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Abstract

We study the macroscopic conduction properties of large but finite binary networks with conducting bonds. By taking
a combination of a spectral and an averaging based approach we derive asymptotic formulæ for the conduction in terms
of the component proportions p and the total number of components N . These formulæ correctly identify both the
percolation limits and also the emergent power law behaviour between the percolation limits and show the interplay
between the size of the network and the deviation of the proportion from the critical value of p = 1/2. The results
compare excellently with a large number of numerical simulations.
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1. Introduction and summary

Large but finite binary networks comprising disordered
mixtures of two interacting components can arise both di-
rectly, in electrical circuits [1, 2, 3, 4] or mechanical struc-
tures [5], and as models of other systems such as disor-
dered materials with varying electrical [6], thermal, me-
chanical or even geophysical properties in the micro-scale,
coupled at a meso-scale [7]. They are prototypes of many
forms of complex systems which are often observed to have
macroscopic emergent properties which can have emergent
power-law behaviour over a wide range of parameter val-
ues which is different from any power law behaviour of the
individual elements of the network, and is a consequence
of the way in which the responses of the components com-
bine. For certain ranges of parameters we see the exten-
sively studied percolation type of behaviour [8], in which
the overall conductance is directly proportional to the in-
dividual component conductances with a constant of pro-
portionality dependent both on the component proportion
and on the network size. In this paper, we will combine a
spectral analysis, motivated by [9]), of the (partly random)
linear operators (Kirchhoff-type matrices) associated with
the network, with the averaging methods described in [4],
to derive a universal asymptotic formula for the emergent
network admittance, that includes both the effects of the
component proportion p and the network size N .

We consider (a set of random realisations of) a binary
square network comprising a random mixture of N con-
ducting bonds which are either chosen to have a constant
admittance y1 or a variable admittance y2. If p is the occu-
pation probability for choosing a y2 component, and (1−p)
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the occupation probability for y1, in the limit of large N
or for averages over large numbers of systems, it directly
determines the proportion of y2 to be approximately p and
y1 to be (1 − p). We set the admittance ratio to be

µ = y2/y1

and will assume that µ is an experimentally variable pa-
rameter. In particular we will assume that y1 = 1/R is
resistive (real) and that y2 is either resistive, in which
case µ is real and positive, or y2 is reactive (for exam-
ple y2 = iωC where C is a capacitance and ω is a variable
applied angular frequency), so that µ is pure imaginary. If
µ is varied then the system has a total admittance Y (µ)
which emerges from the combination of the admittance
pathways through the various bonds in the network. Over
a wide range of values 0 < µ1 < |µ| < µ2, both types of
bond can be considered to conduct and the admittance dis-
plays a combined power law emergent characteristic so that
Y (µ) is proportional to y1−α

1 yα
2 with an exponent α(p) ≈ p.

The effects of network size, and component proportion, are
important in that µ1 and µ2 depend upon both p and N ,
and it is well known [8] that the case p = 1/2 is a critical
value(pc) for two-dimensional square networks. If p 6= 1/2
and N is sufficiently large then this problem can be stud-
ied by the averaging and the effective medium approxima-
tion, EMA described in [4], with µ1 → 0 and µ2 → ∞ as
p → 1/2. This approximation breaks down if p ≈ 1/2 and
N is not very large. When p = 1/2, then in the power law
range µ1 < |µ| < µ2 we have the well known duality result
Y =

√
y1y2 [10] and we will show in this paper that µ1 is

inversely proportional to N and µ2 directly proportional
to N , for large N . In contrast to the power law behaviour,
when either 0 < |µ| < µ1 or |µ| > µ2 percolation type
behaviour is observed, in which the conducting bonds are
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either those with conductance y1 or y2 respectively. In this
case, if p < 1/2 then in all realisations of the network, Y is
proportional to y1, and if p > 1/2, Y is proportional to y2,
with constants of proportionality dependent on |p − 1/2|.
If p = 1/2, half of the realisations have Y proportional to
y1 and the other half to y2. Hence we see in this system (i)
an emergent region with a power law response depending
on the proportion but not the arrangement or number of
the components (ii) a more random region (iii) a transi-
tion between these two regions at frequency values which
depends on the number and proportion of components in
the system. Illustrations of the different types of observed
response will be shown in Section 2.

The purpose of this paper is to give insight into both
the emergent power law and percolation behaviour by ob-
taining asymptotic formulæ for the expected response curves.
To do this we extend and combine results obtained by
two complementary methods, one based upon averaging
[4] and the other based on properties of the spectrum of
certain operators [9]. The averaging method works well
when p 6= 1/2 and N → ∞, and the spectral method, in
contrast, works well for the case of p = 1/2 and large, finite
N . The spectral method is based both on rigorous results
concerning the poles and zero distribution of the function
Y (ω) and on certain semi-empirical results on the regular-
ity of their statistical distribution.

To describe these results we set ǫ = p−1/2 to measure
the deviation from criticality, and set θ = Y/

√
y1y2. In

Section 6 we will then combine the spectral and averaging
methods to derive asymptotic formulæ valid over a range
of values for which ǫ is small and N is large. In particular,
if ǫ > 0

θ − 1

θ
+ ǫ

(√
µ − 1√

µ

)

=
1

N

(

1

µθ
− µθ

)

(1)

and if ǫ < 0 then

θ − 1

θ
+ ǫ

(√
µ − 1√

µ

)

=
1

N

(

µ

θ
− θ

µ

)

, (2)

with two further formulæ (35, 36) corresponding to the two
other different percolation behaviours which arise when
ǫ = 0. We can see a variety of different behaviours sum-
marised in these expressions (and derived in Section 6).
If N = ∞ (so that 1/N = 0), then these expressions re-
duce to the EMA results [4] and they predict that there is
power law behaviour if µ1 < |µ| < µ2. If ǫ > 0 we have
µ1 = 1/µ2 = ǫ1/p and for large |µ|, Y = y1/ǫ. If ǫ < 0 then
µ1 = 1/µ2 = (−ǫ)1/(1−p) and for large |µ|, Y = −ǫy2. (We
note that the EMA prediction is not particularly good in
the limit of p → 1/2. In particular, it has been observed
empirically [9], that rather than having percolation lim-
its proportional to |1/2 − p| or |1/2 − p|−1, in the limit
of |1/2 − p| ≪ 1 they are more closely approximated by
expressions of the form |Y | ∼ |1/2 − p|±β , β ≈ 1.3.)

In contrast, if ǫ = 0 and 1 ≪ N < ∞ then we show in
Section 5 that

µ1 = 1/N, µ2 = N (3)

and for large |µ| we may observe limits of either

Y = y2/
√

N, or Y =
√

Ny1 (4)

depending upon the percolation path taken.
Perhaps the most interesting behaviour is found when

neither ǫ nor 1/N equal zero (but are both close to zero).
In this case the expressions (1,2) predict that when N ≫
1/ǫ2 we see behaviour of the form described by the EMA
approximation, whereas if ǫ is small and 1 ≪ N ≪ 1/ǫ2

the behaviour is closer given when ǫ = 0, summarised in
(3,4). This transition is illustrated in Figure 6 in Section 2.

The layout of the remainder of this paper is as fol-
lows. In Section 2 we will give a series of numerical results
for a general binary network with admittances y1 and y2,
looking at both power law emergent behaviour and at per-
colation responses. These will illustrate the various points
made above on the nature of the network response and give
numerical evidence for the asymptotic formulæ (1,2). In
Section 3 we will formulate the matrix equations describ-
ing the network and derive the admittance function. In
Section 4 we will discuss, and derive, a series of statistical
results concerning the distribution of the poles and zeros
of this function. In Section 5 we will use these statistical
results to derive a precise asymptotic form of the admit-
tance Y of a general binary network, when p = 1/2 and
N is large. In Section 6 we review the (classical) averag-
ing method for N = ∞ which gives an excellent estimate
when p is not too close to 1/2, and will also consider a
combination of this method with the spectral method for
finite N , leading to the formulæ (59,60) for the response
for all p and sufficiently large N . In Section 7 we compare
the predictions of the asymptotic formulæ with numerical
computations of the network responses. Finally in Section
8 we will draw some conclusions from this work.

