
MA50174 Advanced Numerical Methods

Assignment 3 Initial value ordinary differential equations

MATLAB has several facilities for finding the numerical solution of initial value differential
equation problems. In this assignment we will look at both the inbuilt MATLAB routines and
also some other routines, for both stiff and non-stiff problems.

Non-stiff problems

We start the assignment by looking at the performance of some integrators on non-stiff initial
value ordinary differential equations. These are problems for which all of the components evolve
simultaneously on comparable time-scales. Non-stiff problems are often solved by using explicit
methods usually with some error control. The MATLAB routine ode45 is such a routine and
we will look at this, together with the Euler method and the geometrically motivated symplectic
methods. We will investigate the problem of the angle of swing θ of a simple pendulum of unit
length, which in a unit gravitational field, without damping, satisfies the differential equation

d2θ

dt2
+ sin(θ) = 0, θ(0) = α < π,

dθ

dt
(0) = 0. (1)

1. Show (analytically) that the energy E(t) defined by

E(t) =
1

2

(

dθ

dt

)2

− cos(θ), (2)

is a constant of the motion, and evaluate this constant. [1]

(b) Express the pendulum equation with the initial conditions given in (1), as a vector differential
equation in the form

du/dt = f(u), u(0) = u0. (3)

where u(t) = (u1(t), u2(t))
T , and u1, u2 are suitably chosen. This differential equation can be

solved by using the MATLAB command ode45. This routine integrates (3) by using an embedded
Runge-Kutta routine. This is a variable step size method which chooses the step size at each
step so that the estimated error made at each such step is less than a given (default or user
specified) tolerance. Using the default parameters, calculate and plot the solution in the form
(θ, dθ/dt) in the case. α = 1, 0 ≤ t ≤ 100. [1]

(c) As a measure of the accuracy of the solution we can look at the numerical values of the error
err(t) = |E(t) − E(0)|. Calculate and plot (on the same graph) the numerical approximation
to err(t) for the problem in (b), setting both the absolute and relative tolerance of the ode45

routine firstly to 10−6 and then to 10−8. Comment on, and give a brief explanation of your
results. [1]

+(d) Setting α = 0.99π, 0 ≤ t ≤ 100, solve the ODE using the default tolerances and plot
(θ, dθ/dt). By considering the level curves of the function E(t) and the results in (c) comment
on, and explain, your answers. [2]



2. (a) The pendulum equation (1) is an example of a Hamiltonian system. This can be solved by
using a symplectic integrator with a constant time step h ≪ 1. Such integrators preserve area in
phase space and have excellent properties when used to solve equations over long time intervals.
Suppose that Un

1 , Un
2 and En are the numerical approximations of u1(t), u2(t) and E(t) at the

time t = (n − 1)h. Two explicit symplectic integrators are:

Symplectic-Euler: Un+1
1 = Un

1 + hUn
2 , Un+1

2 = Un
2 − h sin(Un+1

1 ),

Störmer-Verlet: U∗

1 = Un
1 +

h

2
Un

2 , Un+1
2 = Un

2 − h sin(U∗

1 ), Un+1
1 = U∗

1 +
h

2
Un+1

2 .

Write a MATLAB routine which implements (on request) either the forward Euler method, the
Symplectic Euler method or the Störmer-Verlet method for solving the pendulum equation (3)
with a requested h and α over a time interval [0, T ]. This routine should generate sequences Un

1 ,
Un

2 and En. [1]

(b) Apply this routine in the case of T = 100, h = 0.1 and α = 0.25, comparing the results of
the forward Euler, symplectic Euler and Störmer-Verlet method by plotting the points (Un

1 , Un
2 ).

Which do you think is the better method for this problem and why? [1]

(c) Suppose that α and hence U1 and U2 are small. By using a suitable approximation of the
functions in (3), find a matrix A so that if Un = (Un

1 , Un
2 )T are the solutions of the Forward

Euler method, then
Un+1 = AUn.

Hence, or otherwise, show that in this case
(

(Un+1
1 )2 + (Un+1

2 )2
)

=
(

1 + h2
) (

(Un
1 )2 + (Un

2 )2
)

.

[1]

+(d) Find a similar matrix A for the small solutions of the Symplectic Euler method. Hence, or
otherwise, show that if (Un

1 , Un
2 ) is a small solution of the Symplectic Euler method then there

is a constant C so that
(Un

1 )2 + hUn
1 Un

2 + (Un
2 )2 = C.

Using this result and that in (c) give a brief explanation of the results of your computations in
(b). [2]

Stiff ordinary differential equations

We now look at differential equations which have widely differing timescales. These are generally
called stiff differential equations. When solving a stiff equation a numerical method has a step
size which is restricted by considerations of stability rather than accuracy. MATLAB uses the
routines ode23t and ode15s to solve stiff problems. Both of these routines usually involve solving
nonlinear equations. Stiff equations are very common in applications; examples arise in the study
of chemical reactions. We start with some theoretical investigations before applying the results
we have derived to a problem arising in chemical engineering.

