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Abstract: We show that data assimilation using four-dimensionalatemn (4DVar) can be interpreted as a form of Tikhonov
regularisation, a very familiar method for solving ill-pEsinverse problems. It is known from image restoration fgots thatl; -
norm penalty regularisation recovers sharp edges in thgémaore accurately than Tikhonov, bs-norm, penalty regularisation.
We apply this idea from stationary inverse problems to 4D&atynamical inverse problem and give examples foamorm
penalty approach and a mixed Total Variation (T¥)-L2-norm penalty approach. For problems with model error an@reh
shocks are present the mixed TM-L2-norm penalty, which promotes sparsity, performs mucheloéktan the standarflo-norm

or L1-norm regularisation in 4DVar. Copyrigi®) 2010 Royal Meteorological Society
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1 Introduction the regularisation term and hende,-norms for the reg-

ularisation terms give a better result in image restoration
Data assimilation is a method for combining model forghis is the motivation behind our approach for variational
cast data with observational data in order to forecast maksta assimilation.

accurately the state of a system. One of the most popu- The edge-preserving property bf-norm regularisa-
lar data assimilation methods used in modern numerigah can be used for models that develop shocks, which
weather prediction is four-dimensional data assimilatigfithe case for moving weather fronts. We apply this idea
(4DVar) (Sasaki(1970; Talagrand(1981); Lewisetal. to 4Dvar for problems where shocks are present and give
(2009), which seeks initial conditions such that the foreseyeral numerical examples where thenorm penalty
cast best fits both the observations and the backgro%roach applied to the gradient of the analysis vector (we
state (which is usually obtained from the previous forgz)| this mixed Total Variation (TV)L1-Lo-norm penalty
cast) Within an interval cglled the assimilation Wi”dOVYeguIarisation) performs better than the standasehorm
Currently, in most operational weather centers, Systegy|arisation in 4DVar. The use of the gradient operator
and states of dlmen5|c(ﬁ(107) or higher are considered,gng ther,,; norm, localisation of the gradient is enforced,
whereasGthere are considerably fewer observations, Ugich is important in tracking fronts. As an example we
ally O(10°) (seeDaley(1991); Nichols(2010) forreviews ge the finear advection equation where sharp fronts and
on data assimilation methods). ~ shocks are present. We use a numerical scheme that intro-
Linearised 4DVar can be shown to be equivalegices some form ahodel errorinto the systems and find
to Tikhonov, or Ly-norm regularisation, a well-knownhat, ysing arf.,-norm regularisation term, applied to the
method for solving ill-posed problemsi¢hnsoretal. gradient of the solution, fronts as well as front speeds are

(2003). Such problems appear in a wide range of applicgssolved more accurately than with the standagehorm
tions Englet al. (1999) such as geosciences and imaggqgy|arisation of 4DVar.

restoration, the process of estimating an original image

from a given blurred image. From the latter work it i%en
known that by replacing thé&,-norm penalty term with
an L;-norm penalty function, image restoration becom

The aim of this paper is to examime the potential
efits of usingL;-norm regularisation in variational
data assimilation. It presents a preliminary study showing
) ) at the method has potential to give improvement over
edge-preserving as the process does not penalise . . L .
existing approaches. Further investigation remains to be

edges of the image. Thlal-nqrm per_1alty regularlsatlond?ne in order to evaluate the technique in an operational
then recovers sharp edges in the image more preusee)(ting

than theL.-norm penalty regularisatiorH@gnsen(1998; s

Hanseret al. (2008). Edges in images lead to outliers in ~ S€Ction2 gives an introduction to 4DVar and shows
its relation to Tikhonov regularisation. In Secti@we

c d 1o Department of Mathematical Sci . introduce the new algorithm and in Sectidrwe explain

* orresponaence 1o: epartiment O athemaltical clencas; . .

versity of Bath, Claverton Down BA2 7AY, UK.E-mail : UhOW we solve the.;-norm reglj”a”_sat'on problem and Fhe
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5 we state the model equations. Sectigoresents numer-neglects all the terms involving second derivatives of
ical examples, where the nels-norm regularisation is M, ; andH,. We let)M,, ; be the Jacobian o1, ;.
compared to standard 4DVar. In our examples we intrblere we only consider problems where the observation
duce several kinds of model error. Under these conditiomgerator is linear, that i$4;(x;) = H;x,;. Furthermore,

it can be seen thak;-norm regularisation outperformsboth R; = R and H; = H, are assumed to be unchanged
4DVar when sharp fronts are present (see Sectipnd/e over time.

conclude with a section on future work. The gradient of {) is then given by

VI (z0) =B (zo — 2)

. | . - - P (4)
In nonlinear 4DVar we aim to minimise the objective — > M o(wo)"H'R™ (y; — Hay),
function i=1