2. Network models and their responses

This section will detail the various basic models for
composite materials and associated random binary elec-
trical networks described in the introduction. We will
present the graphs of their responses, comparing power
law and percolation type responses, and will provide evi-
dence for the asymptotic behaviours for these described in
the formulæ (1,2).

2.1. Composite materials and their properties

A motivation for studying binary networks comes from
models of disordered two-phase composite materials which
are found to exhibit power-law scaling in their bulk re-
sponses over several orders of magnitude in the contrast
ratio of the components [11, 2, 1, 12]. In the electrical
experiments this was previously referred to as “Univer-
sal Dielectric Response” (UDR), and it has been observed
[13, 14] that this is an emergent property arising out of
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Figure 1: Illustration of an example Resistor Capacitor circuit.

the random nature of the mixture. For a binary disor-
dered mixture, the different components can then be as-
signed randomly to the bonds on the lattice [15] and in
most previous studies a 2D square lattice has been used,
with the admittance of the bonds assigned randomly as
either y2 = iωC or y1 = 1/R, with probability p, 1 − p
respectively and for which µ = iωCR. For convenience
we consider this case in this Section, and the more general
case later in the paper. The components are distributed
in a two-dimensional lattice between two bus-bars, one of
which is grounded and the other is raised to a potential
V (t). Such a network is illustrated in 1. The network will
have a current I(t) between the bus-bars, and the macro-
scopic (complex) admittance is given by

Y = I/V.

There are many advantages to using network representa-
tions of these types of system. In particular, widely avail-
able circuit simulation software can be used, which makes
use of the available efficient sparse-matrix techniques in
solving the equations of the system, allowing many dif-
ferent simulations to be made of different realisations of
the circuit with randomly assigned resistors and capac-
itors. These techniques were used in various studies to
show that the power law behaviour exists in any binary
random network over a range of values of the contrast ratio
µ [15, 16, 3, 5, 17]. Furthermore, finite element calcula-
tions reported in [17] indicate that the response of the full
material is very close to that of the network model of that
material. These studies complement those of percolation
in such binary disordered networks over limiting values of
µ described, for example, in [9, 2, 8].

2.2. Percolation and power-law emergent behaviour

We describe the qualitative form of the conducting
behaviour of these networks as ω varies. When |µ| =

ωCR ≪ 1, the capacitors act as open circuits and con-
duction occurs predominantly through the resistors. The
circuit then becomes a percolation network in which the
bonds are either conducting with probability (1−p) or non-
conducting with probability p. The network then only con-
ducts macroscopically if there is a percolation path from
one electrode to the other. It is well known [18] that, for
2D square lattices, there is a critical percolation probabil-
ity,

pc = 1/2,

and if p < pc then such a path exists with probability
approaching one as the network size increases, and is re-
sistive, so that the overall admittance is independent of
ω. If p > pc then there is a very low probability of a
resistive conduction path, and all paths between the elec-
trodes will contain reactive elements, with the resulting
overall admittance being proportional to ω. The case of
p = pc = 1/2 is critical, with a 50% probability that a
resistive conducting path exists. Half of the realisations of
the network will give an admittance response independent
of ω and half an admittance response proportional to ω.
When |µ| = ωCR ≫ 1, we see an opposite response. In
this case the capacitors act as almost short circuits with
far higher admittance than the resistors which act as open
circuits. Thus, if p > pc we see a response proportional
to ω and if p < pc a response independent of ω. The case
of p = pc again leads to both types of response having
equal likelihood of occurrence, depending upon the net-
work configuration. Note that this implies that if p = 1/2
then there are four possible qualitatively different types
of percolation response for any random realisation of the
system. For intermediate values of ω the values of the
admittance of the resistors and the capacitors are much
closer to each other and it is here that we see emergent
power-law emergent behaviour. This is characterised an
admittance response |Y | that is proportional to ωα, α ≈ p
over a range ω ∈ (ω1, ω2) and which is not randomly de-
pendent upon the network configuration. In Figures 2 (a)
and (b) plot the admittance response for many different
realisations of a network in which C = 1nF, and R = 1kΩ,
as a function of ω in the cases of p = 0.4 < pc, p = 0.6 > pc

and in Figure 3 for p = pc = 1/2. These figures clearly
demonstrate the forms of behaviour described above and
in the Introduction. Observe that in all cases we see quite
a sharp transition between the percolation type behaviour
and the power law emergent behaviour as ω varies, that in
all cases the exponent of the power law is close to p.

We have seen above how the response of the network
depends strongly upon p. It also depends upon the net-
work size N , and this effect is especially significant if p =
pc = 1/2. In Figure 4 we fix p = pc and show how the
form of |Y | depends on N . Observe that in this case the
width of the power-law emergent region increases appar-
ently without bound, as N increases, as do the magnitude
of the responses for small and large frequencies. From
these graphs, it is apparent that in this critical case the
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Figure 2: (color online) Typical responses of network simulations
for values of p 6= 1/2 which give qualitatively different behaviour
so that in the percolation region with ω ≪ (CR)−1 = 106s−1 or
ω ≫ (CR)−1, we see resistive behaviour in case (a) and capacitative
behaviour in case (b). The figures presented are density plots of
100 random realisations for a 20 × 20 network. Note that all of the
realisations give very similar results.

upper limit of the power law emergent region is propor-
tional to N and the lower limit proportional to 1/N . This
is consistent with the formulæ (3,4), presented in the Intro-
duction. We can roughly motivate the result for p = 1/2
as follows. Suppose that ω is small so that the capaci-
tors essentially act as open circuits. Imagine for a single
percolation path through all of these capacitors compris-
ing a chain of resistors, then this will have an approxi-
mate length of

√
N resistors and hence a conductance of

1/(
√

NR). In contrast, if there is a dual path of capacitors
going from top to bottom of the network, interrupting the
resistors, then each resistive path has conductance iωC
and there are

√
N of these in parallel, so that the overall

conductance is
√

NiωC. In Figure 5 we plot the response
for p = 0.4 and again increase N . In contrast to the former
case, away from p = 1/2, the size of the power-law emer-
gent region appears to scale with N for small N before
becoming asymptotic to a finite value for larger values of
N .

p=0.5
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No C path
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ω1
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Figure 3: (color online) Responses for 100 realisations at p = 1/2
showing four different qualitative types of response for different re-
alisations. Here, about half of the responses have a resistive perco-
lation path and half have a capacitive one at low frequencies, with
a similar behaviour at high frequencies. The responses at high and
low ω indicate which of these cases exist for a particular realisation.
The power-law emergent region can also be seen in which the admit-
tance scales as

√
ω and all of the responses of the different network

realisations coincide

2.3. The effects of network size and bond proportions

To compare these results and to investigate the inter-
play between network size and the proportion p, we con-
sider for p ≤ pc, the response for those realisations which
have a resistive percolation path for both low and high
frequencies. We define the dynamic range Ŷ (N, p) by

Ŷ =
|Y |max

|Y |min
=

|Y |(ω → ∞)

|Y |(ω → 0)
.

