cao et al. (2002)

An alternative formulation, also described in Cao et al. (2002), considers
a variational formulation, where it is shown that the solution of (4.3) is also
the minimizer of the functional

I[v] =
1
2

∫
ΩP

(
|∇ · (Mv) + Mt|2 +

(
M

w

)2

|∇ × w(v − u)|2
)

dx. (4.7)

This equation can be discretized using a finite element method with basis
functions defined over the mesh in the physical space, and v found using
a simple Galerkin method. The mesh points can then also be found from
v through a Galerkin calculation. Details of these calculations are given in
Baines et al. (2005, 2006), where the GCL method is coupled to an ALE (ar-
bitrary Lagrangian–Eulerian) method for discretizing the underlying PDE.

In the usual implementation of the GCL method the weight function

w = 1

is taken. This gives an irrotational mesh (in the physical coordinates) when
the background velocity u = 0. In many implementations of GCL, u = 0.
However, for certain applications, such as in computational fluid dynamics,
the background velocity can be taken to be the flow velocity.

The appeal of the GCL methods is that to find φ (and hence v) we need
only solve a scalar linear elliptic partial differential equation. This seems
to have the advantage over the optimal transport methods, which require
the solution of a nonlinear equation. However, like other velocity-based
methods it has the potential disadvantages of having problems with mesh
tangling and mesh skewness as the mesh points follow the moving features
in a monitor function. Furthermore, we require the solution of the mesh
equations in the physical domain rather than the computational domain.
This loses some of the speed advantages gained (by, for example, the use of
spectral methods) when solving the mesh equations on a very uniform mesh
in the computational domain.

Adaptivity with moving grids 87

We now consider two examples taken from Cao et al. (2002) of the appli-
cation of the GCL method, which allow direct comparison with the optimal-
transport-based methods described in Section 3.

Example 1. This first example looks at the mesh generated by a monitor
function which concentrates points around a moving disc. This is considered
to be a difficult test problem for a moving mesh method. We have

M1(x, y, t) =
d(x, y, t)∫

ΩP
d(x̃, ỹ, t) dx̃ dỹ

,

where

d(x, y, t) = 1 + 5 exp
(
−50

∣∣∣∣
(

x − 1
2
− 1

4
cos(2πt)

)2

+
(

y − 1
2
− 1

4
sin(2πt)

)2

− 0.01
∣∣∣∣
)

.

Results are shown in Figure 4.1.

If we compare the calculated mesh to that of the identical Example 1 in
the application of the PMA method in Section 3 (see p. 71), we see that
the GCL method has not performed as well in this case. In particular, we
see some significant effects of mesh distortion, and of mesh points lagging
behind, with the Lagrangian-based method leading to mesh skewness and
eventually to tangling and singular behaviour. This is in contrast to the
much more regular mesh generated by the position-based PMA method.

Example 2. In this second example we consider a monitor function which
concentrates mesh points around an oscillating front:

M1(x, y, t) =
d(x, y, t)∫

ΩP
d(x̃, ỹ, t) dx̃ dỹ

,

where

d(x, y, t) = 1 + 5 exp
(
−50

∣∣∣∣y − 1
2
− 1

4
sin(2πx) sin(2πt)

∣∣∣∣
)

.

The results of using the GCL method in this case are shown in Figure 4.2.

We can compare this mesh to that generated in Example 2 of the applica-
tion of the PMA method (see p. 73). We can see that the GCL method has
successfully followed the moving sine wave, but unlike the mesh generated
by the PMA method, there is a small degree of instability, manifested by
some oscillations of the mesh visible when t = 1 which are not present in
the mesh when t = 0.

88 C. J. Budd, W. Huang and R. D. Russell

(a) t = 0 (b) t = 0.5

(c) t = 0.75 (d) t = 1

Figure 4.1. Example 1. Moving meshes at time t = 0 (a),
t = 0.5 (b), t = 0.75 (c), t = 1 (d).

Adaptivity with moving grids 89

(a) t = 0 (b) t = 0.25

(c) t = 0.75 (d) t = 1

Figure 4.2. Example 2. Moving meshes generated by the GCL
method at times t = 0 (a), t = 0.25 (b), t = 0.75 (c), t = 0 (d).

90 C. J. Budd, W. Huang and R. D. Russell

4.3. The deformation map method

Deformation map methods take a strongly differential geometric approach
to moving mesh generation. Liao and his co-workers (Liao and Anderson
1992, Semper and Liao 1995, Liao and Xue 2006) have proposed a moving
mesh method based on deformation maps. Such maps were introduced by
Moser (1965) and Dacorogna and Moser (1990) in their study of volume
elements of a compact Riemannian manifold, to prove the existence of a
C1 diffeomorphism with specified Jacobian. In this method, the mapping
x = F (ξ, t) : ΩC → ΩP is determined from the system of equations

xt =
1

M(x, t)
∇φ(x, t) in ΩP ,

∆φ = −∂M

∂t
in ΩP , (4.8)

∂φ

∂n
= 0 on ∂ΩP .

It is easy to see that (4.8) corresponds to the system (4.6), the GCL method
formulation which involves the potential function φ in the case where u = 0
and w = M .

Dacorogna and Moser also use the alternative formulation in Bochev, Liao
and Pena (1996), given by

xt =
ν(x, t)
M(x, t)

in ΩP ,

∇ · ν = −∂M

∂t
in ΩP , (4.9)

∇ × ν = 0 on ∂ΩP .

Note that letting ν = Mv, this becomes the div-curl system (4.3) and (4.5)
with u = 0 and w = M .

The equation for xt in both cases is nonlinear, and for simplicity explicit
time integration schemes are used by Liao and his co-workers. For (4.8),
the solution of the potential equation for φ is straightforward. However, an
implicit integration of (4.8) requires interpolation of the potential function
φ for values at points other than grid nodes, and the flux-free boundary
condition cannot generally be preserved. For (4.9), the div-curl system is
solved using a least-squares approach.

4.4. Some other velocity-based methods

The natural idea of moving mesh points, so that the velocity of the points
reflects the underlying dynamics of the solution, has led to many other
velocity-based methods besides those described above. In the velocity-
based methods of Anderson and Rai (1983), the mesh is moved according to

Adaptivity with moving grids 91

attractive and repulsive pseudo-forces between nodes, motivated by a spring
model in mechanics. Petzold (1987) obtains an equation for mesh velocity by
minimizing the time variation of both the unknown variable and the spatial
coordinate in computational coordinates and adding a diffusion-like term to
the mesh equation. The method of Hyman and Larrouturou (1986, 1989)
also simulates attraction and repulsion pseudo-forces.

In contrast, Dorodnitsyn (1991, 1993a, 1993b) and his co-workers (Doro-
dnitsyn and Kozlov 1997, Kozlov 2000) have derived a series of velocity-
based methods in which the underlying symmetries of the PDE to be solved
are used to guide the movement of the grid points. Such methods have
the potential to preserve all of the symmetric invariants of the underlying
PDE in the discretized system, and indeed precisely these invariants are
used in the calculation of the mesh points. They are closely related to the
(position-based) scale-invariant methods described in the next section. Such
methods can also lead to conservation laws derived from a discrete version
of Noether’s theorem. They have been applied in Dorodnitsyn and Kozlov
(1997) to solve a variety of nonlinear diffusion equations, and in Budd and
Dorodnitsyn (2001) to integrate the nonlinear Schrödinger equation. The
main disadvantage of these methods is that they tend to be highly nonlinear,
and the equations for the mesh points hard to solve. More details of the
implementation and application of these methods are given in Budd and
Piggott (2005).

5. Applications of moving mesh methods

In this final section we look at some applications of moving mesh methods to
a variety of problems related to the solution of partial differential equations.
As described in Section 1, there are a vast number of problems for which
moving mesh methods have been used with great success, and we cannot
hope to summarize all of them in this section. For example, one of the
most important applications arises in fluid mechanics, and reviews of these,
comparing many different methods and problems, are given in Baines (1994),
Eisman (1985), Tang (2005), Tang and Tang (2003) and Yanenko et al.
(1976).

Instead, we look in this section at some specific problems and classes of
problems which aim to highlight some of the special advantages and disad-
vantages of the moving mesh method for solving partial differential equa-
tions. In particular we look at problems where moving meshes can exploit
natural solution scaling structures (including self-similarity); blow-up prob-
lems in which solution singularities arise in finite time; and problems such as
Burgers’ equation, where moving meshes are used to capture the motion of
moving fronts, and two physical problems, one in combustion and the other
in meteorology. Two primary goals are to describe analytical techniques for

92 C. J. Budd, W. Huang and R. D. Russell

solving nonlinear PDEs which can often be naturally modified for moving
mesh algorithms, in such a way that the discrete solutions share common
properties with the (unknown) analytical solutions; and to show that the
sharing of the common structures leads to efficient adaptive methods.

5.1. Symmetry, self-similar solutions and scale invariance

Many naturally occurring physical systems have an invariance under sym-
metries including translations, rotations and changes of scale, and this is
reflected in the partial differential equations that describe them. The so-
lutions of these equations may then either be themselves invariant under
(combinations of) these symmetries, the self-similar solutions, or they can
be transformed into other solutions through the application of symmetry
operators. Conservation laws can be linked through Noether’s theorem
(Olver 1986, Dorodnitsyn 1993b) to many of the continuous symmetries.

An example of such a system is Burgers’ equation,

ut + u · ∇u = ν∆u,

which is invariant under rotations in space and translations in both space
and time. It admits travelling-wave solutions which are self-similar solutions
coupling spatial and temporal translation, with the wave speed giving the
coupling. The waves can be at any orientation, and the action of a rotation
is to map one wave to another. In other systems a rescaling of space, time
and of the solution leaves the partial differential equations governing the
system invariant. Such changes of scale were first observed by Kepler in
his studies of the solar system and summarized in his famous third law , in
which he observed that if a planetary orbit existed with a solution (in polar
coordinates) given by (r(t), θ(t)) then there was also a solution of the form(
(λ3r(λ2t)),O(λ2t)

)
for any positive value of λ. Such scaling invariance also

arises in the equations of fluid and gas dynamics, nonlinear optics and many
biological systems. An excellent summary of scale-invariant systems with
such properties is given in the book by Barenblatt (1996).

We can then ask the question of whether a numerical method can be
constructed which is also invariant under symmetries. More generally, an
adaptive method can be designed to exploit the symmetries in the problem.
In a sense, the answer to this question is obvious as we can always perform
an a priori scaling of the problem and then use a method in the scaled
coordinates. However, this assumes more knowledge of the physical system
than we may easily have available to us. Indeed, for some systems there
are a number of different possible changes of scale, and it is not a priori
obvious which one correctly describes the system evolution.

We now show how several of the moving mesh strategies described earlier,
particularly those based on moving mesh partial differential equations, can
be very effectively applied to such problems with symmetry. Such methods

Adaptivity with moving grids 93

have several important properties. If carefully designed they can admit dis-
crete self-similar solution, they can have (local truncation) errors which are
invariant under changes in the scale of the problem, they can have discrete
conservation laws, and they can cope with symmetric singular structures.
Such problems have been studied by a number of authors: Budd et al.
(1996), Baines et al. (2006), Budd and Piggott (2005), Ceniceros and Hou
(2001), Dorodnitsyn (1991, 1993b) and Kozlov (2000).

The underlying problem that we will consider is the partial differential
equation

ut = f(u, ∇u, ∆u, . . .). (5.1)

Observe that this equation is invariant under translations in space and time
and also rotations in space. We also assume it to be invariant under the
action of the scaling symmetry (or symmetries)

t → λ, x → λαx, u → λβu. (5.2)

The objective is now to derive an adaptive method which reflects the un-
derlying symmetries. This can be achieved if, away from any finite bound-
aries, the equations describing the mesh (regardless of whether these are
position- or velocity-based) are invariant under the action of the same sym-
metry operations as the underlying PDE , so that translations in space and
time rotations and scalings of the form (5.1) leave the mesh equations invari-
ant. This is in many ways a very natural question to ask of an r-adaptive
method, for which the mesh may be regarded as a dynamic object, amenable
to the action of symmetries involving space and time. It is much harder to
see how h- and p-type methods can be considered in this manner.