2 4DVar and itsrelation to Tikhonov regularisation

1 _ where M; o(xg) is the Jacobian ofM; o(xg). The chain
J (o) 15(1170 —a4)" B~ (xo — xf) rule giveéO( 0) o(ao)
LN (1)
T3 (yi — Hi(z:)) Ry (yi — Ha(zi)) M;o(xo) = M i 1(wi1) M1 i2(zi2)- - MLO(:EO%)
i=1 5
Taking the gradient of4) and neglecting terms involving

the gradient of\/; o(z¢) gives

Tiv1 = Miy1i(zi), i=0,...,N—1 (2) N

. : o aY% = B! M; o(z0)THT R~ HM; o(x0).
This is a nonlinear constraint minimisation problem where J (o) + ; ol@o) olwo)
the first term in () is called the background termj is the (6)
background state attinte= 0 andz; € R™, i = 0,..., N Both the summation terms id and ) can be obtained

are the state vectors at timg. The function M, : recursively using the adjoint equations
R™ — R™ denotes the nonlinear model that evolves the

state vector; at timet; to the state vector;; at time Ay = 0,
ti+1. In weather forecasting the state vectgre R™ is Mot = Mi_i(zie))T O\ + HTR My, — Huy)),
the best estimate from the previous assimilation cycle of ’
the state of the system at the start of the window. Ther i = IV, ..., 1, in order to find the gradient
vectorsy; € RP, ¢ =1,..., N contain the observations at
timest; and H, : R™ — R” is the observation operator VI (20) = B~ (20 — z§) — o, (7)
that maps the model state space to the observation space.

Minimising (1) is a weighted nonlinear least-squarednd similarly
problem. By minimising7(xo) we find an initial state Vv — 0
xo € R™, known as thanalysis such that the model tra- N
jectory is close to the background trajectory and to théhi—1 = Mii1(zi—1)" (VA — H' R~V HM; o(0)),
observations in a suitable norm. The symmetric matrg‘x .
B e R™™ and the symmetric matriceR; € RP?, i = ori=N,...,1, leads to
1,...,N are assumed to represent the covariance matri-
ces of the errors in the background and the observa-

tions respectively. The matricég describe the combinedyysing these adjoint equations we avoid having to compute
effects of measurement errors, representativity errojs i—1(z;_1) several times. We note that, i = 0, ..., N
(arising from the need to interpolate state vectors to thg; yectors whereag);, i = 0, ..., N are square matrices
times and locations of the observations) and errors in {igihe dimension of the system state.

observation operator. Provided the background and obser- The approximate Hessiﬁj(ygo) andv 7 (zo) are

vation errors .have Gau_ssian _distributior_ls V.Vith mean Z&fRan used in %), which is equivalent to a linearised least
Fhen m|n|m|smgj_(x0) IS e_quwalgnt to finding thfn.a.x' square problem. Here we solve this system directly. This
'mum a posteriori Bayesian estimaté the true initial approach is mathematically equivalent to the incremental
condition (-orenc(1986). 4DVar method as described ihgwlesset al. (2005gb));

We apply a G_auB-Newton methoqln the incremental method, however, the inner equations
(Dennis and Schnabe{1983) in order to solve the (3) are solved iteratively.

L . 0
m|n|m|s:51t|on problem 1)'. From a starting guess, We may rewrite the objective functiori)in 4DVar
Newton’s method for solving the gradient equation is

subject to the system equations

VVJ(20) = B™1 — V). 8)

as
VVT (zB)Azk = -V T (2F), P, Azk. 3)
( 0) 0 ( 0) 0 0 0 j(l’o)z—(wo—l’g) B 1($0—x8)
for k> 0. In the GauB-Newton method, the Hessian 1 X A A 9)
) ) = o TH-1(4 _
is replaced by an approximate Hessi®V.7(z}) that +5(7 = H(z0))” B (5 — H(z0)),
Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 3

where which leads to the objective functiof(z) in (13). The
minimisation of the Tikhonov functiorl@) gives the reg-
HMi (o) n ularised solution
. HMas (o) . Y2
H(zo) = : , and ¢ = : min(pN m) ) T
: : _ o; o u;
HMoy o(x) N = (GTGHP DTG = Y it
j=1 J J
(15)

In generalH(z,) is a nonlinear operatorj € R*N is a
vector andR € R?N-*N s a block diagonal matrix with
diagonal blocks equal t&. If we lineariseM; o aboutz},
then the Jacobian of the augmented mattiis given by

see, for exampleHanseretal, 2006 Chapter 5) for
details. The vectors; andv; are the singular vectors 6f
belonging to the singular values, whereG has the sin-
gular value decompositiol = USVT, withU € RPN-PN

b and V € R™™ orthonormal matrices an& the diago-
HMl,O(xo) . . i
b nal matrix with entrieso; > o2 > ... > ominpn,m) > 0.
- - HMs0(xq) 2/(.-2 2 ;
H:=H(b) = _ 7 (10) Hence the factor;/ (o} + 11°) acts as a filter factor for
: small singular values;.
HMpy o(x}) It is known from image processingHénseret al.

o _ - ) (2009) that instead of taking thé&,-norm for the regu-
WhICh is essentially the observability maitrix. Now writiarisation termy2||z||2 (that is the background term) the
ing B =0}Cp and R =07Cr and performing a vari- 1, _norm gives a better performance when sharp edges
able transformz := 051/2(170 —z§) we may write the need to be recovered. The reason for the edge-preserving
linearised objective function that we aim to minimise asproperty of theL,-norm is that thel,-norm enforces a

sparse solution{fonoho(2006§). 4DVar performs poorly

J(2) =[|C7 2 () — A(ah)) — CRPHCH? 2|13 for the recovery of fronts. For shocks and fronts the gra-
. , o2 (11) dient of the solution is sparse and hence we introduce a
+plzll3,  pT = 52 mixed Total VariationL;-Ls-norm approach which aims
b

to recover fronts.