In Figure 6 (a) we plot Ŷ as a function of N for a variety of
values of p ≤ 1/2. We see from this figure that if p = 1/2
then Ŷ is directly proportional to N for all values of N . In
contrast, if p < 1/2 then Ŷ is directly proportional to N
for smaller values of N and then becomes asymptotic to a
finite value Ŷ (p) as N → ∞. The transition between these
two forms of behaviour occurs when N > (1/2−p)−2. This
behaviour can be understood in terms of the asymptotic
formulæ (1,2) given in the Introduction. We will show in
Section 5 that these imply that Ŷ is approximated by β2

where β satisfies the quadratic equation

β2

N
+ (1 − 2p)β − 1 = 0. (5)

The expression (5) gives reasonable qualitative agree-
ment with the calculations presented in Figure 6 with
Ŷ ∼ N for smaller values of N and Ŷ → Ŷ (p) ≈ 1/(1−2p)
as N → ∞. However, we do have to exercise a certain de-
gree of caution in applying this formula. In Figure 6 (b)
we present Ŷ (N, p) as a function of p as p → 1/2, show-
ing the limiting value Ŷ (p) of Ŷ (N, p) as N is increased
to infinity. We see in this figure that whilst the estimate
Ŷ (p) ∼ (1 − 2p)−2 is fairly accurate, a much better esti-
mate in the limit of p → 1/2 is given by Ŷ (p) ∼ (1−2p)−2.6
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Figure 4: (color online) The effect of network size N on the width of
the power-law emergent region in the critical case ofp = 1/2. In this
figure we see this region increasing without bound as N increases.

which is consistent with known empirical results on perco-
lation [9].

3. Linear circuit analysis

We now analyse the general electrical network model
with two types of bond of admittance y1 and y2 in re-
spective proportions 1 − p and p, and admittance ratio
µ = y2/y1 with µ either positive or pure imaginary. Our
interest will be in finding how the overall admittance of
the system varies as µ itself varies, and seeing how this
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(c)
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Figure 5: (color online) The effect of the network size N on the
power-law emergent region for p = 0.4 < pc, in which we see this
region becoming asymptotic to a finite set as N → ∞.

can be determined in terms of the poles and zeros of the
admittance function Y (µ).

3.1. Linear circuit formulation

Consider the 2D N node square lattice network shown
in Figure 1, with all of the nodes on the left-hand-side
connected via a bus-bar to a time varying voltage V (t) =
V eiωt and on the right-hand-side via a bus-bar to earth
(V = 0). We assign a voltage vi with i = 1 . . . N to each
(interior) node, and set v = (v1, v2, v3 . . . vN )T . We also
assume that adjacent nodes are connected by a bond of
admittance yi,j ∈ {y1, y2}. The current from the node
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Figure 6: (color online) (a) Variation of the dynamic range Ŷ ≡
|Y |max/|Y |min as a function of N and p, (b) The value of Ŷ (p) as
a function of p → 1/2 comparing the estimates (1 − 2p)−2 and (1 −
2p)−2.6. For each value of p the vertical sequence of dots represents

calculations of Ŷ for increasing values of N .

i to an adjoining node at j is then given by Ii,j where
Ii,j = (vi − vj)yi,j . From Kirchhoff’s current law, at any
interior node all currents must sum to zero, so that

∑

j

yi,j(vi − vj) = 0. (6)

If i is a node adjacent to the left boundary then certain
of the terms vj in (6) will take the value of the (known)
applied voltage V (t). Similarly, if a node is adjacent to the
right hand boundary then certain of the terms vj in (6)
will take the value of the ground voltage 0. Combining all
of these equations together leads to a system of the form

Kv = V (t)b = V eiωtb, (7)

where K ≡ K(ω) is the (constant in time) N × N sparse
symmetric Kirchhoff matrix for the system and the adja-
cency vector b ≡ b(ω) is the vector of the admittances

of the bonds between the left hand boundary and those
nodes which connected to this boundary, with zero entries
for all other nodes. As this is a linear system, we can take
v = Veiωt so that the (constant in time) vector V satisfies
the linear algebraic equation

KV = V b. (8)

If we consider the total current flow I from the LHS bound-
ary to the RHS boundary then we have

I = bT (V e − V) ≡ V c − bT V,

where e is the vector comprising ones for those nodes
adjacent to the left boundary and zeroes otherwise, and
c = bT e. Combining these expressions, the equations de-
scribing the system are then given by

KV − bV ≡ 0, cV − bT V = I. (9)

The bulk admittance Y (µ) of the whole system is then given
by Y = I/V so that

Y (µ) = c − bT K−1b. (10)

The symmetric Kirchhoff matrix K can be separated into
the two sparse symmetric N×N component matrices K =
K1+K2 corresponding to the conductance paths along the
bonds occupied by each of the two types of components.
Furthermore, as µ = y2/y1, we have

K1 = y1L1 and K2 = y2L2 = µy1L2 (11)

and hence K = y1L1+µy1L2, where the terms of the sparse
symmetric connectivity matrices L1 and L2 are constant
and take the values 1, 0,−1. Note that K is a linear affine
function of µ. Furthermore, ∆ = L1 + L2 is the discrete,
positive definite symmetric, negative Laplacian for a 2D
lattice. Similarly we can decompose the adjacency vector
into two components b1 and b2 so that

b = b1 + b2 = y1e1 + y2e2 = y1e1 + µy1e2,

where e1 and e2 are orthogonal vectors comprising ones
and zeros only corresponding to the two bond types ad-
jacent to the LHS boundary. Observe again that b is a
linear affine function of µ. A similar decomposition can be
applied to the scalar c = y1c1 + µy1c2.

3.2. Poles and zeros

As the matrix K, the adjacency vector b and the scalar
c are all affine functions of the parameter µ it follows im-
mediately from (10) and Cramer’s rule applied to (9) that
the network admittance Y (µ) is a rational function of µ,
which is the ratio of two complex polynomials P (µ) and
Q(µ) of respective degrees r ≤ N and s ≤ N , so that

Y (µ) =
Q(µ)

P (µ)
=

q0 + q1µ + q2µ
2 + . . . qrµ

r

p0 + p1µ + p2µ2 + . . . psµs
. (12)
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We require that p0 6= 0 so that the response is physically
realisable, with Y (µ) bounded as µ → 0. Several proper-
ties of the network can be deduced from this formula. For
convenience, we look at a C–R network with µ = iωCR,
although similar results arise for R–R networks. First con-
sider the case of ω small. From the discussions in Section
2, we predict that either there is (a) a resistive percolation
path in which case Y (µ) ∼ µ0 as µ → 0 or (b) such a path
does not exist, so that the conduction is capacitive, with
Y (µ) ∼ µ as µ → 0. The case (a) arises when p0 6= 0
and the case (b) when q0 = 0. Observe that this implies
that the absence of a resistive percolation path as µ → 0
is equivalent to the polynomial Q(µ) having a zero when
µ = 0. Next consider the case of ω and hence |µ| large. In
this case

Y (µ) ∼ qr

ps
µr−s as µ → ∞.

This time we may have (c) no capacitive path at high
frequency with response Y (µ) ∼ µ0 as µ → ∞, or the
existence of a capacitive path with Y (µ) ∼ µ. In case (c)
we have s = r and pr 6= 0 and in case (d) we have s =
r − 1 so that we can think of taking pr = 0. Accordingly,
we identify four corresponding types of network defined in
terms of the percolation paths for low and high frequencies:

(a) p0 6= 0
(b) p0 = 0
(c) pr 6= 0
(d) pr = 0

Both the polynomials P (µ) and Q(µ) can be factorised
by determining their respective roots µp,k, k = 1 . . . s and
µz,k, k = 1 . . . r which are the poles and zeroes of Y (µ).
We will collectively call these poles and zeroes the reso-
nances of the network. Our analysis of the network will
rely on determining certain statistical and other proper-
ties of these resonances. Note that in Case (b) we have
µz,1 = 0. Accordingly the network admittance can be ex-
pressed as

Y (µ,N) = D(N)

r
∏

k=1

(µ − µz,k)

s
∏

k=1

(µ − µp,k)
. (13)

Here D(N) is a function which does not depend on µ but
does depend on the characteristics of the network.