As an example of such a problem (see also Baines et al. (2006) for the use
of an adaptive ALE method in higher dimensions, and Dorodnitsyn (1993a)
and Dorodnitsyn and Kozlov (1997) for a more abstract treatment), we
consider the one-dimensional porous medium equation given by

ut = (um)xx, (5.3)

where we consider this equation posed on the whole real line, with mild
decay conditions on the solution u at ∞. This partial differential equation
is invariant under two different, and independent, changes of scale, one of
space and the other of the solution. These are given by

t → λt, x → λ1/2x

and

t → µt, u → µ1/(m−1)u.

Any (linear) combination of these two changes of scale will also leave the
equation (5.3) invariant.

94 C. J. Budd, W. Huang and R. D. Russell

Whilst the PDE may be invariant under the action of a symmetry group,
not all of the solutions have this property, although any one solution can
be mapped into another by the action of the symmetry operator. Those
solutions which are themselves invariant under the action of the symme-
try operator are termed the self-similar solutions. A self-similar solution
satisfies the functional equation

u(λt, λαx) = λβu(t,x). (5.4)

Such a solution can be described in terms of a new set of coordinates,
typically of the form

u(t,x) = tβv(z), z = x/tβ . (5.5)

In the case of the porous medium equation, the self-similar solution with
constant mass takes the form

u(t, x) = t−1/3v(x/t1/3).

The function v(z) generally satisfies an ordinary differential equation, which
is much simpler than the original PDE. The solutions of this ODE which
correspond to solutions of the PDE are generally those with certain decay or
boundedness conditions as |z| → ∞. This allows the construction of exact
solutions to PDEs in many cases. In the example of the porous medium
equation we have the famous Barenblatt–Pattle solution (Barenblatt 1996),
given by

u(x, t) = t−1/3(a − x2/t2/3)+,

where a is a constant. Significantly such solutions are globally attracting (in
the sense of L1-convergence. An extensive description of such problems is
given in Barenblatt (1996) and Olver (1986).

More generally, solutions of PDEs with symmetries may also take the
form

u(t,x) = U(t)v(z), where z = x/L(t). (5.6)

Here U(t) and L(t) are appropriate solution and length scales. In the case
of self-similar solutions these are pure powers of t (or a translation of t) but
they can take more general forms. For example, in the case of the blow-up
equation,

ut = uxx + u3,

with u → ∞ as t → T , we have

U(t) = (T − t)−1/2 and L(t) = (T − t)1/2| log(T − t)|.
Such solutions are called approximately self-similar solutions (Samarskii,
Galaktionov, Kurdyumov and Mikhailov 1973). Examples of this type of

Adaptivity with moving grids 95

behaviour also arise in the nonlinear Schrödinger equation in dimension two,
and in the chemotaxis equations of mathematical biology.

The self-similar (and approximately self-similar) solutions of PDEs can
play an important role in the description of the solution (beyond the fact
that they lead to exact solutions). This is because they often describe very
well the intermediate asymptotics of the solution, which is the behaviour of
the solution after the transient effects of any initial conditions and before
boundary terms become important. They are also often effective in describ-
ing certain singular types of behaviour such as the peaks in the blow-up
and related problems, and also the interfaces in various problems in gas
dynamics (Barenblatt 1996). It is therefore useful to have numerical meth-
ods which can accurately reproduce self-similar behaviour when it arises
in applications. One method that has been used is to make an a priori
choice of (self-similar) variables, so that the PDE can be reduced to an
ODE and to then solve this ODE numerically. This method, however, has
a number of disadvantages. Firstly, it cannot deal with general initial and
boundary conditions satisfied by the PDE. Secondly, there may often be
several symmetry groups acting on a partial differential equation and it
may often not be at all clear which (if any) leads to a self-similar solution.
Indeed, there are many problems (for example the heat equation posed on
a finite interval with an initially highly localized solution) which may have
one form of self-similar behaviour for part of the evolution and another over
longer times (for example when the solution of the heat equation interacts
with the boundary). Problems of this form (called type II self-similar solu-
tions in Barenblatt (1996)) are extremely hard to analyse in advance of any
PDE calculation.

An alternative approach, which makes considerable use of the r-adaptive
methods, is to use a numerical method which admits the same scaling in-
variances as the original PDE away from any boundaries. Such methods
are called scale-invariant (Budd and Piggott 2005, Baines et al. 2006) as
they perform identically under the scaling transformations.

The key to the design and implementation of such methods lies in the use
of the moving mesh partial differential equations to describe the location of
the mesh points. By an appropriate choice of monitor function it is often
possible to construct such MMPDEs to be invariant under the action of the
scaling transformations. The advantages of such methods are as follows.

• They usually have discrete self-similar solutions which inherit many of
the properties of the underlying self-similar solutions.

• If designed carefully they may work for several types of scaling sym-
metry and thus can be used in the case of type II self-similarity when
the exact scaling group is not known in advance.

96 C. J. Budd, W. Huang and R. D. Russell

• They can be applied to problems with arbitrary initial and boundary
conditions

• They can have relative truncation errors which are independent of the
scale of the solution (Budd, Leimkuhler and Piggott 2001, Baines et al.
2006)

We give a partial proof of these results presently. A further, but less general,
advantage of such methods is that they also often preserve the asymptotic
properties of the (approximately) self-similar solutions. This is seen both
in the global convergence towards the self-similar solutions of the porous
medium equation, and the local convergence towards the singular profile
described by the approximately self-similar solution of the blow-up equation.

We start this calculation by looking at a moving mesh method in one
dimension for which the moving mesh PDE is given by MMPDE1 and for
which the monitor function is a function of u and ux, so that

(M(u, ux)xξ)ξ = 0.

If this is to be invariant under the action of the scaling symmetry t →
λt, x → λβx, u → λγu, we require that

(M(λγu, λγ−βux)λβxξ)ξ = 0.

This is satisfied (for all β) provided that the monitor function satisfies the
functional equation

M(λγu, λγ−βux) = λθM(u, ux), (5.7)

where θ is arbitrary. Many monitor functions do not satisfy this functional
equation, for example the simple arclength monitor M =

√
1 + u2

x (although
it approximately satisfies it when |ux| is large). However, it is certainly
possible to find functions that do, and a simple example is given by

M(u, ux) = uδ

for some choice of δ. Observe that this monitor function is invariant under
a very arbitrary set of scaling symmetries and using it poses no explicit
a priori scaling on the solution. It is thus very useful when considering
self-similar solutions of type II.

As an example we consider the porous medium equation in the form

ut = (uux)x |u| → 0 as |x| → ∞. (5.8)

It is easy to see that the first integral of this solution is constant, and we
may scale the solution so that, for all t, we have∫ ∞

−∞
u dx = 1.

Adaptivity with moving grids 97

It is then natural to choose M = u so that the monitor function has unit
integral over the physical domain. It follows immediately that

Mxξ = 1. (5.9)

Furthermore, from the geometric conservation law given by

Mt + (Mẋ)x = 0,

we have
ut + (uẋ)x = 0.

Substituting for ut and integrating gives

u(ux + ẋ) = 0,

so that the Lagrangian equation for the mesh points is given by

ẋ = −ux. (5.10)

This equation is used in Dorodnitsyn (1993a) and Dorodnitsyn and Kozlov
(1997) as the equation of motion of all of the mesh points. Note that this is
also the equation for the movement of the leading edge of the front of those
solutions of the porous medium equation which have compact support. The
same monitor function is used in Baines et al. (2006) to compute solutions
of the porous medium equation using the scale-invariant ALE method.

In the usual manner, either of the equations (5.9) and (5.10) can be
discretized and solved simultaneously with the porous medium equation
(5.8) (see Budd, Collins, Huang and Russell (1999b) for more details), so
that the discrete solution and mesh points are given by

Ui ≈ u(Xi, t), Xi = x(i∆ξ).

A similar procedure can also be used with a variational formulation in higher
dimensions (Baines et al. 2006)

It is immediate (see Budd et al. (1999b)) that any such discretization
admits a discrete self-similar solution of the form

Ui = t−1/3Vi, Xi = t1/3Zi. (5.11)

It can also be shown (Budd and Piggott 2005) that such self-similar solu-
tions are not only locally stable, but are also global attractors, so that they
correctly organize the qualitative long-term dynamics of the solution and
even obey a discrete maximum principle.

5.1.1. Construction of scale-invariant MMPDEs
The porous medium equation has relatively benign dynamics, which allows
us to use a relatively simple moving mesh equation to evolve the mesh. In
the case of systems with more extreme forms of dynamics, such as that

98 C. J. Budd, W. Huang and R. D. Russell

arising in shocks or localized singularities, it is usually necessary to use a
more sophisticated moving mesh equation to avoid mesh instabilities.

In one dimension two possible equations for the mesh are the moving
mesh PDEs MMPDE5 and MMPDE6, given by

εxt = (Mxξ)ξ, −εxξξt = (Mxξ)ξ. (5.12)

Suppose that these are used to solve a system which has intrinsic solution,
length and time scales given respectively by U , L and T and a derived scale Λ
for the monitor function M . As the computational variable ξ is independent
of scale, the left-hand side of each of these two MMPDEs scales as L/T and
the right-hand side as ΛL. These two balance (so that the mesh evolves at
the same rate as the underlying solution) provided that

1
T

= Λ. (5.13)

Observe that this condition is independent of the spatial length scale L. The
implication of this is that if the monitor function M(u, x) depends upon u
and x, then this satisfies (5.13) provided that

M(Uu, Lx) =
1
T

M(u, x). (5.14)

This is a more severe condition than the condition (5.14) for MMPDE1,
but is necessary to ensure that the mesh calculation does not destabilize the
calculation of the solution of the PDE. It has the useful property that it often
gives a precise characterization of the necessary form of the monitor function
appropriate to one scaling transformation. A disadvantage of this approach
is, however, that it may not always (or indeed generally) be possible to
capture all possible scaling transformations in a single monitor function
satisfying (5.14). Thus some a priori knowledge of the expected solution
behaviour might be necessary in this case.

As an example we will consider the radially symmetric solutions of the
cubic nonlinear Schrödinger equation. This equation has the form

iut + urr +
n − 1

r
ur + u|u|2 = 0, (5.15)

where r = |x| and n is the spatial dimension. If n ≥ 2 this can have solutions
which develop singularities (in amplitude and phase) in a finite time. The
equation (5.15) is invariant under the action of the scaling group

t → λt, r → λ1/2r u → λ−1/2u,

as well as the unitary multiplicative group

t → t, r → r, u → eiφu, φ ∈ R.

This system develops singularities in a finite time T with a natural time

Adaptivity with moving grids 99

scale of (T − t), a length scale of L = (T − t)1/2, and a solution scale of
U = (T − t)−1/2. For the moving mesh PDE based on a simple monitor
function of the form M(u) to be invariant under the action of the unitary
multiplicative group, we require that

M(u) = M(|u|).
The condition (5.14) then implies that

M((T − t)−1/2u) =
1

(T − t)
M(u).

Both conditions are satisfied if

M(u) = |u|2. (5.16)

Calculations using a regularized form of this monitor function are described
in Section 5.1.2.

Scale-invariant moving mesh methods for a general class of scale-invariant
PDEs can also be constructed in higher dimensions, say x ∈ R

n. We con-
sider two cases, firstly the method of Ceniceros and Hou (2001), and then the
optimal transport method. The first of these describes a two-dimensional
moving mesh generated by the PDE system

xt = ∇ξ.(M∇ξx), yt = ∇ξ.(M∇ξy).

This system scales in an identical manner to both MMPDE5 and MMPDE6,
and consequently is scale-invariant provided that the monitor function M
satisfies the condition (5.14). In the case of optimal transport in an n-
dimensional system, the PMA equation gives a mesh from ∇ξQ, where Q
satisfies the PDE

(I − γ∆)Qt = (M(u)H(Q))1/n. (5.17)

Now, if the underlying problem has the natural scaling symmetry x → λx,
then this is equivalent to the scaling symmetry Q → LQ. It is immediate
that

H(LQ) = LnH(Q).