This is equivalent to a linear least-squares problem with Hence we introduce and test two new approaches

Tikhonov regularisation Englet al. (1996), where 2> which are motivated by thé;-norm regularisation and

acts as the regularisation parameter. If we set compare them to standard 4DVar: These @renorm
regularisation and a mixed Total Variatiay-Lo-norm

G:=Cr'?HCY? and f:=C,'*(j—H(b)), regularisation. Both are described in the next section.

(12)
whereG € RPN and f € RPN, then equation(1) may
be written as 3 L;-norm and mixed L-L,-norm regularisation
2
min Jo(2) = min{|| f — Gz||3 + 2| |3}, pu* = %. With the notation in {2), the minimisation problem in
z z b

) (11) can be written asl3) - known as standard Tikhonov
gularisation - where the second term is a regularisa-
lon term andp? is the regularisation parameter. In the
literature, there has been a growing interest in uding
min{| f — Gz||2} (14) horm regularisation for image restoration, see, for exam-
z ple,Fuet al.(2009; Agarwalet al.(2007); Schmidtet al.

is hard to solve exactly, that is, the solutierdoes not (2007)_' o .

continuously depend on the data. In data assimilation Firstly, in this paper we consider the effects bf-

the matrixG = C=Y2FCY? is generally ill-conditioned norm regularisation for variational data assimilation by
= R B 1

: . : : replacing the squareflo-norm in the regularisation term
which means it has singular values that decay rapidly a 122 of (13) by the Ly-norm to obtain

many are very small or even zero. This problem occurs'ff
there are not enough observations in the system, which is
typical for numerical weather prediction. Furthermores th ;) Ji(2) = min{||f — Gz|2 + 2| 2|1}, u? =
given observations are subject to errors, leading to errors = z

in the vectorf. Hence, we can see that the minimisa- . ' - (18)
tion problem (4) with an ill-conditioned system matrix !N fact, in general we can consider ap-norm, in the reg-

G and an unreliable data Vectﬁrvvi” lead to an unstable ularisation term, which leads to the minimisation prOblem
solution and some form of regularisation is required (for

(13
If G is an ill-posed operator, or in the discrete setting
ill-conditioned matrix, then the minimisation problem

@-qz\? | oqw

example preconditioning, Tikhonov regularisation, singu . - . 9 2L 2 o2
lar value filtering, etc.). We consider Tikhonov regulari- =" Tp(z) = mzm{”f = Gallz + p7llellp}, w7 = o2
sation where a regularisation temd | z||2 is introduced, 17)
Copyright(© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (2010)
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4 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

Equation (3) can be written as presence of model error. When @n-norm penalty term
with a gradient like in 20) is added one often speaks
. ) f G 2 , o2 of total variation (TV) regularisationStrong and Chan
min J3(z) = min H[ 0 ] - { ol } z| 2K =5 (2003). We call the problem in20) mixed TV L;-Lo-
? (18) norm regularisation problem.
All minimisation problems 16), (17) and (L8) aim to pro- In the f_ollloyving section we _explain how we solve the
duce a solution and withz := C'5"/?(zo — 22) an initial Ly-norm minimisation problem inl) and the mixed TV
B 0 o) . L1-Ly-norm minimisation problem in20).
1/2 b 1 2

statery = C'5 "z + z; such that the solution trajectory is
both close to the background (the previous forecast) and
the observations in some weighted norm. The solution4o L east mixed norm solutions
problems {6) and (to some extend}l{) for a p close to
one promotes sparsity in the solution, hence it promote§@nsider the minimisation problemdg) and @0). In
sparse vectot. We will see that this is not so useful fororder to solve these so-called least mixed norm solutions
the computations. we use an approach introduced Byt al. (2006). Both

However, if it is known that fronts are present in thBroblems (6) and @0) are solved in a similar way, we
solution then the gradient of the solution will be sparseexplain the algorithm using the minimisation problem
hence the gradient of the initial statg will be sparse. If (20), the application of the algorithm to problerid] is
we approximate the gradient by a matfixgiven by similar.

First, with 2o = C}/*z + z} problem @0) can be
1 0 ... formulated as
-1 1 0o ... )
p=| 0 1 1 0 a9 wmimd || L] G| raip@ye v ) b
0 -1 1 1)
We let
1/2
then the minimisation problem for a sparse initial state and v=0D(Cy’z +af),

hence a sharp front becomes and splitv into its non-negative and non-positive parts

andv—, thatis

2
mlanv(Z)mln{H['(];}[/i]z 1}:1}+—U_
? , (20) and
g
+6||Dxoll1}, p* = =5,
H 0||1} g'g ’U+ = max(v, 0)7 v = max(—v, 0)

where zo = C}/*z + 28, D is given by (19) and s is Problem 1) can then be written as
another so-called regularisation parameter. We will see in

Section6 that minimisingJry (z) in (20) gives a much . f Iel 2
Lo =[]

better resolution of the fronts than minimising(z) or

Ji(z) in (18) or (16).