3.3. Location of the resonances

We firstly note that the number r of poles/zeroes can
be substantially less than N due to the formation of clus-
ters of components in the lattice which are isolated from
the boundaries [2]. Such component clusters lead to reso-
nances at infinity or zero, depending on which component
the clusters are made of. Comparing (10) and (13), it fol-
lows that the poles are the roots of the determinant of the
matrix K = y1(L1+µL2). The poles are then −1 times the

eigenvalues of the matrix pencil (L1, L2), so that µp,k, and
the corresponding vectors vp,k, satisfy the linear equation

(L1 + µp,kL2)vp,k = 0 with vp,k 6= 0. (14)

As L1 + L2 = ∆ this then implies that

(L1(1 − µp,k) + µp,k∆)vp,k = 0

so that
(L1 + µp,k∆/(1 − µp,k))vp,k = 0.

It follows immediately from the symmetry of L1 and the
fact that ∆ is a symmetric positive definite operator, that
µp,k/(1−µp,k) is real. The negativity of µp,k follows from
the fact that the network has a bounded response. Similar
reasoning shows that the zeroes µz,k are also the eigenval-

ues of a related matrix pencil (L̂1, L̂2), which is a block
bordered extension of the original matrix pencil. It fol-
lows from this reasoning that the values of µz,k are also
real and negative and, furthermore, that the the poles and
zeros interlace (see [9]) so that

0 ≥ µz,1 ≥ µp,1 ≥ µz,2 ≥ µz,2 . . .

≥ µp,s(≥ µz,s+1). (15)

These results have different interpretations in the cases
of an R–R and a C–R network. In an R–R network with
conductance ratio µ > 0 the poles and zeros occur along
the negative real axis so that µp,k = −Mp,k < 0 etc. Thus,
as µ varies through positive real values

Y (µ) = D(N)

∏r
k=1(µ + Mz,k)

∏s
k=1(µ + Mp,k)

, (16)

with the values Mz
k ≥ 0 and Mp

k > 0. For the C–R net-
work, µ = iωCR, and Y can be considered a function of
ω. The poles ωp,k of Y (ω) then satisfy iCRωp,k = −Mp,k

so that they lie along the positive imaginary axis, as do
the zeros. As ω varies through real values then

Y (ω) = D(N)

∏r
k=1(ω − iWz,k)

∏s
k=1(ω − iWp,k)

, (17)

with W z
k ≥ 0 and W p

k > 0. We note that neither of the ex-
pressions (17, 16) become unbounded as ω varies through
real values or as µ varies through positive real values. This
is in contrast to the case of a C–L network in which the
resonances can be real and positive can lead to unbounded
responses as ω varies. In contrast, we see in the C–R and
R–R networks, an averaging effect in the product terms in
these expressions, which leads to the observed emergent
behaviours.

4. The distribution of the resonances

We now look at the distribution of the poles and zeros,
and draw certain conclusions about their statistical regu-
larity, spacing and symmetries which allows us to compute
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the asymptotic form of the system response. The statis-
tics of the resonances are most regular in the critical case
of p = 1/2, allowing us to make very precise estimates of
the overall system behaviour in this case, precisely com-
plementing the averaging methods which work best when
p 6= 1/2. To perform these calculations, we note that if we
consider the elements of the network to be assigned ran-
domly, with the components taking each of the two pos-
sible values with probabilities p and (1 − p), then we can
consider the resonances to be random variables. The poles
and associated eigenvectors are given by the solutions of
the matrix pencil equation (14).

L1vp,k = −µp,kL2vp,k. (18)

Each realisation of the network, with bonds chosen from
a Binomial [p, (1− p)] distribution will give a different set
of values for µp,k ≡ −iMp,k ≡ iCRWp,k and we can then
consider the statistics of this set. We ask the following
questions: (1) What is the statistical distribution of µp,k

if N is large? (2) What is the statistical distribution of
the location of a zero between its two adjacent poles? (3)
How do µp,1 and µp,N vary with (large) N? In each case
we will find good numerical evidence for strong statistical
regularity of the poles (especially in the case of p = 1/2),
leading to answers to each of the above questions.

4.1. Preliminary observations on the pole locations

When p = 1/2 the matrices L1 and L2 representing
the connectivity of the two components have a statistical
duality so that any realisation which leads to a particu-
lar matrix L1 is equally likely to lead to the same matrix
L2. Because of this, if µ is an observed eigenvalue of the
pair (L1, L2) it is equally likely for there to be an observed
eigenvalue 1/µ of the pair (L2, L1) with the same eigen-
vector. Thus in any set of realisations of the system with
p = 1/2 we will see eigenvalues (and hence poles or zeros)
µ and 1/µ occurring with equal likelihood. More generally,
if an eigenvalue µ occurs in a realisation with proportion
p of component y2, then we will see an eigenvalue 1/µ in
a realisation with proportion 1 − p. It follows from this
simple observation that when p = 1/2 the variable log(µ)
should be expected to be a random variable with a sym-
metric probability distribution and with mean zero. It is
therefore natural to expect that for a large number of re-
alisations, the variables log(Mk,p) should follow a normal
distribution with mean zero (so that Mp,k has a log-normal
distribution centred on M = 1). Similarly, if Mp,1 is the
smallest value of Mp,k and Mp,N the largest value then
Mp,1 = 1/Mp,N . It follows similarly that log(Wp,k) is ex-
pected to have a mean value of − log(CR). Following this
initial discussion, we now consider some numerical com-
putations of the distribution of the poles in a C–R net-
work for which CR = 10−6. As a first computation we
consider many random realisations of networks generated
with a large enough size (typically N = 380) to ensure
good statistics per network. We define S as the number

104 105 106 107 108
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Wp,k
(a)

log normal

104 105 106 107 108
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F
Wp,k
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log normal

Figure 7: (color online) Distribution of Wp,k values for (a) p = 0.25
and (b) p = 0.5 with N = 380. The curves are fitted to Normal
distributions (on a log-scale). The variance depends on p but is
largely independent of the value of N .

of horizontal components in one row of the network; giv-
ing S2 horizontal and (S − 1)2 vertical components. The
number of internal nodes (i.e. not including the boundary
nodes), which is equal to the dimension of the matrix K,
is therefore N = S(S − 1); giving the maximum possible
number of eigenvalues µi. The results of the computations
are presented in Fig. 7 in which we give a histogram of
the distribution of the poles Wp,k (on a log-scale in the
frequency domain) over 100 different realisations of each
network. These figures clearly indicate that the location
of the poles does indeed possess a strong statistical reg-
ularity, conforming approximately to a log-normal distri-
bution with mean log(1/CR) in all cases. Evidence for
this is given by comparing the resulting curve with the
standard Normal distribution with an appropriately cho-
sen value for the variance. The fitted curves in Figure 7
show that the results are close to log-normal for any choice
of p (provided that N is chosen sufficiently large). When
the results of the realisations considered above are fitted
to a log-normal distribution with probability density func-
tion P (W ) = a exp

(

−(W − E{W})2/2σ2
)

we find the re-
markable result that the standard deviation σ appears to
be largely independent of the value of N and to display a
simple functional relation on p, with a good fit to the curve

8



σ = αp(1−p), over many values of N . As a second calcula-
tion we take a single realisation of a network with N ≈ 380
nodes and p = 1/2 and determine the location of Wp,k. A
plot of the logarithm of the poles, ordered in increasing
size, as a function of k is given in Figure 8. Two features
of this figure are immediately obvious. Firstly, the terms
Wp,k appear to be point values of a regular function f(k).
Secondly, log(CRWp,k) shows a strong degree of symmetry
about zero, so that if 1 ≤ k ≤ N then log(CRWp,k) = 0 if
k = N/2. Motivated by the discussion above, we compare
the form of this graph with that of the error function, that
is we compare erf(log(CRWp,k)) with 2k/N − 1. The cor-
respondence is very good, strongly indicating that log(f)
takes the form of the inverse error function with an appro-
priate constant of proportionality.
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Figure 8: (color online) The location of the logarithm of the poles
as a function of k, for a single realisation of the network, and a
comparison with the inverse error function.

