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This work sheet is meant to give you some ideas of the sorts of simple models that are used to
give insight into certain aspects of the behaviour of the climate. It will give you some examples
of some different climate models and invite you to implement them using Python. Whilst the
models are very simple, they do give useful insights into the way in which the climate can change
as parameters vary, including the effect of tipping points. The models that we are going to be
looking at are examples of those used to predict changes in climate over millions of years, and
differ from the more precise, but much more complicated models looked at in the other groups,
which look at how climate changes in the short term.

Climate models are used to help advise governments. Let’s see how well we can do this.

1 A heat balance model for a steady state climate The simplest model for climate treats the
whole Earth as having a constant and uniform absolute temperature T (measured in degrees
Kelvin) which depends upon the incoming solar radiation S (the insolation), the albedo a, and
the emmisivity of the atmosphere e. In steady state we have a balance between the incoming
radiation Ri = (1 − a)S due to the Sun (which is at short wavelengths), and the outgoing
radiation Ro = σeT 4 from the Earth, which is at long wavelengths. In this balance we have

(1 − a)S = σeT 4 (1)

In the current state of the Earth and its atmosphere we have

a = 0.31, e = 0.605, S = 342 Wm−2, σ = 5.67 × 10−8.

(i) Write a Python code to calculate T from equation (1). This code should take as its input a
and e and should give T as its output. Check that the answer for T looks sensible.

(ii) If you set e = 1 you can calculate the mean temperature of the Moon. Try this and comment
on your result

(iii) You can look at the climate sensitivity by seeing how small changes in e (due to human
activity and the release of Green House gases) affects the temperature T . Make a change of e by
0.1 to see how much T changes.

2. A time varying heat balance model for climate The model in Q1 is not very realistic as the
Earth’s temperature changes. Of course, the temperature of the Earth is not constant, but varies
from year to year. A climate model tries to calculate the change in the temperature and to predict
the future. To do this we will label the years as n = 0, 1, 2, 3, . . . and the temperature each year
as Tn. Python can do this using a vector T to represent all of these values with component T[n]
to represent Tn.

In a climate model we try to predict the future temperature Tn+1

from the present temperature Tn.



We can make the system Q1 more realistic by extending the heat balance model so that the
temperature T can evolve according to the formula

Tn+1 − Tn = 0.25
(
(1 − a)S − σeT 4

n

)
, (2)

where a, e, σ and S take the values in Q1. Write a Python code to find the values Tn evolving as
a function of time in the same manner as you did in in the group exercie. Run this code with
a number of different starting values T0. You should find that the Earth’s temperature always
returns to the value obtained in Q1. This is reassuring as it implies that the climate is relatively
stable.

3 Hot and cold Earths and the ice-albedo feedback effect In practice, the albedo of the Earth is
not constant, but depends upon the mean temperature T . This is because the albedo depends
upon the amount of ice covering the Earth. The more ice there is, the more reflective the Earth
is, and thus the higher the albedo. If the Earth is hot then there is less ice and the albedo is low,
and if it is cold then there is more ice and the albedo is high. It is estimated that the albedo
of a completely ice covered cold Earth (called a snow ball Earth) is about a = 0.8, and of a
completely ice free hot Earth is about a = 0.29. If the albedo is high then there is less energy
coming in to warm the Earth, and as a result it is cooler. If the albedo is low, then more energy
is available, and it is therefore warmer. This introduces extra sensitivity into the climate so that
small changes in e have a larger effect than they did in the model in Q1.

(i) Using these values of a and the values of e, S above, show using your first Python code that
the Earth can exist in one of two states, a cold snowball Earth, and a hot Earth. Geological
and other evidence exists which implies that the Earth was in such a snow ball state about 600
Million Years ago.

(ii) Use the Python code for Q2 to apply the formula (2) with these new values of a starting from
the current temperature of the Earth (which you worked out in Q1). You should find that both
the hot and cold states of the Earth are stable. This means that the Earth could exist in either
state. Can you explain why using words HINT This is called the ice-albedo feedback effect.