+ 1Tt + 1TU} .
2

Both th d th L (22)
oth the L,-norm and theL,-norm minimisation subject to the constraints

can be interpreted from a Bayesian point of view. For

the Ly-norm approach - which is equivalent to standard 1/2 b

4DVar - a Gaussian distribution is assumed for the error 0D(Cp ztmg) = vi—v, (23)

in the prior, that is, for the background error. For the vteT > 0. (24)
norm, the background error is assumed to have a Laplace . ]
(double-sided exponential) distribution. (For detailse sHere1 denotes the vector of all ones of appropriate size.

the Appendix.) This problem can then be written as

The advantage of using thé&;-norm is that the
solution is more robust to oqtliers. It has be.en observed min {leHw + cTw} (25)
that a small number of outliers have less influence on w2

the solution Fuet al. (2009). Edges in images lead to .

outliers in the regularisation term and, henég;norms Subjectto

for the regularisation terms give a better result in image Ew=yg and Fuw >0, (26)
restoration. This is the motivation behind our approaghere

for variational data assimilation. We find that, for fronts

and shocks, regularisation with an addednorm on the P 20GTG+u?I) 0 0
derivative of the initial condition in 4DVar gives much = | v+ || H= 0 0 0|,
better results than the standatd-norm approach in the v 0 0 0
Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So®0: 1-15 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 5

—2GTf 6 Linear advection equation
c= 1 , E=|spCy® -1 I/, : . . :
1 Consider the linear advection equation
Ut + ux - 07 (31)
0 0 0
F=10 —-I 0|, g=-6Dzj, on the intervale € [0, 1], with periodic boundary condi-
0 0 I tions. The initial solution is a square wave defined by
and the block matrices and0 as well as the vectorsof 05, 025<z<0.5
all ones in the matrice#, E, F andc are of appropriate u(z,0) = 05 <025 of x>05 (32)

size. The objective function in2p) is convex asH is

symmetric positive definite. In order to solve the quadratithis wave moves through the time interval; the true
programming problem25) with constraints 26) we use sojution is obtained by the method of characteristics
the MATLAB in-built functionquadpr og. m (by advecting the inital condition at speed that is

In the following section we consider a square wavgz, t) = u(x — t,0)) and the model equations are defined
advected using the linear advection equation as an ex@y-the upwind scheme2@) with boundary conditions
ple. We use a ‘true’ model (from which we take the obserry = UL, wheren = 1,...,80, Az = ﬁ andn is the
vations) and another model, which is different from theumber of time steps. The same example is used in
truth and hence introduces a model error. The differetiffith and Nichols (2000. For this example we take
models we use are introduced in the next section. In alt = 0.005.
examples we observe that the new edge-preserving mixed
TV Ly-Ly-norm regularisation indeed gives better resulgs) A standard experiment

than the standard,-norm approach and the simplg - ) o ) ]
norm regularisation. We consider an assimilation window of length time

In all the examples we keep the regularisation paﬁl_eps. After the assimilation period we compute the fore-

ameter,, fixed, as we are only investigating the influencg?St for anothed0 time steps, and hence) time steps

of the norm in the regularisation term, but not the size are considered in total. For.the background and obser-
the regularisation parametgr vation error covariance matrices we take= 0.01/ and

R = 0.017; hence we put equal emphasis on the observa-
tions and the background. Moreover, for the background
we choosé/{ to be equal to the truth perturbed by Gaus-

5 Models sian noise with mean zero and covariarigeThe back-
_ _ _ ground thus contains errors with variance of ordeil.
In this section we consider the problem We test several cases.
we + [f(w)]s = 0, 27) 1. Perfect observations are taken everywhere in time
and space.

2. Perfect observations are taken evefypoints in
space and everytime steps.
3. Imperfect observations are taken evedypoints in

wheref(u) is given by

fu) =u, (28) space and every time steps; for the observations
we introduce Gaussian noise with mean zero and
for the linear advection equation. variance0.01.

This general problem can be discretised using tE‘Br all cases we test
upwind scheme
e standard 4DVar (minimisation problerh)),

At e Ly-norm regularisation (minimisation problem
n+1 n n n
Uit =Uf = = (JU7) = f(UL) - (29) (16)), and
e mixed TV L;-Ls-norm regularisation (minimisa-
All equations are valid foj = 1,..., N, wheref is tion problem g0)).

given by €8). The CFL condition Figuresl - 9 show the results for this example where the

linear advection equation is used as a model.

‘ max(f’(u))At’ <1 (30) In the plots the true solution is represented by a thick

Az B dot-dashed line (called 'Truth’ in the legend). This true

solution is unknown in practice. We take (noisy) observa-

needs to be satisfied for stabilitviprton and Mayers tions from that true trajectory. The model solution (which
(2009; LeVeque(1992). For the linear advection equais derived from the upwind method) is shown as a dashed

tion (28) this condition just reduces it < Az. Formore line (called 'Imperfect model’ in the legend). This solu-
details on the above methods we refet&/eque(1992). tion represents the model solution, that is the solutioh tha

Copyright(© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (2010)
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=
= = = Imperfect model Imperfect model

Final solution ——— Final solution

o CE) 0.2 0z 0.a o8 o6 0.7 oa 0.9 1 ) 0.1 02 o= 0.4 o5 o6 0.7 oa 0.9 1

= = - Truth
= = = Imperfect model
Final solution

= = = Imperfect model
Final solution

-o5

1k 4 1l 4

15 15
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ) o1 0.2 0.3 0.4 os 0.6 0.7 o8 0.9 1

Figure 1. Results fodDVar applied to the linear advection equation where the init@hdition is a square wave. We talerfect
observations at each point in time and space over the assimilation interval which i#0 time steps. The four plots show the initial
conditions at = 0 and the result afte20, 40 and80 time steps. 4DVar leads to oscillations in the initial cdiuat.