4.2. Pole-zero spacing

As a next calculation we consider the statistical distri-
bution of the location of the interlacing zeros with respect
to the poles. In particular we consider the variable ηk,
which depends on the proportion p given by

ηk(p) ≡ log Mp,k+1 − log Mz,k

log Mp,k+1 − log Mp,k
≡ log Wp,k+1 − log Wz,k

log Wp,k+1 − log Wp,k
.

(19)

We now establish three symmetry results for the mean
value η̄k(p) of ηk, taken over many realisations.

First symmetry: Assume that when the proportion is p
that the zeros are Mz,k, k ∈ [0, N ] and the poles are Mp,k, k ∈
[1, N ] and when it is 1 − p they are M̂z,k and M̂p,k, k ∈
[1, N ]. Then

ηk(1 − p) ≡ log M̂p,k+1 − log M̂z,k

log M̂p,k+1 − log M̂p,k

. (20)

By the statistical symmetry results described above we
have

log M̂z,k = − log Mz,N−k, log M̂p,k = − log Mp,N−k+1.
(21)

So that

ηN−k(1 − p) ≡ log Wz,k − log Wp,k

log Wp,k+1 − log Wp,k
. (22)

Hence,
ηk(p) + η̄N−k(1 − p) = 1. (23)

Second symmetry: We next invoke duality results due to
Keller [10] (see also [9]), in which the admittance of a net-
work is compared with that of the dual network, in which
every bond of the original network is replaced with an or-
thogonal bond for the dual. Significantly, square binary
networks are self-dual. A consequence of the duality re-
sults is that

Y (y1, y2) Y (y2, y1) = y1 y2. (24)

It follows from (24) that

D(N)

∏r
k=1(µ + Mz,k)

∏s
k=1(µ + Mp,k)

=
y1y2

D(N)

∏s
k=1(1/µ + Mp,k)

∏r
k=1(1/µ + Mz,k)

.

This can only be true for all µ if we have the symmetry
result (taking the ordering of the poles and zeros into ac-
count) given by Mp,k = 1/Mz,N−k. It immediately follows
from (19) that asymptotically we have the second symme-
try

η̄k(p) = η̄N−k(p). (25)

Third symmetry: Combining (23) and (25), we have

η̄k(p) + η̄k(1 − p) = 1. (26)

In particular, this gives

η̄k(1/2) = 1/2. (27)

The distribution of η̄k(p) over 100 realisations of a C–R
network, plotted as a function the location of log(Wp,k)
for p = 0.3, 0.5, 0.7, is shown in Figure 9 together with a
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graph of η̄k(0.3)+η̄k(0.7). The figures (a), (b) and (c) show
clearly the reflectional symmetry about the mid-point im-
plied by (25). The figure in part (b) (with p = 1/2) is par-
ticularly remarkable, showing, as predicted by (27) that
η̄k(1/2) is equal to 1/2 almost independently of the value
of log(Wp,k). There is some deviation from this value at
the high and low ends of the range due to slower conver-
gence to the mean. The figure in part (d) for p = 0.3
and p = 0.7 also clearly illustrates the symmetry relation
(26). We note, however, that for p 6= 1/2 the value of η̄k

of ηk varies with log(Wp,k) in a symmetric distribution (as
predicted by (25)) which depends approximately quadrat-
ically on the value of log(Wp,k). If p > 1/2, η̄k takes a
value a little less than p in the centre of the range when
Wp,k = Wmid = 1/CR, and a bit greater than p towards
the ends of the range. The distribution is reversed when
p < 1/2, as can be seen by comparing Figures 9 (a) and
(c), and this is a consequence of (26).

4.3. Limits of the resonance distributions

As a final calculation, we consider the number N ′ of
the finite non-zero resonances in this case of a C–R net-
work, and the location of the first non-zero pole and zero
Wz,1,Wp,1 and the last finite pole and zero Wp,N ′ ,Wz,N ′ .
As discussed, in the case of p = 1/2 we expect a sym-
metrical relation so that CRWp,1 and CRWp,N ′ might be
expected to take reciprocal values. We consider two cal-
culations, firstly determining N ′/N for a range of values
of N and of p and secondly calculating the functional de-
pendence of Wp,1 and Wp,N ′ upon N and p.The value of
N ′ can be considered statistically and represents proba-
bility of a node contributing to the current paths. If we
take z = N ′/N as a function of p for a range of val-
ues of N the shape of this curve is parabolic in p with
a maximum value for z ≈ 0.8 given when p = 1/2, con-
sistent with statistical arguments presented in [9], which
imply that the maximum value at p = 1/2 is given by
N ′ = 3

(

2 −
√

3
)

= 0.804 . . .. We next consider the val-
ues of Wp,1 and of Wp,N ′ which will mark the transition
between emergent type behaviour and percolation type be-
haviour. A log-log plot of the values of Wz,1, Wp,1 and of
Wz,N ′ , Wp,N ′ as functions of N for the case of p = 1/2
is given in Figure 10. There is very clear evidence from
these plots that each of Wz,1, Wp,1 and Wz,N ′ , Wp,N ′ both
have a strong linear dependence upon N and 1/N for all
values of N . Indeed we conclude from this figure that the
following reciprocal relations hold

CR Wz,1, CR Wp,1 ∼ N−1

and
CR Wz,N ′ , CR Wp,N ′ ∼ N,

with an identical scaling for Mz,1,Mp,1,Mz,N ′ ,Mp,N ′ .

4.4. Summary

The main conclusions of this section are that there is
a strong statistical regularity in the location of the poles
and the zeros of the admittance function.
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Figure 9: (color online) Figures showing how the mean value η̄k of
ηk taken over many realisations of the network, varies with the mean
value of Wp,k. The four examples show results for (a) p = 0.3, (b)
p = 0.5, (c) p = 0.7 and (d) η̄(0.3) + η̄(0.7).
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1. Mp,k ∼ f(k) for an appropriate continuous function
f(k) where f depends upon p strongly and upon N
very weakly.

2. η̄k(1/2) ≈ 1/2 for all values of k.

3. If p = 1/2 and Mz,1 6= 0, then

Mp,1,Mz,1 ∼ N−1, Mp,N ′ ,Mz,N ′ ∼ N.

5. Asymptotic analysis of the conductance when

p = 1/2 using spectral arguments

5.1. Derivation of the response for general µ

We consider the formulæ for the value of the admit-
tance of the binary network

Y (µ) = D(N)

r
∏

k=1

(µ − µz,k)

s
∏

k=1

(µ − µp,k)
, (28)

where the results of section (3) imply that µz,k = −Mz,k,
and 0 ≤ Mz,1 < Mp,1 < Mz,2 < Mp,2 < . . . < Mp,s(<
Mz(s+1)). As µ is either positive or purely imaginary, Y is
a bounded function for all µ. Here we assume that we have
s = N ′ poles, but consider situations with different per-
colation responses for |µ| large or small, depending upon
whether the first zero Mz,1 = 0 and on the existence or not
of a final zero Mz,(N ′+1). These four cases lead to four func-
tional forms for the conductance, all of which are realisable
in the case of p = 1/2 and we derive each of these from
asymptotic arguments. At this stage the constant D(N)
is undetermined, but we will be able to deduce its value
from our subsequent analysis. Although simple, these ar-
guments lead to remarkably accurate formulæ when com-
pared with the numerical calculations, that predict not
only the PLER but also the limits of this region. To obtain
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Figure 10: (color online) Largest Wz,N′ , Wp,N′ and smallest
Wz,1, Wp,1 zeros and poles for a C–R network with p = 0.5 showing
linear dependence on N and 1/N .