It then follows immediately that (5.17) is invariant under the action of the
scaling symmetries provided that the monitor function satisfies the func-
tional equation

M(Uu, Lx)1/n =
1
T

M(u,x). (5.18)

We note that, in two dimensions, the scaling structure of the function Q
also implies that the mesh skewness s, as defined in Section 3 by the relation

s =
∆(Q)2

H(Q)
− 2,

100 C. J. Budd, W. Huang and R. D. Russell

is invariant under the scale change Q → LQ. This implies that, if the
mesh is generated by a scale-invariant PMA-type method, then any mesh
regularity is preserved under scaling.

5.1.2. Discrete self-similar and approximately self-similar solutions
As mentioned above, a significant benefit of using a scale-invariant adaptive
scheme is that it admits discrete self-similar solutions. One reason for this
is the almost trivial, yet very important, observation that:

The actions of discretization and of rescaling commute,

where here a discretization can be any of a finite difference, collocation,
finite element or a finite volume method. (This means that a discretization
of a rescaled solution will be identical to a rescaling of a discrete solution.)
More formally, if the PDE is invariant under the action of the scaling group

t → λt, x → λβx, u → λαu,

then a continuous self-similar solution takes the form

u(x, t) = tαv(y) y = x/tβ. (5.19)

In terms of the computational variables, this becomes

u(x(ξ, t)) = tαv(ξ), x(ξ, t) = tβy(ξ),

for appropriate functions v and y. This leads immediately to a discrete
self-similar solution of the form

Ui(t) = tαVi, Xi(t) = tβYi, (5.20)

For convenience we now study this discrete self-similar solution in the con-
text of a prototypical example, a one-dimensional system governed by a
semilinear second-order PDE of the form

ut = uxx + f(u), or in Lagrangian form ut = uxx + f(u) + ẋux.

This PDE is invariant under the action of the scaling group

t → λt, x → λ1/2x, u → λαu

(so that β = 1/2), provided that the function f(u) satisfies the functional
equation

f(λαu) = λα−1f(u).

Substituting the expression for the self-similar solution (5.19), and setting
β = 1/2, we see that the function v(y) must satisfy the ordinary differential
equation

αv − y

2
vy = vyy + f(v), so that αv = vyy + f(v) +

y

2
vy. (5.21)

Adaptivity with moving grids 101

Now consider a simple centred finite difference discretization of the La-
grangian form of the underlying PDE, which takes the form

U̇i =
Ui+1−Ui

Xi+1−Xi
− Ui−Ui−1

Xi−Xi−1

1
2(Xi+1 − Xi−1)

+ f(Ui) + Ẋi
Ui+1 − Ui−1

(Xi+1 − Xi−1)
.

We can substitute (5.20) directly into this expression to give

αVi =
Vi+1−Vi

Yi+1−Yi
− Vi−Vi−1

Yi−Yi−1

1
2(Yi+1 − Yi−1)

+ f(Vi) +
Yi

2
Vi+1 − Vi−1

(Yi+1 − Yi−1)
. (5.22)

It is immediately obvious that (5.22) is a consistent discretization of the
ordinary differential equation (5.21) so that the function v(y) will be ap-
proximated by Vi at the (time-independent computational) mesh point Yi.
Note further that the discretization error in approximating v by Vi is inde-
pendent of the solution scale. In the case of systems such as the blow-up
problems of Section 5.2, this implies that the asymptotic form of the sin-
gularity at the peak will be approximated with uniform accuracy for peaks
with very small spatial scales (and correspondingly large solution scales).
We note, however, that other errors do arise at points where the (rapidly)
moving mesh following the evolving peak matches a nearly stationary mesh
in the regions closer to the boundary of the domain.

To determine the location of the points Yi in terms of the computational
variables, we must apply the MMPDE used to evolve the mesh. Again, to
give an example we consider MMPDE5. Substituting (5.20) into a standard
discretization of MMPDE5 gives the following discrete equation for Yi:

1
2
Yi =

1
2∆ξ2

(
Mi+1/2(Yi+1 − Yi) − Mi−1/2(Yi − Yi−1)

)
. (5.23)

Crucially, we note that the functional equation (5.14) satisfied by the mon-
itor function M allows this rescaling to be made. Similar discrete equations
arise for other choices of MMPDE, provided that M satisfies (5.14).

We note that exactly the same rescalings are possible in higher-dimen-
sional problems using moving meshes generated by any other methods de-
scribed in this subsection, and for any other form of discretization (provided
that the processes of discretization and rescaling commute).

It is also possible to construct approximate discrete self-similar solutions
in cases where the underlying solution is better described by approximate
self-similar variables. Details of the calculations in this case are given in
Budd and Williams (2006).

As an example of this we return to the porous medium equation in one
dimension. For this problem, for all constants C > 0 there is a self-similar
solution us(x, t) of the form

us(x, t) = (t + C)−1/3v(y), x = (t + C)1/3y,

102 C. J. Budd, W. Huang and R. D. Russell

where the function v(y) is given by the Barenblatt–Pattle profile (Barenblatt
1996). It is also well known that any positive initial data lead to a solution
u(x, t), which converges towards to a self-similar solution in the sense that

t1/3u(t1/3y, t) → v(y).

Similarly, it is shown in Budd et al. (1999b) that if the monitor function
is chosen to give a scale-invariant scheme (for example M = u), then this
scheme admits a set of discrete self-similar solutions on a moving mesh
which take the form

Ui(t) = (t + C)−1/3Vi, Xi(t) = (t + C)1/3Yi.

Note that the product
Wi ≡ UiXi = ViYi

is invariant in time. In Figure 5.1 we show the results of a computation pre-
sented in the computational domain, using a scale-invariant moving mesh
method with M = u and a centred finite difference discretization. In this
calculation the initial data at t = 0 were taken to be an irregular function,
and results are plotted at times t = 0 and t = 10. We also show (dashed)
two discrete self-similar solutions with values of C chosen so that they ini-
tially lie above and below the solution. Note that the solution calculated is
sandwiched between these two functions. We also present the correspond-
ing mesh Xi(t) and the scaled mesh Yi(t) = Xi(t)/t1/3. It is clear from
these figures that the computed solution converges towards the discrete self-
similar solutions (in correspondence with the continuous theory) and that
the moving mesh tends towards the one for which Yi is constant in time so
that Xi(t) scales asymptotically as t1/3. Similar figures for solutions of the
porous medium equation computed using a scale-invariant ALE method in
two dimensions are given in Baines et al. (2006).

5.2. Blow-up and related problems

5.2.1. Parabolic blow-up
As mentioned in Section 5.1, a significant success in the application of mov-
ing mesh methods occurs in the study of parabolic partial differential equa-
tions (and also of systems of PDEs) which have solutions that blow up,
so that the solution, or some derivative of it, becomes infinite in a finite
time T . We now consider such problems in a little more detail. Blow-up
in the solution often represents an important change in the properties of
the model that the equation represents (such as the ignition of a heated gas
mixture), and it is important that it is reproduced accurately in a numerical
computation. A survey of many different types of blow-up problem is pre-
sented in Samarskii et al. (1973). Blow-up typically occurs on increasingly
small time and length scales, and hence it is usually essential to use both

Adaptivity with moving grids 103

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

u
(ξ

,t
)

ξ

t = 0

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

u
(ξ

,t
)

ξ

t = 10

t

xit
−1/3

−4 −2 0 2 4
0

2

4

6

8

10

t

xi

−5 0 5
0

2

4

6

8

10

t

xit
−1/3

Figure 5.1. Convergence of the solution in the computational
domain to the discrete self-similar solution. Note the
invariance of the solution profile in this domain. We also show
the evolution of the mesh and note that this scales as t1/3.

temporarily and spatially adaptive methods for any such computation. A
survey of methods and underlying numerical theory for blow-up-type prob-
lems is given in Budd et al. (1996), with more recent references in Budd
and Williams (2006), Ceniceros and Hou (2001) and Huang, Ma and Rus-
sell (2008). Mesh refinement (h-adaptive) methods have been used in some
numerical studies of blow-up, including the dynamic rescaling methods, such
as those described in Berger and Kohn (1988), but moving mesh methods
have proved to be more effective in both one and two dimensions. This is
due, in part, to the strong scaling symmetry properties of the solution close
to blow-up (where the effects of boundary and initial conditions become
progressively less important), and the way that this can be exploited by
using the scale-invariant methods described in Section 5.1.

104 C. J. Budd, W. Huang and R. D. Russell

A prototype example of a blow-up system is the parabolic partial differ-
ential equation

ut = ∆u + up, x ∈ Ω, p > 1, u|∂Ω = 0. (5.24)

This has the property of single-point blow-up in that for certain types of
sufficiently large initial data, there is a point x∗ and a finite time T so that

u(x∗, t) → ∞ as t → T.

Close to the point x∗ the solution develops a narrow peak which evolves
in an approximately self-similar manner. It is not uncommon to consider
solutions which change by ten orders of magnitude, with a reduction in the
solution length scale by a similar amount. It is essential to use an adaptive
method to capture such behaviour accurately.

Example 1. The first example that we consider is given by

ut = ∆u + u3, x = (x, y) ∈ Ω = (0, 1)2,
u(x, t) = 0, x ∈ ∂Ω, (5.25)

u(x, 0) = 5 exp(−25(x− 0.45)2 − 25(y − 0.35)2).

This problem has the natural scaling symmetry

t → λt, x → λ1/2x, u → λ−1/2u,

it has a natural time scale of (T−t), and it is shown in Samarskii et al. (1973)
that the natural space and solution scales are given by the approximately
self-similar variables

L = (T − t)1/2| log(T − t)|1/2 U = (T − t)−1/2.

To compute a solution, we augment this problem with the PMA equation
(5.17) to determine the moving mesh with a monitor function of the form
M ≡ M(u). To obtain scale invariance for this system we require that M
must satisfy the function equation (5.18) so that

M((T − t)−1/2u)1/2 =
1

(T − t)
M(u).

A simple solution of this is M(u) = u4. In practice this monitor function
can lead to instabilities due to placing too many points in the singular region
and not sufficiently closer to the boundary of the domain, and to overcome
this we apply a McKenzie regularization to give

M(u) = u(x, t)4 +
∫

ΩP

u(x′, t)4 dx′.

This choice of monitor leads to a mesh which automatically inherits the cor-
rect dynamic length scale of the underlying solution in the singular regions

Adaptivity with moving grids 105

(a) (b)

Figure 5.2. Example 1. Final grid for the blow-up example.
(a) Entire grid. (b) Detail near the blow-up point. Note that
the grid is quite regular in the vicinity of the singularity, with
no evidence of any skewness or tangling.

where u is large. We can then find a solution of the blow-up problem in the
computational domain ΩC , using a finite difference method with a uniform
N = 30×30 mesh in the computational domain to discretize both the PMA
equation and the Lagrangian form of the underlying PDE. The resulting
system of ODEs was then solved simultaneously using a BDF method. In
this calculation, as the blow-up time was approached an adaptive time step
was used by applying the Sundman transformation, as described in Budd
et al. (2001). For this we take

∆t =
1

(max u)2
.

In Figure 5.2 we show the final grid both over the whole domain and close
to the peak near the centre, as well as the initial and final solutions. The
integration was performed until |u|∞ = 1015, for which the peak has an
approximate length scale of 10−15.

Over the course of the evolution we see a mesh compression (and a solution
amplification) by a factor of 1012 in the physical domain. Note that this
has been achieved with a very modest number of mesh points. The final
mesh shows a similar gradation of mesh elements from size O(10−2) to size
O(10−14). However, if we study the mesh close to the solution peak, as
illustrated in Figure 5.2, we see that this shows a strong degree of local
regularity, with no evidence of long thin elements or skewness in the region
where the solution gradients are very large. This is exactly as predicted by

106 C. J. Budd, W. Huang and R. D. Russell

the previous theory. (Away from the solution peak the mesh is less smooth;
however, in this region the solution gradients are much smaller than in the
peak, and the local truncation errors are thus lower.)

Example 2. In order to consider these results in the context of some of
the error analysis presented in Sections 2 and 3, it is instructive to look at a
second one-dimensional example, in which we consider the blow-up problem

ut = uxx + u3, ux(0) = u(1) = 0.