4 Climate sensitivity and Tipping points We then must ask the question of how the Earth switched
from this snowball state to the current state and whether such switches are likely to occur in the
future. In the Budyko-Sellers (1967) model for climate we let the albedo a(T ) now be a function
of the temperature T . For low values of T the Earth is frozen and the albedo is high, in contrast
with high values of T there is no ice and the albedo is low. One example of such a function
proposed by Zaliapin and Ghil (2010)

a(T ) = 0.495 − 0.205 tanh(κ(T − Tc)), (3)

where κ = 0.133 and Tc = 275K. We will use this expression for the remainder of this worksheet.
The function tanh(x) is given in Python by np.tanh(x).

(i) Using Python, plot a(T ) as a function of T for 180K < T < 380K (HINT use the np.linspace
command) . Hence plot the incoming radiation Ri(T ) = (1 − a(T ))S as a function of T and on
the same graph plot the outgoing radiation Ro(T ) = σeT 4 using the above values of e and σ.
Deduce that there are three values of T for which the incoming and outgoing radiation balance.
Thus there are three possible climatic states for this value of e corresponding to a cold (snow
ball) Earth, a hot Earth (this is our current climate state) and an Earth with an intermediate
temperature. We will find that this last state is unstable.



(ii) Take a smaller value of e = 0.25 and plot the graphs of Ri and Ro again. Show that in this
case there is only one solution of a hot Earth. Similarly, show that if e = 1 then there can only
be a cold Earth.

(iii) We can rearrange the energy balance formula to show that at balance we have e given by

e =
(1 − a(T ))S

σ T 4
. (4)

Taking 220K < T < 350K, use Python to calculate e from (4) and then plot T as a function of
e using plt.plot(e,T). You should get an ’S-shaped’ curve with two values of e at which there
is a tipping point close to which we see a sudden change from a cold to a hot earth or vice-versa
associated with a small change in the value of e. Comment on this from the view point of climate
change. Is this a reasonable mechanism for escaping from a snowball Earth?

(iv) [Advanced for the ambitious: This needs you to solve a nonlinear equation] Taking e = 0.605
as before, estimate the corresponding value of T for a hot Earth (the current state of the climate).
See how sensitive this estimate is to small changes in e. This estimate should be more sensitive
than the one in Q1 due the amplifying effects of the ice-albedo effect. It is calculations such as
these which the IPCC use to determine current climate sensitivity to small changes in the level
of Greenhouse gases.

5 Modify your Python code so that the temperature changes according to the equation

Tn+1 − Tn = 0.25
(
(1 − a(Tn))S − σeT 4

n

)
. (5)

For each of the cases e = 0.605, e = 0.25, e = 1, experiment with a range of different initial values
of T to find which initial condition evolves to a hot or a cold Earth.

6 Challenge Passing through a tipping point The value of e varies with time. In the past this
could have been due to volcanic activity or the release of green house gases from the oceans.
Now it is due to the effects of burning fossil fuels and/or the release of Methane as perma-frost
melts. Extend your Python code so that it changes e slowly, and Tn changes with it according
to the formula

Tn+1 − Tn = 0.25
(
(1 − a(Tn))S − σenT

4
n

)
, en = e0 + λn (6)

For example, take e0 = 0.5, λ = 0.1 or e0 = 0.5, λ = −0.1. Now find the evolution of T taking
T0 = 273. Plot T as a function of n and also T as a function of e. Comment on your results.

7. This exercise has introduced you to a simple energy balance model with feedback. Its sim-
plicity means that we can run it to simulate the climate over long periods, not just the relatively
short time-scales used in the highly complex models used by the IPCC. Do you think that any
of these models we have considered are indeed reasonable for simulating the long term evolution
of climate. List their advantages and disadvantages. How could the models be improved? How
can they be tested? These are the sort of issues that theoretical modellers (such as ourselves)
have to consider in our research.
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