an asymptotic formula from (28) we assume that s = N ′

is large, and that there is a high density of poles and ze-
ros. From the results in the previous section we know
that, asymptotically, the poles at −Mp,k follow a regular
distribution and that the the zeroes have a regular spac-
ing between the poles. From the previous section we have
Mp,k ∼ f(k) so that Mp,k+1 − Mp,k ∼ f ′(k). Setting

Mp,k+1 − Mz,k+1

Mp,k+1 − Mp,k
= δk

we have
Mz,k+1 ∼ f(k) + (1 − δk)f ′(k). (29)

As we have seen, the function log(f(k)) is given by the
inverse of the error function, but its precise form does not
matter too much for the next calculation. To do this we
firstly consider the contributions to the product in (28)
which arise from the terms from the first pole to the final
zero:

P ≡ D(N)

N ′

∏

k=1

µ + Mz,k

µ + Mp,k
. (30)

Note that this product has implicitly assumed the exis-
tence of a final zero Mz,(N ′+1), specific to the case where
there is a percolation path through the y2 bonds but no
percolation path through the y1 bonds. This contribution
will be corrected in cases for which such a final zero does
not exist. Using the results in (29), in particular on the
mean spacing of the zeros between the poles, we may ex-
press P as

P = D(N)

N ′

∏

k=1

µ + (f(k) + (1 − δ̄k)f ′(k))

µ + f(k)

= D(N)

N ′

∏

k=1

1 +
(1 − δ̄k)f ′(k)

µ + f(k)
.

Taking the logarithm of both sides and using the approx-
imation log(1 + x) ≈ x for small x, we have

log(P ) ≈ log(D(N)) +

N ′

∑

k=1

(1 − δ̄k)f ′(k)

µ + f(k)
. (31)

We now approximate the sum in (31) by an integral, so
that

log(P ) ≈ log(D(N)) +

N ′

∫

k=1

(1 − δ̄k)
f ′(k)

µ + f(k)
dk.

Making a change of variable from k to f , gives

log(P ) ≈ log(D(N))

+

∫ Mp,N′

Mp,1

(1 − δ̄(f))
df

µ + f
. (32)

11



5.2. The asymptotic form of the equations when p = 1/2

To proceed we first determine the relation between ηk

and δk. Let

δMp,k = Mp,k+1 − Mp,k

δ log Mp,k = log Mp,k+1 − log Mp,k.

As Mz,k = (1 − δk)δMp,k + Mp,k, we have

log Mz,k = log
(

(1 − δk)δMp,k/Mp,k + 1
)

+ log Mp,k.

Comparing with the exact expression

log Mz,k = (1 − ηk)δ log Mp,k + log Mp,k,

and taking Taylor expansions, we have

(1 − ηk)
∞
∑

j=1

(−1)j+1

m!

(

δMp,k

Mp,k

)j

=

∞
∑

j=1

(1 − δk)j (−1)j+1

j!

(

δMp,k

Mp,k

)j

. (33)

When (δMp,k/Mp,k)2 ≪ (δMp,k/Mp,k) it follows that

ηk ≈ δk.

Assuming the poles have a log-normal distribution then
δ log Mp,k ∼ O(1/N). For a sufficiently large network,
when p = 0.5, we expect δk ≈ ηk for most k (the first
order Taylor expansion becomes invalid near the tails of
the normal distribution, but this contributes relatively lit-
tle to the summation in (31)). The results imply that δ̄k

is very close to being constant at 1/2, so that in (32) we
have 1− δ̄ = 1/2. We can then integrate the expression for
P exactly. This allows sharp estimates of the asymptotic
behaviour in this critical case. Integrating (32) gives

log(P ) ≈ log(D(N)) +
1

2
log

(

µ + Mp,N ′

µ + Mp,1

)

,

so that

P ≈ D(N)

(

µ + Mp,N ′

µ + Mp,1

)
1

2

.

In this critical case it is equally likely that we will/will not
have percolation paths along y1 or y2 bonds at both small
and large values of |µ|. Accordingly, we must consider
four equally likely cases of the distribution of the poles
and zeros which could arise in any random realisation of
the network. Thus to obtain the four possible responses of
the network we must now consider the contribution of the
first zero and also of the last zero.

Case 1: First zero at the origin, last zero at N ′ + 1. This
corresponds to there being a percolation path through the
y2 bonds. To determine this case we multiply P by µ to
give Y1(µ) so that

Y1(µ) ≈ D(N)1 µ

(

µ + Mp,N ′

µ + Mp,1

)
1

2

. (34)

Case 2: First zero not at the origin, last zero at N ′ +
1. This corresponds to the existence of percolation paths
through y1 bonds and y2 bonds. In this case we multiply P
by µ+Mz,1 to give |Y (µ)|. We also use the result from the
previous section that asymptotically Mz,1 ∼ Mp,1. This
then gives

Y2(µ) ≈ D(N)2 (µ + Mp,N ′)
1

2 (µ + Mp,1)
1

2 . (35)

Case 3: First zero at the origin, last zero at N ′. Here
there are no percolation through either set of bonds. To
determine this case we multiply P by µ and divide by
µ + Mz,N ′ to give Y . Exploiting the fact that asymptoti-
cally Mp,N ′ ∼ Mz,N ′ we then have

Y3(µ) ≈ D(N)3
µ

(µ + Mp,N ′)
1

2 (µ + Mp,1)
1

2

. (36)

Case 4: First zero not at the origin, last zero at N ′. This
final case there exists percolation via the y1 bonds but not
through the y2 bonds. To determine this case we multiply
P by µ + Mz,1 and divide by µ + Mz,N ′ to give Y . Again,
exploiting the fact that asymptotically Wp,N ′ ∼ Wz,N ′ we
have

Y4(µ) ≈ D(N)4

(

µ + Mp,1

µ + Mp,N ′

)
1

2

. (37)

We know, further, from the calculations in the previous
section that for all sufficiently large values of N

Mp,1 ∼ 1/N and Mp,N ′ ∼ N.

Substituting these values into the expression for Y1 gives

Y1(µ) ≈ D(N)1 µ

(

µ + N

µ + 1/N

)
1

2

. (38)

The value of the constant D(N)1 can be determined by
considering the mid range of each of these expressions. The
results of the classical Keller duality theory [10] predict
that each of the expressions Yi takes the same form in the
range 1/N ≪ |µ| ≪ N with

Yi(µ) ≈ √
y1y2, i = 1, 2, 3, 4. (39)

In the case of Y1 we see that the mid-range form of the
expression (38) is given by Y1 = D1

√
Nµ =

√
N
√

y2/
√

y1.

This then implies that D1 = y1/
√

N so that

Y1(µ) ≈ y1 µ√
N

(

µ + N

µ + 1/N

)
1

2

. (40)
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Very similar arguments lead to the following expressions
in the other three cases:

Y2(µ) ≈ y1√
N

(N + µ)
1

2 (1/N + µ)
1

2 , (41)

Y3(µ) ≈
√

Ny1
µ

(N + µ)
1

2 (1/N + µ)
1

2

, (42)

Y4(µ) ≈
√

Ny1

(

1/N + µ

N + µ

)
1

2

. (43)

The four formulæ above give a very complete asymptotic
description of the response of the binary network when
p = 1/2. In particular they allow us to see the transition
between the power-law emergent region and the percola-
tion regions and they also describe the form of the expres-
sions in the percolation regions. We see a clear transition
between the emergent and the percolation regions at

µ1 = 1/N and µ2 = N. (44)

Hence, the number of components in the system for p =
1/2 has a strong influence on the boundaries of the emer-
gent region and also on the percolation response. However
the emergent behaviour itself is independent of N . Observe
that these frequencies correspond directly to the limiting
pole and zero values. This gives a partial answer to the
question of how large N has to be to see an emergent re-
sponse from the network. The answer is that N has to be
sufficiently large so that 1/N and N are widely separated
frequencies. The behaviour in the percolation regions in
then given by the following:

Y1(|µ| ≪ 1) ≈ y2

√
N, Y1(|µ| ≫ 1) ≈ y2√

N
, (45)

Y2(|µ| ≪ 1) ≈ y1√
N

, Y2(|µ| ≫ 1) ≈ y2√
N

, (46)

Y3(|µ| ≪ 1) ≈ y2

√
N, Y3(|µ| ≫ 1) ≈ y1

√
N, (47)

Y4(|µ| ≪ 1) ≈ y1√
N

, Y4(|µ| ≫ 1) ≈ y1

√
N. (48)

We note that these percolation limits, with the strong de-
pendence upon

√
N are exactly as observed in Section 2.