15

= = - Truth = =~ Truth

= = = Imperfect model = = = Imperfect model
Final solution ——— Final solution

) o1 0.2 0.3 0.4 os 0.6 0.7 o8 0.9 1

= =~ Truth
= = = Imperfect model
Final solution

-o5

15 15
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ) o1 0.2 0.3 0.4 os 0.6 0.7 o8 0.9 1

Figure 2. Results fof.;-regularisation for the same data as in Figute

is obtained if we use the correct initial conditions and thwth the gradient is used, the initial condition more accu-
(imperfect) model. It represents the best solution that wage (first plot in Figure3). The same result is true for
are able to achieve (if data assimilation gives us the perfpartial observations (Figuresand5 for 4DVar andL,-
initial condition), as the model error is always present Thegularisation versus Figuefor mixed TV L;-Lp-norm
solution obtained from the assimilation process by incdggularisation) and forimperfect partial observationg{F
porating the (perfect/partial/noisy) observations isegiv Ures’ and8 for 4DVar andL;-norm regularisation versus

by the solid line (called 'Final solution’ in the legend). Figure9 for mixed TV L,-L,-norm regularisation). The
second rowB = 0.017 of Tablel quantifies the errors in

For perfect observations the result for 4DVar ige initial conditions for this situation for 4DVak,;-norm
shown in Figurel (minimisation problem 18)), that yegylarisation and thé;-norm total variation approach.
for L;-regularisation in Figur& (minimisation problem \ye see that for all types of observations we investigated
(16)) and that for mixed TVL;-Lo-norm regularisation (partial, full, perfect and noisy observations),-norm TV
in Figure 3. The analysis obtained by 4DVar ard - regularisation gives the smallest initial condition error
regularisation is very inaccurate, with many oscillations  Traditional strong constraint 4DVar does not take
and large over/undershoots near the discontinuities (finsbdel error into account. Hence 4DVar's attempts to
plots in Figuresl and 2). When L;-norm regularisation compensate for the initial condition error are obstructed

Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 7

15

15

— R
= = = Imperfect model
Final solution

Imperfect model
Final solution

) 0.1 02 o= 0.4 o5 o6 0.7 o0& 0.9 1 “o CE) 0.2 0z 0.4 o8 o6 0.7 oa 0.9 1

— — = - Truth
= = = Imperfect model

Final solution

= = = Imperfect model
Final solution

-o.5

1l 4 1k 4

-15 15
) o1 0.2 0.3 0.4 os 0.6 0.7 CE) 0.9 1 ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. Results fomixed TV L1-L2-norm regularisation for the same data as in FiguteMixed TV L1 -L2-norm regularisation gives
the best possible result for the initial condition.

) 0.1 02 o= 0.4 o5 o6 0.7 o0& 0.9 1 o CE) 0.2 0z 0.4 o8 o6 0.7 oa 0.9 1

= - Truth
= = = Imperfect model
——— Final solution

- Truth
= = = Imperfect model

-15 -15
) 0.1 02 o= 0.4 o5 o6 0.7 o0& 0.9 1 o CE) 0.2 0z 0.4 o8 o6 0.7 oa 0.9 1

Figure 4. Results fodDVar for the same data as in Figutebut with perfect observations every 20 pointsin space and every 2 time
steps. 4DVar leads to oscillations in the initial condition.

by the use of an imperfect forecast model and it therefarbtained (subject to model error). This behaviour is due
does not produce an accurate estimate of the truth at tihnehe property of mixed TVL;-Lo-norm regularisation
initial time. From the final plots in Figure$ and 7 for enforcing sparsity on the gradient of the solution.

4DVar we also see that the forecast is inaccurate due to the |n the next two subsections we change the experi-
incorrect estimate produced at the end of the assimilatipntal design of the problem slightly, in order to check the
window. We also observe that the forecast in 4DVar leagishustness of regularisations. We first check a more realis-
to a slight phase shift and the wrong amplitude in thg background error covariance matrix in Sect®a and

forecast, as well as overshooting and undershootingsHén investigate a change in the size of the assimilation
noisy observations are taken (see first plot in Figdreywindow in Sectiorg.3.

vs first plot in Figure7), the oscillations in the initial

condition are more frequent. For mixed TM;-Ly-norm

regularisation (Figure$ and 9) these problems do notg 2 Changing the background error covariance matrix
occur. We see in the first plot of Figurésand 9 that

the initial condition obtained from mixed TY;-L,-norm We take precisely the same experiment as in the previous
regularisation is the most accurate and hence the b®gbsectiorb.1; however, we change the background error
possible forecast (see final plots of Figu@sand 9) is covariance matrix from the identity matrix to a Gaussian
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Figure 5. Results fof;-regularisation for the same data as in Figude
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Figure 6. Results fomixed TV L;-L2-norm regularisation for the same data as in FiguteMixed TV L1 -L2-norm regularisation gives
the best possible result for the initial condition.