It is known (Samarskii et al. 1973) that this equation has solutions which
blow up at the origin, and in the peak the asymptotic blow-up profile of
this solution takes the form

u(x, t) =
1√

T − t

1√
1 + ax2/L2

, (5.26)

where a is a constant (depending weakly on the initial conditions) which we
may take equal to unity, and L(t) is the natural length scale given by

L(t) =
√

(T − t)| log(T − t)|.
As this is now a problem in one dimension, we initially take M = u2 so
that, in the peak,

M =
1

(T − t)
1

1 + x2/L2
.

The integral of M is overwhelmingly dominated by the contribution in the
peak, so that

θ =
∫ 1

0
M dx =

L

(T − t)
tan−1(1/L) ≈ πL

2(T − t)
.

We can then take a regularized monitor function of the form

M̄ = M + θ, with
∫ 1

0
M̄ = 2θ,

to ensure that we have a 50:50 mesh. In the peak, M̄ ≈ M and an equidis-
tributed mesh satisfies the equation Mxξ = 2θ so that

xξ = πL(1 + x2/L2).

It follows immediately that in the peak we have

x(ξ, t) = L(t) tan(πξ). (5.27)

Observe that, if ξ < 1/2, then x = O(L), and that this mesh matches
naturally to one for which x = O(1) as ξ → 1/2, so that we have (as
required) half of the mesh points in the peak and half outside the peak.

Adaptivity with moving grids 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
x 10

15

u
(ξ

,τ
)

ξ

Figure 5.3. Example 2. Solution profile for the blow-up
problem computed in the computational space up to a
peak value of 1015.

In Figure 5.3 we show the solution computed in the computational plane
using a simple centred discretization of the PDE using a uniform mesh with
N = 30 points in the computational space. Observe that the peak in the
region ξ < 1/2 has a regular form with no evidence of instability.

In Figure 5.4 we present the mesh evolving in time and also a plot of
τ ≡ log(T − t) as a function of log(x). Observe that the mesh in the
first of these figures has concentrated in the peak, but that there is still
good resolution of the solution away from the peak. In the second figure
we see that all of the grid cells move at the same rate close to the origin,
demonstrating the self-similar form there.

The expression (5.27) allows a direct evaluation of the leading-order terms
in the truncation error Tr. Recall from (2.49) that the leading term in the
truncation error in the discretization of uxx is given by

Tr = ∆ξ2

(
1
3
xξξuxxx +

1
12

x2
ξuxxxx

)
.

From (5.27) we have

x = L tan(πξ), xξ = πL sec2(πξ), xξξ = 2π2L tan(πξ) sec2(πξ).

108 C. J. Budd, W. Huang and R. D. Russell

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

τ

Xi(ξ, τ)

(a)

−15 −10 −5 0
0

5

10

15

20

25

30

35

τ

log(Xi(ξ, τ))

(b)

Figure 5.4. Example 2. Blow-up mesh. (a) Grid in the natural
coordinates. (b) Plotting τ = | log(T − t)| as a function of log(Xi)
at equally spaced values of ξ, showing the contraction rate and
approximately self-similar behaviour close to the origin.

A straightforward calculation based on the scaling structures of u shows
that, in the peak region,

u = O
(

1√
T − t

)
, uxx = O

(
1

L2
√

T − t

)
,

uxxx = O
(

1
L3

√
T − t

)
, uxxxx = O

(
1

L4
√

T − t

)
.

If ξ < 1/2 we can also see that x and its derivatives are all of O(L). As
a consequence, substituting into the expression for T , we have that in this
region

Tr = O
(

∆ξ2

L2
√

T − t

)
, so that

Tr
uxx

= O(
∆ξ2

)
.

We can see from this expression that the relative truncation error Tr /uxx

in discretizing uxx depends only on ∆ξ and not on the intrinsic solution
scale. This analysis starts to break down as ξ → 1/2, and the terms xξξ,
etc., become large as the mesh adapted to the peak evolves into a uniform
mesh close to the boundary. However, the results shown above do not
indicate instability in the mesh in this limit.

Adaptivity with moving grids 109

5.2.2. Focusing solutions of the nonlinear Schrödinger equation
The nonlinear Schrödinger equation described in Section 5.2.1,

iut + ∆u + u|u|2 = 0, x ∈ R
n, (5.28)

is a model for the modulational instability of water waves and plasma waves,
and is important in studies of nonlinear optics where the refractive index
of a material depends on the intensity of a laser beam. In all dimensions it
has the conserved quantities∫

|u|2 dx and
∫ (

|∇u|2 − 1
2
|u|4

)
dx,

corresponding to mass and energy respectively. In one dimension (5.28) is
integrable and can give rise to soliton-type solutions. More generally, it is
an example of a Hamiltonian PDE. Many numerical (usually non-adaptive)
methods have been derived to take advantage of this integrability (Budd
and Piggott 2005, McLachlan 1994). If posed in n dimensions, where n ≥ 2,
then the PDE (5.28) is no longer integrable and it may admit singular
(focusing) solutions for certain initial data. A review of these is given by
Sulem and Sulem (1999), who also describe some numerical computations
using a moving mesh method based on Winslow’s algorithm. Numerically
this is a very difficult problem, as high resolution in time and space is
required to capture the strong self-focusing of the solution, to deal with the
highly oscillatory nature of the solution ‘tail’, and to compute over a large
domain to avoid boundary effects (Budd et al. 1999a, Ceniceros 2002). In
such singular solutions both the maximum value of the solution modulus,
and its phase, blow up in a finite time T . The precise form of this blow-
up and the initial conditions that lead to blow-up are the subject of much
investigation (see the review in Sulem and Sulem (1999)), and much remains
unresolved. Two significant open questions are: (1) What is the exact
nature of the blow-up profile in two dimensions (where it is known to be
approximately self-similar but the precise form is still unclear), and (2) Do
there exist radially symmetric self-similar solutions in three dimensions? In
the latter case these are conjectured to take the form

u(r, t) =
1√

(T − t)
eia log(T−t)Q(y), r =

√
T − t y, r = |x|,

where a is an unknown constant. The existence of such a solution can be
addressed by a scale-invariant method applied to the (one-dimensional) class
of radially symmetric solutions. In this we take the monitor function

M = |u(r, t)|2,
derived in Section 5.2.1, and use a collocation-based discretization with
N = 81 points. In such a calculation we would expect to observe a discrete

110 C. J. Budd, W. Huang and R. D. Russell

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

|u(
0,

t)
|

r

t = 0.034301361230052

t = 0.034301361416092

Figure 5.5. The solution when |u(0, t)| = 100000 and
500000. Note the narrow width of the peak.

self-similar solution for which the mesh points Xi should take the form
Xi =

√
T − tYi, so that

|u(0, t)|Xi = Q(0)Yi

is constant in time. In Figure 5.5 we plot two solutions starting from initial
data u(r, 0) = 6

√
2 exp(−r2), which have a computed blow-up time of T =

0.0343013614215. Observe the excellent resolution of the peak even when
the peak amplitude is around 105 and the peak width is around 10−5. In
Figure 5.6 we show the computed values of Wi ≡ |u(0, t)|Xi as functions of
τ = log(T − t) for a range in which |u| varies from 100 to 500000. These
are clearly tending towards constants, indicating that both the solution and
the mesh are evolving in a self-similar manner.

It is interesting to note that the scale-invariant methods are easy to use
and give rather better results in this case than symplectic methods described
in McLachlan (1994), despite the Hamiltonian structure of the problem.
This is because the adaptive methods give much better resolution of the
peak.

In contrast, further computations of focusing solutions of the nonlinear
Schrödinger equation are given by Ceniceros (2002). In this case the follow-
ing highly dispersive problem was studied:

iεut +
1
2
ε2uxx + u|u|2 = 0, u(x, 0) ≡ u0 = A0(x)eiS0(x)/ε, (5.29)

Adaptivity with moving grids 111

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

|log(T − t)|

x
i(

t)
|u(

0,
t)
|

x13

x4

x3

x2

Figure 5.6. The evolution of the mesh as the blow-up
time T is approached. Observe that the product
Xi|u(0, t)| converges to a constant, indicating that both
solution and mesh are evolving in a self-similar manner.

with ε
 1. In this calculation a moving mesh method with smoothing was
used, as described in Section 3. This took the form

(1 − γ∂2
ξξ)ẋ = (Mxξ)ξ), (5.30)

with γ = max(M). In Ceniceros (2002) the Lagrangian form of the PDE
(5.29) was discretized in the computational domain and solved alternatively
with the MMPDE (5.30) using the methods described in Section 3. In
particular, a semi-implicit BDF method was used for the time integration
of both the moving mesh equation and the underlying PDE. A monitor
function of the form

M =
√

1 + β2|uξ|2 + α2|u|4

was employed, with

β = (2L)2
‖u0,x‖∞
‖u0‖

and L a measure of the size of the computational domain. In this calculation,
particular care had to be taken with the spatial discretization of the mesh
movement terms of the form ẋux, arising in the Lagrangian form of (5.29) as
the dispersive nature of (5.29) meant that there was no natural damping to
the high-frequency terms in the errors associated with a central difference

112 C. J. Budd, W. Huang and R. D. Russell

discretization This is in contrast to the highly dissipative nature of the
discretization of (5.30), which took the form

Xn+1
j − Xn

j

∆t
= γ

Xn+1
j+1 − 2Xn+1

j + Xn+1
j−1

∆ξ2
− γ

Xn
j+1 − 2Xn

j + Xn
j−1

∆ξ2

+
1

∆ξ2

[
Mn

j+1/2(X
n
j+1 − Xn

j) − Mn
j−1/2(X

n
j − Xn

j−1)
]
.

To avoid some of the resulting instabilities reported in Li et al. (1998) and
discussed in Section 5.3 in the context of the solution of Burgers’ equa-
tion, a high-order (fourth-order central difference) expression was used to
discretize the Lagrangian advective term ẋux. The resulting semi-implicit
BDF discretization then took the form

1
2∆t

[3Un+1
j − 4Un

j + Un−1
j] =

i
εσn+1

j

2∆ξ2

[
σn+1

j+1/2(U
n+1
j − Un+1

j) − σn+1
j−1/2(U

n+1
j − Un+1

j−1

]

+ 2
[

i
ε
|Un

j |2Un
j + Ẋn

j

Un
j−2 − 8Un

j−1 + 8Un
j+1 − Un

j+2

Xn
j−2 − 8Xn

j−1 + 8Xn
j+1 − Xn

j+2

]

−
[

i
ε
|Un−1

j |2Un−1
j + Ẋn−1

j

Un−1
j−2 − 8Un−1

j−1 + 8Un−1
j+1 − Un−1

j+2

Xn−1
j−2 − 8Xn−1

j−1 + 8Xn−1
j+1 − Xn−1

j+2

]
,

with σ = 1/xξ. The resulting moving mesh method was then found to be
highly effective in computing the focusing solutions.

Remark. It bears mentioning that finding self-similar or approximately
self-similar structures for analytical solutions to PDEs can be extremely
demanding, and moving mesh methods with built-in scale invariance can
often be used to gain insight into the form of such structures. A case in point
is the paper by Budd, Galaktionov and Williams (2004), which analysed an
unexpected form of blow-up for a fourth-order PDE, entirely motivated by
the results of numerical calculations with a moving mesh method.

5.3. Some problems with moving fronts

A classical problem leading to the formation of sharp fronts is Burgers’
equation given (in two dimensions) by

ut +
1
2
(u2)x +

1
2
(u2)y = ν∆u, ν
 1. (5.31)

This equation has been used as a benchmark for a number of different
moving mesh algorithms (Huang and Russell 1997a, Mackenzie and Mekwi
2007a, Zhang and Tang 2002, Tang and Xu 2007, Li et al. 1998).