5.3. The network response when p 6= 1/2

This case differs from the case of p = 1/2 and the
spectral analysis harder and less complete. Rather than
getting four different responses we see only two, and the
values for the conductance at high and low frequencies
are asymptotically independent of (sufficiently large) N .
When p > 1/2 then there will (with probability one) al-
ways be conducting y2 percolation paths for large values
of |µ| and for small values of |µ| there is no y1 percola-
tion path. Similarly, if p < 1/2 then we will get (with
probability one) a response with no y2 percolation path at
high frequencies and y1 percolation paths at low frequen-
cies. Hence, we need only consider Case 1 and Case 4

respectively. Secondly the formula for P in (32) involves

a quadrature involving 1 − δ̄ which cannot be obtained in
closed form. As a consequence we shall adopt a different
approach for p 6= 1/2 by combining the spectral calculation
with an averaging method.

6. Averaging calculations

The Effective Medium Approximation (EMA) formula
derived by an averaging method [4], gives an approxima-
tion to the conductance of the network, and is derived by
regarding the random distribution of the bonds as a se-
ries of perturbations of a uniform field of identical conduc-
tors. The conductance of the effective medium is chosen
to minimise the first moment of the resulting perturbation
matrix. It assumes an infinitely large number of conduc-
tances and hence corresponds to taking N → ∞ in the
previous analyses. Whilst accurate for p not too close to
1/2 it has limitations for p close to 1/2, in that whilst it
predicts a transition from emergent to percolation type be-
haviour, the form of this transition is not quite correct as
p → 1/2. Thus the EMA calculations are complimentary
to those derived using spectral methods in the previous
section. In this section we will review the EMA result,
and show that it is consistent with a PLER description of
the behaviour with a power law which we explicitly derive.
Motivated by the spectral calculations, we then extend the
EMA formula to include the effects of finite network size
N . We see presently that if N > N∗ ≡ |p − 1/2|−2 then
the EMA formula gives a good approximation to the re-
sulting conductance and the extended formula is effective
for all |p − 1/2| and 1/

√
N sufficiently small.

6.1. Infinite networks

6.1.1. Overview

If the conductances y1 and y2 are in proportion 1 − p
and p, the ‘classical’ EMA result in [4] states that the ef-
fective medium conductance Y for a very large (N → ∞)
square two-dimensional lattice solves the quadratic equa-
tion

(1 − p)

(

Y − y1

Y + y1

)

+ p

(

Y − y2

Y + y2

)

= 0. (49)

Rearranging we have

Y 2 + (1 − 2p)(y2 − y1)Y − y1y2 = 0,

so that if

ǫ = (1 − 2p), θ = Y/
√

y1y2, µ = y2/y1,

we have
θ − 1/θ + ǫ (

√
µ − 1/

√
µ) = 0. (50)

Setting γ = log(θ) and ν = log(µ) we have

sinh(γ) = −ǫ sinh(ν/2). (51)
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6.1.2. Emergent power laws

Suppose firstly that µ is real and close to unity, so that
ν, and hence γ are both not large. Then we may linearise
(51) and to leading order have γ = −ǫν/2. Thus in this
case log(Y/

√
y1y2) = ǫ log(y1/y2)/2, and rearranging this

gives the elegant power law identity

Y = y
(1−p)
1 yp

2 . (52)

This is fully consistent with the duality result (24) that

Y (y1, y2)Y (y2, y2) = y
(1−p)
1 yp

2yp
1y

(1−p)
2 = y1y2.

In a C–R network, µ = iωCR is pure imaginary. We
set µ = iη where η = ωCR is now assumed to be close
to unity and take β = log(η) to be close to zero. It then
follows that log(µ) = iπ/2 + β so that

sinh(γ) = −ǫ sinh(iπ/4+β/2) = −ǫ(i+β/2+O(β2))/
√

2.

If β = 0 then γ = iθ0 where sin(θ0) = −ǫ/
√

2. Linearising
about this solution we have, to leading order,

γ = iθ0 −
ǫ

2
√

2 cos(θ0)
β +O(β2) ≡ iθ0 + Λ log(η) +O(β2).

Thus, to leading order

|Y | =
√

ωC/R | exp(γ)| =
√

ωC/R (ωCR)Λ ≡ Kωα.

This gives the power law observed in Section 2 in a fre-
quency range centred around ωCR = O(1) and with

α(p) =
1

2
+ Λ =

1

2
− ǫ

2
√

2
√

1 − ǫ2/2
. (53)

6.1.3. Percolation behaviour

It is well known that the EMA approximation for p 6=
1/2 exhibits percolation behaviour which we summarise.
If ν is large and positive then the asymptotic form of the
solution depends upon the sign of ǫ. If ǫ > 0, which cor-
responds to p < 1/2 then for large α the equation (51)
reduces to e−γ = ǫeν/2 so that we have the percolation
behaviour given by:

1/θ = ǫ
√

µ, Y = y1/ǫ (54)

In contrast, if ǫ < 0, (p > 1/2) then for large ν the equa-
tion (51) simplifies to: eγ = (−ǫ)eν/2 so that we have the
percolation behaviour given by:

θ = −ǫ
√

µ, Y = −ǫy2. (55)

Similar results for ν large and negative follow from duality
arguments. The (frequency) limits of the emergent region
can be estimated by finding when the power law behaviour
of (52) overlaps with the percolation type behaviour. This
leads to the following estimates for the values µ1 < µ < µ2

over which we expect to see power-law emergent behaviour

ǫ > 0 : µ1 = 1/µ2 ∼ ǫ1/p, ǫ < 0 : µ1 = 1/µ2 ∼ (−ǫ)1/(1−p).
(56)

Note, these results predict that as ǫ → 0 the percola-
tion amplitudes scale as |ǫ|±1. In contrast, calculations in
[9], imply instead a scaling law of the from |ǫ|±1.3.

6.2. Large, but finite, networks

We now give a more speculative calculation which com-
bines the EMA estimate with finite size effects and the
spectral calculations of the previous section, for Case 1
and Case 4. Our starting point is the spectrally derived
formula for Y = Y1 (40) which has percolation limits pro-
portional to y2 when µ is large. Casting Y in terms of y1

and y2 we have

Y 2 =
µ2y2

1

N

(µ + N)

(µ + 1/N)
= µy2

1

(1 + µ/N)

(1 + 1/Nµ)
= y1y2

(1 + µ/N)

(1 + 1/Nµ)
.

It follows that

(1 + 1/Nµ)Y 2 − y1y2(1 + µ/N) = 0.