covariance matri3 with entries summarised in Tablein Subsectior.4. We also do not
, _lisl present the results fat; norm regularisation here as we
Bjj = oje” 227, where L =5, (33) have seen in Subsecti@nl that this approach is not bet-

] ] ] _ ter than standard 4DVar. The more interesting case is the
and o7 = 0.01. Hence B is a symmetric matrix with pixed TV Ly-L,-norm regularisation.

diagonal entries equal th01 and off-diagonal entries that ,

decay exponentially. This background error covariance Figures10 and.ll show th? rgsullts where the back-
matrix spreads the information from the observatio$0Und error covariance matri# is given by @3). For
more adequately and the error variance is stilll. Note this choice ofB, the results for 4DVar (Figur&) are bet-
that for this matrix the inverse is a tridiagonal matrix. Fder than the results for the diagonal matk(Figure 7)

the background we choose Gaussian noise with covariaRégause information is spread via thematrix, and we

B and a mean value which is given by the truth. Thesée that the oscillations in the analysis are significantly
errors are consistent with the choice®f reduced. However, mixed TV.;-Lo-norm regularisation
We only present the results for imperfect and partial obsélrigure 11) still behaves consistently better than stan-
vations, as this represents the most realistic case; similardL.-norm regularisation (Figur&0). In particular, the
results are achieved in the cases of perfect observatishape of the wave is distorted and there are small under-
and partial observations without noise. Further cases almots and overshoots in the 4DVar analysis (first plot
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Figure 7. Results fo4DVar for the same data as in Figutédut withimperfect observationsevery 20 pointsin space and every 2 time
steps. 4DVar leads to bad oscillations in the initial conditiordaaiso to a misplaced discontinuity in the forecast.

15 15

1 B 1

Il |

) 0.1 02 o= 0.4 os o6 0.7 0.8 0.9 1 o CE) 0.2 0z 0.4 o8 o6 0.7 oa 0.9 1
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o5 R p——

-15 -15
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Figure 8. Results fof; regularisation for the same data as in Figure

in Figure 10), which lead to small errors and the wrongnd carry out the following test: we take imperfect obser-
amplitude in the forecast (final plot in Figut#). For the vations every points in space and evetime steps with
analysis using mixed T\L;-Ly-norm regularisation, the Gaussian noise of mean zero and variad¢g. For the
inital condition (first plot in Figurell) shows a smaller background we again take the truth perturbed by Gaussian
error than the initial condition in standard 4DVar (first plonoise with covarianc®& = 0.011.

in Figure 10) and the forecast is slightly better than the
forecast in 4DVar (final plot in Figur&1). The quantities
of the errors in the initial conditions for this particulaase
are summarised in the fifth row of Tablevhere we see
that the errors using mixed T¥;-Ly-norm regularisation
are the smallest.

Figures12and13show the results for a reduced size
of the assimilation window. The first observation that we
can make is that again the regularisation using the mixed
TV L:-Ls-norm (Figurel3) is consistently better than that
using theL,-norm (Figurel?). Standard 4DVar produces
oscillations, in particular in the initial conditions, wieas

the mixed TV L;-L,-norm regularisation does not show
any oscillations. The oscillations in the initial condii®
Again, we take the same experimental data as in Subgecstandard 4DVar then lead to errors in the forecast (see
tion 6.1; this time, however, we reduce the size of thglots fort =5, t = 20 andt = 45 in Figure 12). Again,
assimilation window fromd0 time steps td5 time steps for 4DVar, the forecast of the analysis does not keep the

6.3 Changing the length of the assimilation window
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Figure 9. Results fomixed TV L;-L2-norm regularisation for the same data as in FigureMixed TV L -L2-norm regularisation gives
the best possible result for the initial condition.

o CE) 0.2 0z 0.a o8 o6 0.7 oa 0.9 1 ) 0.1 02 o= 0.4 o5 o6 0.7 oa 0.9 1

= - Truth
= = = Imperfect model

- Truth
= = = Imperfect model
Final solution

li—j|
Figure 10. Results fofDVar for the same data as in Figurebut for B with B;; = 0.01 e~ 2z? , WhereLL = 5.

amplitude correctly (final plot in Figuré2), whereas ;- o7 = 0.005. For each matrix we use either perfect obser-
norm regularisation provides a more accurate amplitudations everywhere in time and space, perfect observa-
in the forecast (final plot in Figur&3), a property of the tions every20 points in space and eveg/time steps or

underlying imperfect model. imperfect observations eve®y points in space and every
2 time steps, where the observations are taken as perturba-
6.4 Summary of initial condition errors tions from the truth with Gaussian noise of mean zero and

In Table| we summarise the analysis errors (the errof§varnances. Finally, the Ia;t thre_e rows of Tableshow
between the analysis and the truthtat 0), measured the results for a smaller assimilation window of length

in the L, vector norm, for several scenarios. We choose We have also given results for different values
observation errors with covariande= 0.017 and assim- (20). The emphasis on the sparsity of the gradient of the
ilation windows of length40. The general experimen-initial condition depends on this regularisation paramete
tal design is as in Sectioi.1. We consider two typesWe have looked at three different values #aand the best

of covariance matrices for the background error, namedy all three results (that is the smallest error in the initia
B =¢?1, and the double-sided exponential covariancendition) is underlined in the table. The regularisation
matrix B given by @3). For both types of matrices wedepends on the regularisation parameter but investigating
consider three different variances: = 1, o7 = 0.01 and the influence of this parameter and finding the optimal
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Figure 11. Results fomixed TV Li-L2-norm regularisation for the same data as in Figuté.
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Figure 12. Results foADVar applied to the linear advection equation where the init@idition is a square wave. We takaperfect

observationsevery 5 pointsin space and every 2 time steps over the assimilation interval which fstime steps. The four plots show the

initial conditions att = 0 and the result afte5, 20 and45 time steps. 4DVar leads to oscillations in the initial cdiwti and a misplaced
discontinuity in the forecast.