Adaptivity with moving grids 113

Example 1. As a first calculation we consider a problem with the initial
and boundary values chosen over the unit square, so that (5.31) has the
exact solution given by

u(x, y, t) =
(
1 + e(x+y−t)/2ν

)−1
. (5.32)

This solution has a sharp moving front. For the purposes of this example we
consider coupling this system to the PMA algorithm described in Section 3,
to generate a moving mesh which can both compute an approximation to
this solution and follow the front as it evolves over the time interval t ∈
[1/4, 2]. To do this we discretize (5.31) in the Lagrangian form

ut = ν∆u −
(

1
2
(u2)x +

1
2
(u2)y

)
+ ẋux + ẏuy, ν
 1. (5.33)

with all discretizations made in the computational variables. The conser-
vation form of the equation above is used for this calculation so that, for
example, the advective term u2

x is rescaled as

u2
x =

1
J

[
yηu

2
ξ − yξu

2
η

]
,

which is then discretized using a central difference scheme. For this calcula-
tion we also take similar discretizations for the other advective terms. The
equation posed in the computational variables is then coupled to the dis-
cretized form of PMA equation (5.17) with the values of the approximation
Ui,j to u(Xi, Yj) and of Q given on the mesh vertices. In these computations
we take an N × N computational mesh (typically N = 40), a viscosity of
ν = 0.005, and use the arclength monitor function

M =
√

1 + α
(
u2

x + u2
y

)
,

with α = 1. A number of different strategies could be used to evolve this
coupled system forward in time, but in practice a simple scheme which
solved the PMA equation and (5.33) simultaneously using a simple forward
Euler method is effective with a time step ∆t, as given in Zhang and Tang
(2002), determined by the CFL condition. In the PMA equation we used
ε = 1, γ = 0.335 to find the initial mesh (before evolving the solution PDE)
when t = 1/4, and then ε = 0.01, γ =

√
max(M) to follow the front up

to t = 2. More details are given in Walsh et al. (2009). We note that
solving the PMA equation coupled to (5.33), using an alternating solution
strategy coupled with an up-winding discretization, has also been shown
to be effective (Sulman 2008). In Figure 5.7 we present the results of a
series of computations using this method, when N = 40, showing both
the solution for (5.31) and the corresponding mesh. In this figure we see
excellent resolution of the solution at the front.

114 C. J. Budd, W. Huang and R. D. Russell

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

x

y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.7. Example 1. The solution of Burgers’ equation
and the corresponding mesh at the time t = 1.

Table 5.1.

N L2-error on a uniform mesh L2-error on the moving mesh

20 6e-2 8e-3
40 2e-2 2e-3
80 6e-3 1e-3

A quantitative measure of the error in the computed solution at t = 1
can be given by determining the L2-norm of the difference between it and
the exact solution. We consider this error both for a uniform and a moving
mesh for various values of N : see Table 5.1.

Sulman (2008) obtained a similar table by using a PMA method in which
the convective terms are calculated by using an upwind method and the
PMA system, and solved the underlying PDE alternately. It is also in-
teresting to compare this calculation with the results presented in Zhang
and Tang (2002). In this paper a harmonic mapping method of the form
described in Section 4 was used to generate the mesh, and this was then
coupled to a finite volume discretization of (5.31.) We see from Table 5.1
that a useful reduction in the error for calculating the solution to (5.31)
resulted from the PMA method. This reduction is similar to that observed
in Zhang and Tang (2002) for the harmonic map method.

Adaptivity with moving grids 115

Example 2. In closely related calculations we can compare with a simi-
lar moving mesh calculation of the solution of Burgers’ equation, over the
interval x ∈ [0, 1], when ν = 1e − 4 and with initial data u0 = sin(2πx) +
(1/2) sin(πx). In this case we compute the mesh using a one-dimensional
form of PMA with the arclength monitor function and N = 30 mesh points,
central differencing in the computational domain for all spatial derivatives,
and solve the resulting ODEs using the MATLAB routine ode15s. We start
with an initially uniform mesh, and evolve the mesh and solution together
using PMA with ε = 1. In this calculation, and with this choice of ε, the
mesh evolves from being uniform to one which is equidistributed, over a
time t ≈ 0.05. In this time period the underlying solution remains fairly
smooth. At the time t ≈ 0.2 the solution develops a sharp front, which is
well approximated, and then followed, by the evolving mesh. The solution is
presented in the physical domain at a series of different times in Figure 5.8,
and the resulting mesh trajectories are presented in Figure 5.9. Observe the
manner in which the mesh points resolve the front with no oscillations in
this case (due in part to the regularity of the initial data).

It is interesting to compare this calculation with a very similar calculation
made by Li and Petzold (1997), who looked at the solution of Burgers’
equation when ν = 1e − 4 with the less regular initial data given by

u(x, 0) ≡ u0 = 0.2, x ≤ 0.1, u0 = 8x − 0.6, 0.1 ≤ x ≤ 0.2
u0 = 1, 0.2 ≤ x ≤ 0.5, u0 = −10x + 6, 0.5 ≤ x ≤ 0.6,

u0 = 0, 0.6 ≤ x ≤ 1.

This is a more severe test of the moving mesh method than the previous ex-
ample, as the initial data are much less smooth. This calculation employed
an arclength-based monitor function together with a regularized differential
algebraic formulation of the moving mesh equations, very similar to using
MMPDE6, and based on a method proposed in Adjerid and Flaherty (1986),
with the mesh-smoothing algorithm proposed by Dorfi and Drury (1987),
described in Section 2. Li and Petzold (1997) considered three different
discretizations: a central difference discretization, an ENO (Roe) method,
and a piecewise hyberbolic method (PHM) due to Marquina (1994). It was
found that in this case the central difference method tended to lead to spu-
rious oscillations due (as commented on in the example of the nonlinear
Schrödinger equation) to the destabilizing effect of the anti-diffusive terms
arising in the discretization of the advective terms describing the mesh mo-
tion. Li and Petzold (1997) showed that these oscillations were reduced
with the ENO scheme and eliminated using the PHM method.

The related paper by Li et al. (1998) also considered applying the same
moving mesh method to a number of other reaction–diffusion problems,

116 C. J. Budd, W. Huang and R. D. Russell

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

u

x

Solution to 1D Burgers

t = 0
t = 0.05
t = 0.2
t = 1
t = 1.4
t = 2

Figure 5.8. The computed solution of Burgers’ equation
in one dimension at times t = 0, 0.05, 0.2, 1, 1.4, 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Burgers’ equation; grid trajectories

t

Figure 5.9. The motion of the mesh points when solving
Burgers’ equation in one dimension.

Adaptivity with moving grids 117

including the Fisher equation,

ut = βuxx + αu(1 − u). (5.34)

This equation has an exact solution with a moving front given by

u = (1 + exp(
√

α/6x − 5αt/6))−2.

Whilst it was found that the wave front was well resolved, the moving mesh
method appeared to give worse results than for the fixed grid, with the front
moving at the wrong speed (too fast). Li et al. (1998) proposed that this
error was largely due to the effects of discretizing the additional convective
terms due to the moving mesh, as discussed in Section 3, which can lead
both to a high truncation error and instabilities in the solution. A possible
solution is to use higher-order methods or a curvature-dependent monitor
function; e.g., see Qiu and Sloan (1998). However, there is an interesting
alternative reason for the error. In problems such as (5.34), the speed of
motion of the front is not so much determined by the shape of the front
itself but by the nature of the exponential terms in the tails of the solution
and how they interact with the boundaries. Similar behaviour arises in
the Cahn–Hilliard equation, and also in similar systems such as the Gray–
Scott equation in chemistry. Somewhat paradoxically, the solution needs to
be well resolved in the boundary regions where it appears to be behaving
smoothly, in order for the front speed to be accurately resolved. Thus a
uniform mesh may well perform better than a moving mesh in these cases,
as it will probably be placing more mesh points close to the boundary.

5.4. Problems involving a change of phase and/or combustion

A very rich set of examples of the use of moving mesh methods is given
by Stefan-type problems, involving phase changes or combustion, and ex-
amples of these can be found in Beckett et al. (2001a), Mackenzie and
Mekwi (2007a), Mackenzie and Robertson (2002), Miller, Gleyzer and Im-
hoff (1998), Huang and Zhan (2004), Zegeling (2005), Tan (2007) and Tan
et al. (2007).

As an example we consider the combustion problem described in Cao
et al. (1999a) and Moore and Flaherty (1992). The mathematical model is
a system of coupled nonlinear reaction–diffusion equations,

∂u

∂t
− ∇2u = − R

αδ
u eδ(1−1/T),

∂T

∂t
− 1

Le
∇2T =

R

δLe
u eδ(1−1/T),

where u and T represent the dimensionless concentration and temperature
of a chemical which is undertaking a one-step reaction. We consider the
J-shape solution domain shown in Figure 5.10. The initial and boundary

118 C. J. Budd, W. Huang and R. D. Russell

T (t = 1.1867) Mesh (t = 1.1867)

T (t = 1.2275) Mesh (t = 1.2275)

T (t = 1.2321) Mesh (t = 1.2321)

Figure 5.10. The contour plot of the temperature T (where white
represents 2.2 and black represents 1) and the moving meshes are
shown at various times.

conditions are
u|t=0 = T |t=0 = 1, in Ω,

u|∂Ω = T |∂Ω = 1, for t > 0

and the physical parameters are set to be Le = 0.9, α = 1, δ = 20, and
R = 5. A resulting calculation obtained with an MMPDE finite element
method as described in Section 3 (with details in Cao et al. (1999a)) is
shown in Figure 5.10.

5.5. Convection-driven problems in meteorology

A system of interest to meteorologists is the Eady problem, which describes
the evolution of (localized) extra-tropical (mid-latitude) cyclones. The Eady
problem is a two-dimensional reduction of the Euler equations describing
the (incompressible) air velocity (u, w) and pressure P in the (x, z)-plane,
where x ∈ [−L, L] is a horizontal coordinate along lines of constant latitude,

Adaptivity with moving grids 119

and z ∈ [0, H] represents height. (A shallow atmosphere model is used with
H
 L, together with an f -plane approximation which uses a locally flat
approximation to the Earth’s curvature.) This model also includes both the
potential temperature θ (relative to a reference temperature θ0) and Coriolis
effects. It is described in detail in Cullen (2006) and takes the form

Du

Dt
− fv + Px = 0,

Dv

Dt
+ fu − Cg

θ0
(z − H/2) = 0,

Dθ

Dt
− Cv = 0,

Dw

Dt
+ Pz − gθ

θ0
= 0,

ux + wz = 0.

Here D is the advective (total) derivative, f is the Coriolis parameter (as-
sumed constant), g is the gravitational constant and C = −θy is assumed
constant. All variables are periodic in x, with w and Px vanishing at z = 0
and z = H. From certain initially smooth data (as described by Nakamura
(1994)), it is possible (Cullen 2006) for the solutions of the Eady problem
to develop severe fronts in a small number of days, and some sort of adap-
tive mesh is needed to resolve the fine structure of the solution close to the
fronts. In Figure 5.11 we present the solution to the Eady problem close
to the formation of a severe tropical storm, obtained by using a pressure-
correction method on a semi-staggered grid, looking at the contours in the
horizontal and vertical coordinates (x, z) of the longitudinal wind speed v
and potential temperature θ.

We consider two different monitor functions coupled to PMA to find adap-
tive meshes for this problem. In the first case we take the arclength monitor
function

M1 =
√

1 + |∇v|2.
In the second case we take the monitor function M2 to be an estimate of the
potential vorticity q of the solution, so that M2 is taken to be the maximum
eigenvalue of the matrix

Q =
(

vx + f vz

θx θz

)
,

for which q = det(Q). The resulting meshes are shown in Figure 5.12. In
both cases we see well-structured and regular meshes with good resolution
at the boundaries and of the front, and with no evidence of mesh tangling.
However, use of the potential vorticity monitor function M2 leads to a mesh
which more precisely follows the physical solution. Further details are given
in Walsh et al. (2009).

120 C. J. Budd, W. Huang and R. D. Russell

−1 −0.5 0 0.5 1

x 10
6

1000

2000

3000

4000

5000

6000

7000

8000

9000

x

z

V

−5 0 5

x 10
5

1000

2000

3000

4000

5000

6000

7000

8000

9000

x

z

θ

Figure 5.11. The (x, z) contours of the longitudinal velocity
and potential temperature of the Eady problem close to the
formation of a tropical storm.

−1 −0.5 0 0.5 1

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Arclength V monitor function

x

z

−1 −0.5 0 0.5 1

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Max eigenvalue monitor function

x

z

Figure 5.12. Two meshes adapted to the solution of the Eady
problem presented above. In the first figure we use the arclength
monitor function M1 and in the second the potential vorticity
monitor function M2.