If we again set θ = Y/
√

y1y2 this formula can be rear-
ranged into the symmetric form

θ − 1/θ =
1

N
(µ/θ − θ/µ) . (57)

Similarly, the spectrally derived formula Y4 in (43), which
has percolation limits proportional to y1 for µ large, takes
the symmetric form

θ − 1/θ =
1

N
(1/µθ − µθ) . (58)

These expressions are both very similar in form to the
result (50) of the EMA calculation. We conjecture that
a more general expression can be obtained by combining
them into the following two fomulæ which agree with each
in the limits of ǫ = 0 and N = ∞ and which include both
the effects of component proportion and network size and
which respectively have percolation limits proportional to
y1 and y2:

θ − 1

θ
+ ǫ

(√
µ − 1√

µ

)

=
1

N

(

1

µθ
− µθ

)

(59)

and

θ − 1

θ
+ ǫ

(√
µ − 1√

µ

)

=
1

N

(

µ

θ
− θ

µ

)

. (60)

We observe that each of (59) and (60) is self-dual un-
der the map µ → 1/µ, θ → 1/θ. Similarly the symme-
try µ → 1/µ, ǫ → −ǫ maps (59) to (60) and vice versa.
We now proceed to show that (59,60) have the correct
asymptotic form of solution and give numerical evidence
for their validity in Section 7. We firstly consider the per-
colation limits of (59) and (60). Motivated by the analy-
sis in the previous subsection we consider solutions of the
form θ = β

√
µ so that Y = βy2, and θ = β/

√
µ, so that

Y = βy1, in the two cases of µ large and µ small. If µ
is large and ǫ > 0 then (59) has a solution with percola-
tion limit proportional to, and in phase with, y1, so that
θ = β/

√
µ if β satisfies the quadratic equation

β2

N
+ ǫβ − 1 = 0. (61)
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If µ is small then we have the reciprocal solution given by
the map β → 1/β. Note that if θ = β/

√
µ then |Y | = β|y1|

and hence the dynamic range is given by

Ŷ = β2 where
β2

N
+ ǫβ = 1. (62)

It is immediate that β is given by

β =
N

2

(

−ǫ +
√

ǫ2 + 4/N
)

, (63)

where the positive sign for the square root term is taken
to ensure that β > 0 so that the response is in phase with
y1. This expression takes two different forms depending
on whether (i) N ≪ ǫ−2 or (ii) N ≫ ǫ−2. In the first
case the network behaves in a similar way to one with
p = 1/2 and we have β ∼

√
N . In the second case we have

behaviour similar to N = ∞ with β ∼ 1/ǫ. This is in exact
correspondence with the calculations of the dynamic range
reported in Section 2. Similarly, if µ is large and ǫ < 0
then the equation (60) has a solution with percolation limit
proportional to, and in phase with, y2, so that θ = β

√
µ,

if β satisfies the quadratic equation

β2 + ǫβ − 1

N
= 0. (64)

7. Comparison of the asymptotic and numerical

results

We now give two sets of calculations for finite networks.
The first tests the validity of the spectral calculation in
Section 5 for the case of p = 1/2. The second the validity of
the amalgamated spectral and averaging based calculation
in Section 6.

7.1. Spectral based calculations for p = 1/2
We firstly consider a C–R network with µ = iωCR. We

compare the absolute values of the four asymptotic for-
mulæ (40,41,42,43) obtained by using the spectral method
with the numerical calculations of the absolute network
conductance |Y | with C = 1nF and R = 1kΩ as a func-
tion of ω for four different configurations of the system,
with different percolation paths for low and high frequen-
cies. The results of this comparison are shown in Figure 11
in which we plot the numerical calculations together with
the asymptotic formulæ for a range of values of N given
by N = S(S − 1) with S = 10, 20, 100. We can see that
the predictions of the asymptotic formulæ (40,41,42,43)
fit perfectly with the results of the numerical computa-
tions over all of the values of N considered. Indeed they
agree both in the (square-root) power law emergent region
and in the four possible percolation regions, and clearly
demonstrate the effect of the network size.

We next look at an R–R network with y1 = 1/R and
y2 = µ/R, with real µ and R as above. Again we compare
the predictions of the asymptotic formulæ (40,41,42,43)
with the numerical computations of |Y | in this case. Again
we see an excellent agreement in all cases, as shown in
Figure 12.
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Figure 11: (color online) Comparison of the asymptotic formulæ ob-
tained from the spectral derivation with the numerical computations
for the C–R network over many realisations, with p = 1/2 and net-
work sizes sizes S = 10, 20, 100, N = S(S − 1).

7.2. Combined averaging and spectral based calculations
for general p

We now consider the responses for general p described
by the pair of equations (59,60). We compare these with
numerical results for the C–R networks described in the
previous sub-section. In each case of p we take the equa-
tion for which the corresponding solution in the percola-
tion regime is physically correct.

As a first computation we take p = 0.4, so that ǫ =
0.2 > 0, and consider a C–R network with the same values
of C,R and taking N = 90, 9900. For an infinitely large
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Figure 12: (color online) Comparison of the asymptotic formulæ
with the numerical computations for the R–R network over many
realisations, with p = 1/2 and network sizes sizes S = 10, 20, 100,
N = S(S − 1).

network we expect to see resistive type percolation be-
haviour (with probability one) for both small and large fre-
quencies. We compute |Y (ω)| from (59) and compare these
values with the results of computations of |Y (ω)| from a
large realisations of the network in Figure 13. The results
from this computation are interesting. When N = 90,
that there is quite a large statistical range in the calcula-
tions which reduces when N = 9900. The predictions of
|Y | from (59) closely follow the mid-range (PLER) of the
computations for both N = 90 and N = 9900. However, as
expected from the EMA results, the maximum and min-
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E1

Figure 13: (color online) Comparison of the numerically obtained
solutions of (59) with the numerical computations for many realisa-
tions of the the C–R network, with p = 0.4 and network sizes sizes
N = 90, 9900.

imum values of |Y | are slightly underestimated by (59).
The results for computations of the R–R network are very
similar and we do not include them here.

As a second computation we take p = 0.6, so that
ǫ = −0.2 < 0. For an infinitely large C–R network we
expect to see reactive type percolation behaviour (with
probability one) for both small and large frequencies. We
present the results of computing |Y (ω)| from the (60) com-
pared with computations from a number of realisations of
the network when N = 90, 9900, in Figure 14. In this
computation we again see a greater statistical range when
N = 90 than when N = 9900. Indeed in the case of
N = 90 a small number of the realisations show resis-
tive percolation behaviour rather than reactive. This is
not seen in the calculations for N = 9900. In both cases
the results of the calculations from (60) closely match the
computations over the whole range.

8. Discussion

By considering large binary networks we have shown
how power law emergence can be directly related to the
statistical regularity of the spectrum of the matrices as-
sociated with the network and hence can be studied by
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Figure 14: (color online) Comparison of the numerically obtained
solutions of (60) with the numerical computations of |Y (ω)| for many
realisations of the C–R network with p = 0.6 and network sizes
N = 90, 9900.

combing spectral and averaging methods. In particular
we have studied the effects of network size, and the varia-
tion from criticality on the observed power law behaviour
of these systems. We have shown how the response of the
networks depends strongly upon p and less strongly on
the network size N , except at p = 1/2 exactly, where the
dynamic range has been found to scale in direct propor-
tion to N . When p = 1/2 we analysed how the network
response is described in terms of poles and zeros of the
conductance and can be determined from distribution of
these values, making use of numerically observed statisti-
cal patterns of these. This has revealed four asymptotic
formulæ, corresponding to the four qualitatively different
emergent responses that can arise when p = 1/2 and these
show very precisely the effects of the (finite) network size
N . The case of p = 1/2 is very complete asymptotically
and shows particularly good agreement with the numeri-
cal computations, which is remarkable given the number
of approximations made. An important open question is
to now rigorously establish the observed statistical results
of the spectrum in this case, for example to show rigor-
ously that µp,N ′ ∼ N . When p 6= 1/2 the analysis is less
complete. It is interesting, however, that the results of the

averaging based EMA calculation can be combined with
those of the spectral computation in a consistent manner
to the case of finite N , leading to predictions (59,60), of
the conductance and its dynamic range which is in good
qualitative agreement with what is observed. However a
limitation of this analysis remains the lack of precision of
the estimation of the power law scaling of the magnitude
of the percolation response as p → 1/2. We conclude that
combining both the spectral based and the averaging based
methods lead to useful asymptotic formulæ with excellent
numerical support, and establishing these more rigorously
is an interesting area of further study.
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