choice ofé is beyond the scope of this paper. We remallecomes more well-conditioned (well-posed) as this ratio
that for the plots in the previous subsections we used tihecreases. These examples demonstrate that, even where
value of§ which gave the smallest initial condition error.the noise in the background and observations is Gaussian
We see from the entries in the table that the errondth known covariances, the standard 4DVar approach
in the analysis are consistently smaller for mixed T\ does not produce as accurate an analysis as mixef; ¥V
L,-norm regularisation than for standard 4DVar br- Lo-norm regularisation in the presence of model error.
norm regularisationL;-norm regularisation gives an error
of about3 to 4 magnitudes smaller than for standar
4DVar. We also observe from the table that, for bot
standard 4DVar and.; regularization, the errors in theFinally, we consider the same problem as in Subsection
initial condition (analysis) decrease as the variance 6nl - with the same setup and error covariance matrices.
the background error is reduced, that is, as the ratmwever, here we shift the square wave in the background
of the background to observation variance decreasksg.0.02 to the right, so that shock is displaced. The
This is consistent with the results bilabenet al. (2010, reason for this shift is a practical one; fronts are often
which show that the standard 4DVar assimilation problemsolved correctly in numerical weather forecasting, but

.5 A shifted background
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Figure 13. Results fomixed TV L1-Ls-norm regularisation for the same data as in Figut@. Mixed TV L:-L2-norm regularisation
gives the best possible result for the initial condition.

Table I. Comparison between errors in the analysis in stahdl@Var, ;-norm regularisation and mixed T¥;-L2-norm regularisation
measured in thé.>-norm

Standard Li-norm mixed TV Li-Le-norm
4DVar | regularisation regularisation

§=10 [ §=100 [ § = 1000
full perfect observations 2.3674 2.4392 1.1585| 0.7674 0.2998
B=1 partial perfect observations 12.8039 13.6598 9.3621 | 0.4643 2.7286
partial imperfect observations | 13.6182 14.4389 7.7128 | 0.4790 2.9110
full perfect observations 1.0609 1.4780 0.8963 | 0.6998 0.2531
B =0.011 partial perfect observations 1.3791 10.0589 1.0935| 0.2866 1.2440
partial imperfect observations 1.4614 9.9083 1.0060 | 0.1719 1.3910
full perfect observations 0.9012 1.4567 07987 | 0.6417 0.2272
B =0.0051 partial perfect observations 0.8651 9.3547 0.6887 | 0.2260 0.8014
partial imperfect observations 0.8979 8.5296 0.6566 | 0.1500 0.9141
B with entries full perfect observations 1.1892 1.3703 0.9801| 0.7391 0.2807
By = e ai? partial perfect observations 27845 | 11.6647 | 2.2421| 0.3832 | 2.7031
whereL =5 partial imperfect observations 3.1041 11.1133 2.2780| 0.5552 2.8524
B with entries full perfect observations 0.4921 1.0184 0.4857 | 0.4346 0.1696
Bij = 0.0le*% partial perfect observations 0.3150 2.0667 0.2938 | 0.1633 0.9128
whereL =5 partial imperfect observations 0.4161 1.5400 0.3997 | 0.3057 0.8456
B with entries full perfect observations 0.4023 0.9396 0.3981| 0.3636 0.1567
Bij = 0.005e*% partial perfect observations 0.2304 0.6327 0.2171| 0.1455 0.6922
whereL =5 partial imperfect observations 0.3225 0.5489 0.3139| 0.2680 0.5686
B =1and full perfect observations 2.1595 2.1858 0.5812 | 0.3406 0.6591
smaller length of | partial perfect observations 8.0773 8.2133 1.3201 | 0.5327 3.7108
assimilation window | partial imperfect observations 11.2487 11.4258 1.6075| 0.6121 3.6611
B =0.01 and full perfect observations 0.6881 0.9963 0.4130 | 0.1996 0.4832
smaller length of | partial perfect observations 0.9441 1.7047 0.6182 | 0.2129 1.6974
assimilation window | partial imperfect observations 1.2017 2.5580 0.7971| 0.1795 2.7750
B =0.005I and full perfect observations 0.5463 0.8378 0.3677 | 0.1553 0.3939
smaller length of | partial perfect observations 0.6809 1.4938 0.4903 | 0.1795 1.0246
assimilation window | partial imperfect observations 0.8293 2.0489 0.6132| 0.1510 1.1469

the front is often predicted to be in the wrong positiomovariance matri3 = 0.017 which is consistent with the
We simulate this situation in our simplified model bgrror in the shifted background.

assuming a slightly shifted background. We add noise to e only consider the case with partial noisy observa-
this background, taken from a normal distribution wittions, since this is the most interesting and realistic one.
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Figure 14. Results fo4DVar for a shifted (and noisy) background.
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Figure 15. Results fomixed TV Li-L2-norm regularisation for the same data as in Figuté.