Adaptivity with moving grids 121

Acknowledgements

It is a pleasure to thank Emily Walsh for Figures 5.7, 5.8, 5.9, 5.11 and 5.12
and J. F. Williams for Figures 3.7, 3.8, 3.9, 3.11, 5.2 and 5.4. Both also
helped by reading this text and through many useful discussions. This work
was supported in part by the EPSRC Critical Mass Grant GR/586525/01.

REFERENCES

S. Adjerid and J. E. Flaherty (1986), ‘A moving finite element method with error
estimation and refinement for one-dimensional time dependent partial differ-
ential equations’, SIAM J. Numer. Anal. 23, 778–795.

M. Ainsworth and J. T. Oden (2000), A Posteriori Error Estimation in Finite
Element Analysis, Pure and Applied Mathematics, Wiley-Interscience.

V. F. Almeida (1999), ‘Domain deformation mapping: Application to variational
mesh generation’, SIAM J. Sci Comput. 20, 1252–1275.

D. A. Anderson and M. M. Rai (1983), The use of solution adaptive grids in solving
partial differential equations, in Numerical Grid Generation (J. H. Thompson,
ed.), pp. 317–338.

V. B. Andreev and N. B. Kopteva (1998), ‘On the convergence, uniform with
respect to a small parameter, of monotone three-point difference approxima-
tions’, Diff. Urav. 34, 921–929.

U. Ascher, J. Christiansen and R. D. Russell (1981), ‘Collocation software for
boundary value ODEs’, ACM Trans. Math. Software 7, 209–222.

I. Babuška and W. C. Rheinboldt (1979), ‘Analysis of optimal finite element meshes
in R

1’, Math. Comput. 33, 435–463.
M. J. Baines (1994), Moving Finite Elements, Clarendon Press, Oxford.
M. J. Baines and S. L. Wakelin (1991), Equidistribution and the Legendre trans-

formation. Numerical Analysis report 4/91, University of Reading.
M. J. Baines, M. E. Hubbard, and P. K. Jimack (2005), ‘A moving mesh finite strat-

egy for the adaptive solution of time-dependent partial differential equations
with moving boundaries’, Appl. Numer. Math. 54, 450–469.

M. J. Baines, M. E. Hubbard, P. K. Jimack, and A. C. Jones (2006), ‘Scale-
invariant moving finite elements for nonlinear partial differential equations in
two dimensions’, Appl. Numer. Math. 56, 230–252.

M. L. Balinski (1986), ‘A competitive (dual) simplex method for the assignment
problem’, Math. Program. 34, 125–141.

R. E. Bank and R. K. Smith (1997), ‘Mesh smoothing using a posteriori error
estimates’, SIAM J. Numer. Anal. 34, 979–997.

G. I. Barenblatt (1996), Scaling, Self-Similarity, and Intermediate Asymptotics:
Dimensional Analysis and Intermediate Asymptotics, Cambridge Texts in Ap-
plied Mathematics, Cambridge University Press.

G. Beckett and J. A. Mackenzie (2000), ‘Convergence analysis of finite-difference
approximations on equidistributed grids to a singularly perturbed boundary
value problem’, Appl. Numer. Math. 35, 87–109.

G. Beckett and J. A. Mackenzie (2001a), ‘On a uniformly accurate finite difference
approximation of a singularly perturbed reaction–diffusion problem using grid
equidistribution’, J. Comput. Appl. Math. 131, 381–405.

122 C. J. Budd, W. Huang and R. D. Russell

G. Beckett and J. A. Mackenzie (2001b), ‘Uniformly convergent high order finite
element solutions of a singularly perturbed reaction–diffusion equation using
mesh equidistribution’, Appl. Numer. Math. 39, 31–45.

G. Beckett, J. A. Mackenzie and M. L. Robertson (2001a), ‘A moving mesh fi-
nite element method for the solution of two-dimensional Stefan problems’,
J. Comput. Phys. 186, 500–518.

G. Beckett, J. A. Mackenzie, A. Ramage and D. M. Sloan (2001b), ‘On the nu-
merical solution of one-dimensional PDEs using adaptive methods based on
equidistribution’, J. Comput. Phys. 167, 372–392.

J. D. Benamou and Y. Brenier (2000), ‘A computational fluid mechanics solution to
the Monge–Kantorovich mass transfer problem’, Numer. Math. 84, 375–393.

M. Berger and R. Kohn (1988), ‘A rescaling algorithm for the numerical calculation
of blowing-up solutions’, Comm. Pure. Appl. Math. 41, 841–863.

M. Berzins (1998), ‘A solution-based triangular and tetrahedral mesh quality indi-
cator’, SIAM J. Sci. Comput. 19, 2051–2060.

J. G. Blom and J. G. Verwer (1989), On the use of the arclength and curvature
monitor in a moving grid method which is based on the method of lines.
Technical Report NM-N8902, CWI, Amsterdam.

P. Bochev, G. Liao and G. d. Pena (1996), ‘Analysis and computation of adaptive
moving grids by deformation’, Numer. Methods PDEs 12, 489–506.

C. de Boor (1973), Good Approximations by Splines with Variable Knots II, Vol. 363
of Lecture Notes in Mathematics, Springer, Berlin.

J. U. Brackbill (1993), ‘An adaptive grid with directional control’, J. Comput.
Phys. 108, 38–50.

J. U. Brackbill and J. S. Saltzman (1982), ‘Adaptive zoning for singular problems
in two dimensions’, J. Comput. Phys. 46, 342–368.

L. Branets and G. F. Carey (2003), A local cell quality metric and variational
grid smoothing algorithm, in Proc. 12th International Meshing Roundtable,
Sandia National Laboratories, Albuquerque, NM.

Y. Brenier (1991), ‘Polar factorization and monotone rearrangement of vector-
valued functions’, Comm. Pure Appl. Math. 44, 375–417.

C. J. Budd and V. A. Dorodnitsyn (2001), ‘Symmetry adapted moving mesh
schemes for the nonlinear Schrödinger equation’, J. Phys. A 34, 103887–
10400.

C. J. Budd and M. D. Piggott (2005), Geometric integration and its applications,
in Handbook of Numerical Analysis (F. Cucker, ed.), pp. 35–139.

C. J. Budd and J. F. Williams (2006), ‘Parabolic Monge–Ampère methods for
blow-up problems in several spatial dimensions’, J. Phys. A 39, 5425–5444.

C. J. Budd and J. F. Williams (2009), Mesh generation using the parabolic Monge–
Ampère method. Submitted.

C. J. Budd, W. Z. Huang, and R. D. Russell (1996), ‘Moving mesh methods for
problems with blow-up’, SIAM J. Sci. Comput. 17, 305–327.

C. J. Budd, S.-N. Chen and R. D. R. Russell (1999a), ‘New self-similar solu-
tions of the nonlinear Schrödinger equation, with moving mesh computations’,
J. Comput. Phys. 152, 756–789.

Adaptivity with moving grids 123

C. J. Budd, G. J. Collins, W.-Z. Huang and R. D. Russell (1999b), ‘Self-similar
discrete solutions of the porous medium equation’, Philos. Trans. Roy. Soc.
London A 357, 1047–1078.

C. J. Budd, B. Leimkuhler, and M. D. Piggott (2001), ‘Scaling invariance and
adaptivity’, Appl. Numer. Math. 39, 261–288.

C. J. Budd, V. A. Galaktionov and J. F. Williams (2004), ‘Self-similar blow-up
in higher-order semilinear parabolic equations’, SIAM J. Appl. Math. 64,
1775–1809.

C. J. Budd, R. Carretero-Gonzalez, and R. D. Russell (2005), ‘Precise computa-
tions of chemotactic collapse using moving mesh methods’, J. Comput. Phys.
202, 462–487.

C. J. Budd, M. D. Piggott, and J. F. Williams (2009), Adaptive numerical meth-
ods and the geostrophic coordinate transformation. Submitted to Monthly
Weather Review.

L. A. Caffarelli (1992), ‘The regularity of mappings with a convex potential’,
J. Amer. Math. Soc. 5, 99–104.

L. A. Caffarelli (1996), ‘Boundary regularity of maps with convex potentials’, Ann.
of Math. 3, 453–496.

X. Cai, D. Fleitas, B. Jiang and G. Liao (2004), ‘Adaptive grid generation based on
the least squares finite element method’, Comput. Math. Appl. 48, 1077–1085.

D. A. Calhoun, C. Helzel and R. J. LeVeque (2008), ‘Logically rectangular grids
and finite volume methods for PDEs in circular and spherical domains’, SIAM
Review 50, 723–752.

W. Cao (2005), ‘On the error of linear interpolation and the orientation, aspect
ratio and internal angles of a triangle’, SIAM J. Numer. Anal. 43, 19–40.

W. Cao (2007a), ‘An interpolation error estimate on anisotropic meshes in R
n and

optimal metrics for mesh refinement’, SIAM J. Numer. Anal. 45, 2368–2391
W. Cao (2007b), ‘Anisotropic measures of third order derivatives and the quadratic

interpolation error on triangular elements’, SIAM J. Sci. Comput. 29, 756–
781.

W. Cao (2008), ‘An interpolation error estimate in R
2 based on the anisotropic

measures of higher order derivatives’, Math. Comput. 77, 265–286.
W. Cao, W. Huang, and R. D. Russell (1999a), ‘An r-adaptive finite element

method based upon moving mesh PDEs’, J. Comput. Phys. 149, 221–244.
W. Cao, W. Huang, and R. D. Russell (1999b), ‘A study of monitor functions for

two-dimensional adaptive mesh generation’, SIAM J. Sci. Comput. 20, 1978–
1994.

W. Cao, W. Huang, and R. D. Russell (2002), ‘A moving mesh method based on
the geometric conservation law’, SIAM J. Sci. Comput. 24, 118–142.

W. Cao, W. Huang, and R. D. Russell (2003), ‘Approaches for generating moving
adaptive meshes: Location versus velocity’, Appl. Numer. Math. 47, 121–138.

M. Capiński and E. Kopp (2004), Measure, Integral and Probability, Springer Un-
dergraduate Mathematics Series, Springer.

G. Carey (1997), Computational Grids: Generation, Adaptation and Solution
Strategies, Taylor and Francis.

N. Carlson and K. Miller (1998a), ‘Design and application of a gradient-weighted
moving finite element code I: In 1-D’, SIAM J. Sci. Comput. 19, 728–765.

124 C. J. Budd, W. Huang and R. D. Russell

N. Carlson and K. Miller (1998b), ‘Design and application of a gradient-weighted
moving finite element code II: In 2-D’, SIAM J. Sci. Comput. 19, 766–798.

H. D. Ceniceros (2002), ‘A semi-implicit moving mesh method for the focusing
nonlinear Schrödinger equation’, Comm. Pure Appl. Anal. 4, 1–14.

H. D. Ceniceros and T. Y. Hou (2001), ‘An efficient dynamically adaptive mesh
for potentially singular solutions’, J. Comput. Phys. 172, 609–639.

L. Chacón and G. Lapenta (2006), ‘A fully implicit, nonlinear adaptive grid strat-
egy’, J. Comput. Phys. 212, 703–717.

R. Chartrand, K. R. Vixie, B. Wohlberg and E. M. Bollt (2007), A gradient descent
solution to the Monge–Kantorovich problem.
math.lanl.gov/Research/Publications/Docs/chartrand-2007-gradient.pdf.

K. Chen (1994), ‘Error equidistribution and mesh adaptation’, SIAM J. Sci. Com-
put. 15, 798–818.

L. Chen, P. Sun and J. Xu (2007), ‘Optimal anisotropic meshes for minimizing
interpolation errors in the Lp-norm’, Math. Comput. 76, 179–204.

S. Chynoweth and M. J. Baines (1989), Legendre transform solutions to semi-
geostrophic frontogenesis, in Finite Element Analysis in Fluids (T. J. Chung
and G. R. Kerr, eds), pp. 697–703.

S. Chynoweth and M. J. Sewell (1989), ‘Dual variables in semigeostrophic theory’,
Proc. R. Soc. London A 424, 155–186.

M. J. P. Cullen (1989), ‘Implicit finite difference methods for modelling discontin-
uous atmospheric flows’, J. Comput. Phys. 81, 319–348.

M. J. P. Cullen (2006), A Mathematical Theory of Large-Scale Atmosphere/Ocean
Flow, Imperial College Press.

M. J. P. Cullen and R. J. Purser (1984), ‘An extended Lagrangian theory of semi-
geostrophic frontogenesis’, J. Atmos. Sci. 41, 1477–1497.

M. J. P. Cullen, J. Norbury, and R. J. Purser (1991), ‘Generalised Lagrangian
solutions for atmospheric and oceanic flows’, SIAM J. Appl. Math. 51, 20–
31.

B. Dacorogna and J. Moser (1990), ‘On a partial differential equation involving
the Jacobian determinant’, Ann. Inst. Henri Poincaré Analyse non linéaire
7, 1–26.

E. Dean and R. Glowinski (2003), ‘Numerical solution of the two-dimensional el-
liptic Monge–Ampère equation with Dirichlet boundary conditions: An aug-
mented Lagrangian approach’, Comptes rendus Mathématique 336, 779–784.

E. Dean and R. Glowinski (2004), ‘Numerical solution of the two-dimensional el-
liptic Monge–Ampère equation with Dirichlet boundary conditions: A least-
squares approach’, Comptes rendus Mathématique 339, 887–892.

G. Delzanno, L. Chacón, J. Finn, Y. Chung and G. Lapenta (2008), ‘An optimal
robust equidistribution method for two-dimensional grid adaptation based on
Monge–Kantorovich optimization’, J. Comput. Phys. 227, 9841–9864.

Y. Di, R. Li, T. Tang and P. Zhang (2005), ‘Moving mesh finite element methods for
the incompressible Navier–Stokes equations’, SIAM J. Sci. Comput. 26, 1036–
1056.

E. A. Dorfi and L. O’C. Drury (1987), ‘Simple adaptive grids for 1-D initial value
problems’, J. Comput. Phys. 69, 175–195.

Adaptivity with moving grids 125

V. A. Dorodnitsyn (1991), ‘Transformation groups in mesh spaces’, J. Sov. Math.
55, 1490–1517.

V. A. Dorodnitsyn (1993a), Finite-difference models exactly inheriting symmetry
of original differential equations, in Modern Group Analysis: Advanced An-
alytical and Computational Methods in Mathematical Physics (N. Ibragimov
et al., eds), Kluwer, Dordrecht, pp. 191–201.

V. A. Dorodnitsyn (1993b), ‘Finite difference analog of the Noether theorem’, Dokl.
Akad. Nauk 328, 678–690.

V. A. Dorodnitsyn and R. Kozlov (1997), The whole set of symmetry preserving
discrete versions of a heat transfer equation with a source. Preprint 4/1997,
NTNU, Trondheim.

A. S. Dvinsky (1991), ‘Adaptive grid generation from harmonic maps on Rieman-
nian manifolds’, J. Comput. Phys. 95, 450–476.

P. R. Eisman (1985), ‘Grid generation for fluid mechanics computation’, Ann. Rev.
Fluid Mech. 17, 487–522.

P. R. Eisman (1987), ‘Adaptive grid generation’, Comput. Meth. Appl. Mech. Engrg
64, 321–376.

L. C. Evans (1999), Partial differential equations and Monge–Kantorovich mass
transfer, in Current Developments in Mathematics, 1997 (Cambridge, MA),
International Press, Boston, MA, pp. 65–126.

X. Feng and M. Neilan (2009), ‘Vanishing moment method and moment solutions
for fully nonlinear second order partial differential equations’, J. Sci. Comput.,
to appear.

W. M. Feng, P. Yu, S. Y. Hu, Z. K. Liu, Q. Du and L. Q. Chen (2006), ‘Spectral im-
plementation of an adaptive moving mesh method for phase-field equations’,
J. Comput. Phys. 220, 498–510.

S. Fulton (1989), ‘Multigrid solution of the semigeostrophic invertibility relation’,
Monthly Weather Review 117, 2059–2066.

W. Gangbo and R. J. McCann (1996), ‘The geometry of optimal transport’, Acta
Math. 177, 113–161.

C. E. Gutiérrez (2001), The Monge–Ampère Equation, Vol. 44 of Progress in Non-
linear Differential Equations and their Applications, Birkhäuser, Boston, MA.

S. Haker and A. Tannenbaum (2003), On the Monge–Kantorovich problem and
image warping, in Mathematical Methods in Computer Vision, Vol. 133 of
IMA Vol. Math. Appl., Springer, New York, pp. 65–85.

D. F. Hawken, J. J. Gottlieb and J. S. Hansen (1991), ‘Review of some adaptive
node-movement techniques in finite element and finite difference solutions of
PDEs’, J. Comput. Phys. 95, 254–302.

Y. He and W. Huang (2009), A posteriori error analysis for finite element solution
of elliptic differential equations using equidistributing meshes. Submitted.

W. Huang (2001a), ‘Practical aspects of formulation and solution of moving mesh
partial differential equations’, J. Comput. Phys. 171, 753–775.

W. Huang (2001b), ‘Variational mesh adaption: Isotropy and equidistribution’,
J. Comput. Phys. 174, 903–924.

W. Huang (2005a), ‘Measuring mesh qualities and application to variational mesh
adaption’, SIAM J. Sci. Comput. 26, 1643–1666.

126 C. J. Budd, W. Huang and R. D. Russell

W. Huang (2005b), ‘Metric tensors for anisotropic mesh generation’, J. Comput.
Phys. 204, 663–665.

W. Huang (2005c), ‘Convergence analysis of finite element solution of one-
dimensional singularly perturbed differential equations on equidistributing
meshes’, Internat. J. Numer. Anal. Model. 2, 57–74.

W. Huang (2007), Anisotropic mesh adaption and movement, in Adaptive Com-
putations: Theory and Algorithms (T. Tang and J. Xu, eds), Science Press,
Beijing, pp. 68–158.

W. Huang and B. Leimkuhler (1997), ‘The adaptive Verlet method’, SIAM J. Sci.
Comput. 18, 239–256.

W. Huang and X. P. Li (2009), ‘An anisotropic mesh adaptation method for the
finite element solution of variational problems’, Finite Elements in Analysis
and Design, to appear.

W. Huang and R. D. Russell (1996), ‘A moving collocation method for solving time
dependent partial differential equations’, Appl. Numer. Math. 20, 101–116.

W. Huang and R. D. Russell (1997a), ‘Analysis of moving mesh partial differential
equations with spatial smoothing’, SIAM J. Numer. Anal. 34, 1106–1126.

W. Huang and R. D. Russell (1997b), ‘A high dimensional moving mesh strategy’,
Appl. Numer. Math. 26, 63–76.

W. Huang and R. D. Russell (1999), ‘A moving mesh strategy based on a gradient
flow equation for two-dimensional problems’, SIAM J. Sci. Comput. 20, 998–
1015.

W. Huang and R. D. Russell (2001) ‘Adaptive mesh movement: The MMPDE
approach and its applications’, J. Comput. Appl. Math. 128, 383–398.

W. Huang and D. Sloan (1994), ‘A simple adaptive grid method in two dimensions’,
SIAM J. Sci. Comput. 15, 776–797.

W. Huang and W. Sun (2003), ‘Variational mesh adaption II: Error estimates and
monitor functions’, J. Comput. Phys. 184, 619–648.

W. Huang and X. Zhan (2004), Adaptive moving mesh modeling for two dimen-
sional groundwater flow and transport, in Recent Advances in Adaptive Com-
putation, Vol. 383 of Contemporary Mathematics, AMS, pp. 283–296.

W. Huang, Y. Ren, and R. D. Russell (1994), ‘Moving mesh partial differential
equations (MMPDEs) based on the equidistribution principle’, SIAM J. Nu-
mer. Anal. 31, 709–730.

W. Huang, L. Zheng and X. Zhan (2002), ‘Adaptive moving mesh methods for
simulating one-dimensional groundwater problems with sharp moving fronts’,
Internat. J. Numer. Meth. Engng 54, 1579–1603.

W. Huang, J. Ma and R. D. Russell (2008), ‘A study of moving mesh PDE methods
for numerical simulation of blowup in reaction diffusion equations’, J. Com-
put. Phys. 227, 6532–6552.

W. Huang, L. Kamenski and J. Lang (2009), Anisotropic mesh adaptation based
upon a posteriori error estimates. Submitted.

J. M. Hyman and B. Larrouturou (1986), Dynamic rezone methods for partial
differential equations in one space dimension. Technical Report LA-UR-86-
1678, Los Alamos National laboratory, Los Alamos, NM.

J. M. Hyman and B. Larrouturou (1989), ‘Dynamic rezone methods for partial

Adaptivity with moving grids 127

differential equations in one space dimension’, Appl. Numer. Math. 5, 435–
450.

O.-P. Jacquotte (1988), ‘A mechanical model for a new grid generation method
in computational fluid dynamics’, Comput. Methods Appl. Mech. Engrg 66,
323–338.

O.-P. Jacquotte and G. Coussement(1992), ‘Structured mesh adaption: Space
accuracy and interpolation methods’, Comput. Methods Appl. Mech. Engrg
101, 397–432.

C. Johnson (1987), Numerical Solution of Partial Differential Equations by the
Finite Element Method, Cambridge University Press.

T. Kaijser (1998), ‘Computing the Kantorovich distance for images’, J. Math. Imag-
ing Vision 9, 173–191.

J. Kautsky and N. K. Nichols (1980), ‘Equidistributing meshes with constraints’,
SIAM J. Sci. Statist. Comput. 1, 499–511.

J. Kautsky and N. K. Nichols (1982), ‘Smooth regrading of discretized data’,
SIAM J. Sci. Statist. Comput. 3, 145–159.

P. M. Knupp (1995), ‘Mesh generation using vector fields’, J. Comput. Phys.
119, 142–148.

P. M. Knupp (1996), ‘Jacobian-weighted elliptic grid generation’, SIAM J. Sci.
Comput. 17, 1475–1490.

P. M. Knupp (2001), ‘Algebraic mesh quality metrics’, SIAM J. Sci. Comput.
23, 193–218.

P. Knupp and N. Robidoux (2000), ‘A framework for variational grid generation:
Conditioning the Jacobian matrix with matrix norms’, SIAM J. Sci. Comput.
21, 2029–2047.

P. Knupp and S. Steinberg (1994), Fundamentals of Grid Generation, CRC Press,
Boca Raton.

P. M. Knupp, L. Margolin and M. Shashkov (2002), ‘Reference Jacobian optimiz-
ation-based rezoning strategies for arbitrary Lagrangian Eulerian methods’,
J. Comput. Phys. 176, 93–128.

N. Kopteva (2007), Convergence theory of moving grid methods, in Adaptive Com-
putations: Theory and Algorithms (T. Tang and J. Xu, eds), Science Press,
Beijing, pp. 159–210.

N. Kopteva and M. Stynes (2001), ‘A robust adaptive method for a quasilinear one-
dimensional convection–diffusion problem’, SIAM J. Numer. Anal. 39, 1446–
1467.

R. Kozlov (2000), Symmetry applications to difference and differential-difference
equations. PhD Thesis, Institut for matematiske fag, NTNU, Trondheim.

J. Lang, W. Cao, W. Huang and R. D. Russell (2003), ‘A two-dimensional mov-
ing finite element method with local refinement based on a posteriori error
estimates’, Appl. Numer. Math. 46, 75–94.

G. Lapenta and L. Chacón (2006), ‘Cost-effectiveness of fully implicit moving mesh
adaptation: A practical investigation in 1D’, J. Comput. Phys. 219, 86–103.

R. J. LeVeque (1990), Numerical Methods for Conservation Laws, Birkhäuser.
R. Li, T. Tang, and P.-W. Zhang (2002), ‘A moving mesh finite element algorithm

for singular problems in two and three space dimensions’, J. Comput. Phys.
177, 365–393.

128 C. J. Budd, W. Huang and R. D. Russell

S. T. Li and L. R. Petzold (1997), ‘Moving mesh methods with upwinding schemes
for time dependent PDEs’, J. Comput Phys. 131, 368–377.