The results for this example are shown in the plots ih Conclusionsand future work

Figuresl4andl15. The initial condition in 4DVar is clearly

recovered very badly, with many oscillations (see first plot

in Figure14). Furthermore, at the end of the assimilatiom this paper we have presented mixed TY-L,-norm

window the solution gives undershoots (see second plotégularisation, a new approach for variational data assim-

Figure14). ilation. We have given numerical examples where shock
fronts are present or develop over time in order to demon-
strate that mixed T\L;-Lo-norm regularisation gives bet-

However, the solution using the mixed TV,-Ly-  ter results than the standard 4DVar technique.
norm regularisation provides a much better initial condi-

tion, with no oscillations present (see first plot in Flgurg ) . .

imensional and possibly multi-scale problems. Because
15). Moreover, there are no undershoots in the soluti I minimisation process for the mixed TH-L,-norm
at the end of the assimilation window (see second pIOtrEbuIansatlon approach i) is more involved than that
Figure 15). Therefore mixed TVL;-Ly-norm regularisa- for the standard approach ing), practical implementa-
tion gives a better initial condition for the forecast thafions will also have to be investigated together with the
standard 4DVar. efficiency of this new approach.

Future work will be to apply this technique to higher
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Appendix Dennis Jr JE, Schnabel RB. 1988umerical methods for

unconstrained optimization and nonlinear equations

The solution to the the data assimilation problem can bey antice Hall Series in Computational Mathematics
interpreted in statistical terms, where certain assumgtio o ..qiice Hall Inc.: Englewood Cliffs, NJ, ISBN 0-13- '
about the errors hold\jchols (2010). For the standard 575169 h T

4DVar problem, Gaussian errors are assumed for both 61
background and the observations, so the minimisation 0
the objective functionl() is equivalent to maximising the o
a posteriori likelihood estimate of the state, given thgngl H, Hanke M, Neubauer A. 199Regularization of

observations and the prior. A similar derivation can pe "MVErse problerTlsKIuwer Academic Pub. -
made forL,-norm regularisation1(). Fu H, Ng MK, Nikolova M, Barlow JL. 2006. Efficient

The addition of the penalty term?|z|; in (16) to minimization methods of mixeék-/1 andl1-/1 norms

the least squares term is sometimes also referred to a9 image restorationSIAM J. Sci. Comput27(6):
Lasso regression in statisticSilgshirani (199). Now, _ 1881~1902 (electronic). o .

|2;], where z; is the ith entry of z, is proportional to Grn‘nth AK,.NlchoIs NK. 2000. Adjoint methods in data
the negative log-density of the Laplace (or double-sideg@ssimilation for estimating model errdflow Turbul.
exponential) distribution. Hence, the-norm regulari- ~ COMbustE5(3-4): 469-488.

sation can be derived as a Bayesian posterior estim&taben SA, Lawless AS, Nichols NK. 2010. Con-
where the priors are independently distributed variablesditioning and preconditioning of the variational

noho DL. 2006. Compressed Sensirgformation
heory, IEEE Transactions d2(4): 1289-1306.

with Laplace probability density function data assimilation problem.Computers & Flu-
ids, in press. (Published on line: 30 Nov 2010
ail doi:10.1016/j.compfluid.2010.11.025).
Flzi) = Le v, (34) Hansen PC. 199&ank-deficient and discrete ill-posed
2y problems SIAM Monographs on Mathematical Mod-

eling and Computation, Society for Industrial and

B 5 -~ L _—
wherey = 1/p*. The in-depth mathematical investigation Applied Mathematics (SIAM): Philadelphia, PA, ISBN

of Li-norm regularisation is the subject of future research ; ! . .
and beyond the scope of this paper. 0-89871-403-6. Numerical aspects of linear inversion.

In order to solve equatiors] at each step we use 4 ansen PC, Nagy JG, O'Leary DP. 200Beblurring
direct method (backslash in Matlab). imagesFundamentals of Algorithmsol. 3. Society for

We remark that the solution of the minimisation prob- ndustrial and Applied Mathematics (SIAM): Philadel-
lem using the least mixed norm solution described in secPia; PA, ISBN 978-0-898716-18-4; 0-89871-618-7.
tion 4, (see alsdfu et al. (2008)) is more expensive than Matrices, spectra, and filtering.
standard 4DVar as the problem size is increased. Mg@nson C, Nichols NK, Hoskins BJ. 2005. Very large
efficient methods need to be found for the minimisation, iNverse problems in atmosphere and ocean modelling.
the details are beyond the scope of this paper. Internat. J. Numer. Methods Fluid§(8-9): 759-771.

We note that traditional 4DVar is not designed tbaW|eSS AS, Gratton S, Nichols NK. 2005. An investi-
deal with model error. Hence, for future work, a fairer gation of incremental 4D-Var using non-tangent linear
comparison would be weak-constraint 4DVar (see, formodels.Q. J. R. Meteorol. Sod.31: 459-476.
exampleTremolet(2006) with L;-regularisation. Lawless AS, Gratton S, Nichols NK. 2005. Approxi-

mate iterative methods for variational data assimilation.

Internat. J. Numer. Methods Fluidé7(10-11): 1129-
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