S. T. Li, L. R. Petzold and Y. Ren (1998), ‘Stability of moving mesh systems of
partial differential equations’, SIAM J. Sci. Comput. 20, 719–738.

G. Liao and D. Anderson (1992), ‘A new approach to grid generation’, Appl. Anal.
44, 285–297.

G. Liao and J. Xue (2006), ‘Moving meshes by the deformation method’, J. Com-
put. Appl. Math. 195, 83–92.

V. D. Liseikin (1999), Grid Generation Methods, Springer, Berlin.
A. Liu and B. Joe (1994), ‘Relationship between tetrahedron quality measures’,

BIT 34, 268–287.
J. Mackenzie (1999), ‘Uniform convergence analysis of an upwind finite-difference

approximation of a convection–diffusion boundary value problem on an adap-
tive grid’, IMA J. Numer. Anal. 19, 233–249.

J. A. Mackenzie and W. R. Mekwi (2007a), On the use of moving mesh methods
to solve PDEs, in Adaptive Computations: Theory and Algorithms (T. Tang
and J. Xu, eds), Science Press, Beijing, pp. 242–278.

J. A. Mackenzie and W. R. Mekwi (2007b), ‘An analysis of stability and convergence
of a finite-difference discretization of a model parabolic PDE in 1D using a
moving mesh’, IMA J. Numer. Anal. 27, 507–528.

J. A. Mackenzie and M. L. Robertson (2002), ‘A moving mesh method for the
solution of the one-dimensional phase-field equations’, J. Comput. Phys.
181, 526–544.

R. I. McLachlan (1994), ‘Symplectic integration of Hamiltonian wave equations’,
Numer. Math. 66, 465–492.

A. Marquina (1994), ‘Local piecewise hyperbolic resolution of numerical fluxes for
nonlinear scalar conservation laws’, SIAM J. Sci. Comput. 15, 894–904.

C. T. Miller, S. N. Gleyzer and P. T. Imhoff (1998), Numerical modeling of NAPL
dissolution fingering in porous media, in Physical Nonequilibrium in Soils:
Modeling and Application (H. M. Selim and L. Ma, eds), Ann Arbor Press.

K. Miller (1981), ‘Moving finite elements II’, SIAM J. Numer. Anal. 18, 1033–1057.
K. Miller and R. N. Miller (1981), ‘Moving finite elements I’, SIAM J. Numer.

Anal. 18, 1019–1032.
P. K. Moore and J. E. Flaherty (1992), ‘Adaptive local overlapping grid methods

for parabolic system in two space dimensions’, J. Comput. Phys. 98, 54–63.
J. Moser (1965), ‘On the volume elements of a manifold’, Trans. Amer. Math. Soc.

120, 286–294.
L. S. Mulholland, W. Huang and D. M. Sloan (1998), ‘Pseudospectral solution of

near-singular problems using numerical coordinate transformations based on
adaptivity’, SIAM J. Sci. Comput. 19, 1261–1298.

N. Nakamura (1994), ‘Nonlinear equilibriation of two-dimensional Eady waves’,
Simulations with viscous geostrophic momentum equations’, J. Atmos. Sci.
51, 1023–1035.

V. I. Oliker and L. D. Prussner (1988), ‘On the numerical solution of the equation
(∂2z/∂x2)(∂2z/∂y2) − ((∂2z/∂x∂y))2 = f and its discretizations I’, Numer.
Math. 54, 271–293.

Adaptivity with moving grids 129

P. J. Olver (1986), Applications of Lie Groups to Differential Equations, Springer,
New York.

L. R. Petzold (1982), A description of DASSL: A differential/algebraic system
solver. Technical report SAND82-8637, Sandia National Labs, Livermore, CA.

L. R. Petzold (1987), ‘Observations on an adaptive moving grid method for one-
dimensional systems for partial differential equations’, Appl. Numer. Math.
3, 347–360.

J. Pryce (1989), ‘On the convergence of iterated remeshing’, IMA J. Numer. Anal.
9, 315–335.

Y. Qiu and D. M. Sloan (1998), ‘Numerical solution of Fisher’s equation using a
moving mesh method’, J. Comput. Phys. 146, 726–746.

Y. Qiu and D. M. Sloan (1999), ‘Analysis of difference approximations to a singu-
larly perturbed two-point boundary value problem on an adaptively generated
grid’, J. Comput. Appl. Math. 101, 1–25.

Y. Qiu, D. M. Sloan and T. Tang (2000), ‘Numerical solution of a singularly per-
turbed two-point boundary value problem using equidistribution: Analysis of
convergence’, J. Comput. Appl. Math. 116, 121–143.

S. T. Rachev and L. Rüschendorf (1998), Mass Transportation Problems I: Theory,
Probability and its Applications, Springer, New York.

W. Ren and X. Wang (2000), ‘An iterative grid redistribution method for singular
problems in multiple dimensions’, J. Comput. Phys. 159, 246–273.

Y. G. Reshetnyak (1989), Space Mappings with Bounded Distortion, Vol. 73 of
Translations of Mathematical Monographs, AMS, Providence, RI.

R. D. Russell, J. F. Williams, and X. Xu (2007), ‘MOVCOL4: A moving mesh
code for fourth-order time-dependent partial differential equations’, SIAM J.
Sci. Comput. 29, 197–220

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov (1995),
Blow-up in Quasilinear Parabolic Equations, Vol. 19 of De Gruyter Exposi-
tions in Mathematics, Walter de Gruyter.

G. Sapiro (2003), Introduction to partial differential equations and variational for-
mulations in image processing, in Foundations of Computational Mathematics
(F. Cucker, ed.), Vol. 1, pp. 383–461.

P. Saucez, A. Vande Vouwer and P. A. Zegeling (2005), ‘Adaptive method of lines
solutions for the extended fifth order Korteveg–De Vries equation’, J. Comput.
Math. 183, 343–357.

B. Semper and G. Liao (1995), ‘A moving grid finite-element method using grid
deformation’, Numer. Methods in PDEs 11, 603–615.

M. J. Sewell (1978), ‘On Legendre transformations and umbilic catastrophes’,
Math. Proc. Camb. Phil. Soc. 83, 273–288.

M. J. Sewell (2002), Some applications of transformation theory in mechanics, in
Large Scale Atmosphere–Ocean Dynamics, Vol. II (J. Norbury and I. Roul-
stone, eds), Cambridge University Press, pp. 143–223.

R. Shewchuk (2002), Constrained Delaunay tetrahedralizations and provably good
boundary recovery, in IMR 2002, Sandia National Laboratories, pp. 193–204.

G. E. Shilov and B. L. Gurevich (1978), Integral, Measure and Derivative: A Uni-
fied Approach, Dover.

130 C. J. Budd, W. Huang and R. D. Russell

J. H. Smith (1996), Analysis of moving mesh methods for dissipative partial dif-
ferential equations. PhD Thesis, Department of Computer Science, Stanford
University.

J. Stockie, J. A. Mackenzie, and R. D. Russell (2000), ‘A moving mesh method
for one-dimensional hyperbolic conservation laws’, SIAM J. Sci. Comput.
22, 1791–1813.

C. Sulem and P. L. Sulem (1999), The Nonlinear Schrödinger Equation: Self-
Focusing and Wave Collapse, Springer.

M. H. M. Sulman (2008) Optimal mass transport for adaptivity and image regis-
tration. PhD Thesis, Simon Fraser University.

Z. Tan (2007), ‘Adaptive moving mesh methods for two-dimensional resistive
magneto-hydrodynamic PDE models’, Computers and Fluids 36, 758–771.

Z. Tan, K. M. Lim and B. C. Khoo (2007), ‘An adaptive mesh redistribution
method for the incompressible mixture flows using phase-field model’, J. Com-
put. Phys. 225, 1137–1158.

H. Z. Tang and T. Tang (2003), ‘Adaptive mesh methods for one- and two-dimen-
sional hyperbolic conservation laws’, SIAM J. Numer. Anal. 41, 487–515.

T. Tang (2005), Moving mesh methods for computational fluid dynamics, in Recent
Advances in Adaptive Computations, Vol. 383 of Contemporary Mathematics,
AMS, pp. 141–173.

T. Tang and J. Xu, eds (2007), Adaptive Computations: Theory and Algorithms,
Science Press, Beijing.

T. W. Tee and L. N. Trefethen (2006), ‘A rational spectral collocation method
with adaptively transformed Chebyshev grid points’, SIAM J. Sci. Comput.
28, 1798–1811.

J. F. Thompson (1985), ‘A survey of dynamically-adaptive grids in the numerical
solution of partial differential equations’, Appl. Numer. Math. 1, 3–27.

J. F. Thompson and N. P. Weatherill (1992), ‘Structured and unstructured grid
generation’, Critical Reviews Biomed. Eng. 20, 73–120.

J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin (1982), ‘Boundary-fitted coor-
dinate systems for numerical solution of partial differential equations: A re-
view’, J. Comput. Phys. 47, 1–108.

J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin (1985), Numerical Grid Gen-
eration, North-Holland.

Y. Touringy and F. Hülseman (1998), ‘A new moving mesh algorithm for the finite
element solution of variational problems’, SIAM J. Numer. Anal. 35, 1416–
1438.

A. E. P. Veldman and K. Rinzema (1992), ‘Playing with nonuniform grids’, J. Engrg
Math. 26, 119–130.

J. G. Verwer, J. G. Blom, R. M. Furzeland and P. A. Zegeling (1989), A moving-
grid method for one-dimensional PDEs based on the method of lines, in Adap-
tive Methods for Partial Differential Equations (J. E. Flaherty, P. J. Paslow,
M. S. Shepard and J. D. Vasilakis, eds), SIAM, Philadelphia, pp. 160–175.

C. Villani (2003), Topics in Optimal Transportation, Vol. 58 of Graduate Studies
in Mathematics, AMS.

E. Walsh, C. J. Budd and J. F. Williams (2009), The PMA method for grid gener-
ation applied to the Eady problem in meteorology. University of Bath report.

Adaptivity with moving grids 131

L.-L. Wang and J. Shen (2005), ‘Error analysis for mapped Jacobi spectral meth-
ods’, J. Sci. Comput. 24, 183–218.

A. J. Wathen and M. J. Baines (1985), ‘On the structure of the moving finite-
element equations’, IMA J. Numer. Anal. 5, 161–182.

A. M. Winslow (1967), ‘Numerical solution of the quasilinear Poisson equation in
a nonuniform triangle mesh’, J. Comput. Phys. 2, 149–172.

A. M. Winslow (1981), Adaptive mesh rezoning by the equipotential method. Tech-
nical report UCID-19062, Lawrence Livermore Lab.

X. Xu, W.-H. Huang, R. D. Russell and J. F. Williams (2009), Convergence of
de Boor’s algorithm for generation of equidistributing meshes. Submitted.

N. N. Yanenko, E. A. Kroshko, V. V. Liseikin, V. M. Fomin, V. P. Shapeev and
Y. A. Shitov (1976), Methods for the Construction of Moving Grids for Prob-
lems of Fluid Dynamics with Big Deformations, Vol. 59 of Lecture Notes in
Physics, Springer.

P. A. Zegeling (1993), Moving-grid methods for time-dependent partial differential
equations. CWI Tract 94.

P. A. Zegeling (2005), ‘On resistive MHD models with adaptive moving meshes’,
J. Sci. Comput. 24, 263–284.

P. A. Zegeling (2007), Theory and application of adaptive moving grid methods,
in Adaptive Computations: Theory and Algorithms, Science Press, Beijing.

P. A. Zegeling and H. P. Kok (2004), ‘Adaptive moving mesh computations for
reaction–diffusion systems’, J. Comput. Appl. Math. 168, 519–528.

Z.-R Zhang and T. Tang (2002), ‘An adaptive mesh redistribution algorithm for
convection-dominated problems’, Comm. Pure Appl. Anal. 1, 341–357

B. Zitova and J. Flusser (2003), ‘Image registration methods: A survey’, Image
and Vision Comput. 21, 977–1000.

M. Zlamal (1968), ‘On the finite element method’, Numer. Math. 12, 394–409.