3. Suppose that u satisfies the differential equation

du

dt
= f(u) ≡ Λu, Λ =

(

−100 1
0 −1

)

u(0) = (2, 2)T .



(a) Show, by differentiating, that the solution of this system is given by

u(t) = ae−100t

(

1
0

)

+ be−t

(

1/99
1

)

for constants a, b which you should determine by setting t = 0. [1]
(b) Show that if the Forward Euler method is used to solve this differential equation, with Un

approximating u((n − 1)h) then
Un = (1 + hΛ)n−1

U1.

Let Ah = I + hΛ. Find the eigenvalues of Ah. Hence show that Un will grow without bound if
h > 2/100. This method is unstable if h > 2/100 = 0.02 and this imposes a restriction on the
step size that we can use. [1]

(c) The absolute truncation error E that is made at each step of the Forward Euler method
between t and t + h is given by

E =
h2

2
|u′′(ξ)|, ξ ∈ [t, t + h].

The relative error R is given by R = E/|u|. If we want a relative error of 0.5× 10−2 at each step
when calculating the solution, show that we could in principle use a step size of h = 0.1 in the
latter part of the calculation. What step size do we in principle need to use in the initial stages
of the calculation? [1]

This shows that in the initial stages of the calculation (when u is varying rapidly), the step size
is restricted by considerations of accuracy and in the latter stages by consideration of stability.
To avoid the growth of small errors in the latter stages of the calculation the method is working
too hard. This is the hallmark of using a non-stiff method on a stiff problem. The routine ode45

behaves in a very similar manner.

4. The Trapezoidal rule is widely used to solve stiff ordinary differential equations. It combines
stability with accuracy and ease of use. It is also a symmetric and self-adjoint method which
makes it especially suitable for solving differential equations which remain unchanged when time
is reversed. MATLAB has a trapezoidal rule method ode23t. The Trapezoidal rule is defined by

Un+1 = Un +
h

2

(

f(Un) + f(Un+1)
)

.

If f(u) is a nonlinear function, then at each step of the Trapezoidal method a nonlinear system
must be solved.

(a) Show that for the problem in Q.4. we have

Un+1 = BhU
n,

for some matrix Bh which you should identify. Hence show that this method is stable for all
(positive) h i.e. Un does not grow without bound. [1]

(b) The absolute truncation error at each stage of the trapezoidal rule is given by

E =
h3

12
|u′′′(ξ)|, ξ ∈ [t, t + h].

Find choices of step size h for the initial and final stages of the calculation so that the relative
error R = E/|u| is less than 10−2. Compare these with the step sizes for the Forward Euler
method and comment. [1]



5. The HIRES problem is a stiff system of 8 nonlinear ordinary differential equations. HIRES
stands for the High Irradiation Responses of photomorphogenesis on the basis of phytochrome,
by means of a chemical reaction involving eight reactants. The concentration of the reactants
is given by the vector u(i) with i = 1, 2, .., 8 and each differential equation describes a chemical
reaction as part of an overall process which is influenced by the presence of enzymes. It is a
typical example of the sort of problems that arise in chemical engineering and/or biochemistry.
Details of the problem are given in:

E. Schäfer, A new approach to explain the ’high irradiance responses’ of photomorphogenesis on
the basis of phytochrome, J. Math. Biology, 2, (1975), 41–56.

We now integrate this system, using two routines, the explicit, non-stiff routine ode45 which
behaves like the Forward Euler method (in that this is an explicit method in which the step
size is chosen in a similar manner to that of the Forward Euler method and is restricted by
considerations of stability) and the variable order stiff solver ode15s which behaves like the
trapezoidal rule (in that this is an implicit method which requires the solution of nonlinear
equations at each step and in which the step size is determined by considerations of accuracy
rather than stability). The ode15s algorithm is a very powerful routine which should be used
for most stiff problems.

The HIRES system takes the form

du

dt
= f(u), u(0) = u0.

Here

f(u) =































−1.71u1 + 0.43u2 + 8.32u3 + 0.0007
1.71u1 − 8.75u2

−10.03u3 + 0.43u4 + 0.035u5

8.32u2 + 1.71u3 − 1.12u4

−1.745u5 + 0.43u6 + 0.43u7

−280u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7

280u6u8 − 1.81u7

−280u6u8 + 1.81u7































and the initial values are given by u0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)T .

(a) (i) Write a MATLAB script file which integrates this problem over the range t=[0 321.8122]

using either ode45 or ode15s with the default parameters. Calculate the solution [t,u] in each
case (you will have to wait for the ode45 calculation) and plot (on the same graph) log(h(i)) as
a function of t(i) in both cases, where h the vector of time-steps h(i) = t(i + 1) − t(i). [1]

(ii) Modify the script file so that it uses the options = odeset(..) routine to set up a relative
tolerance ’RelTol’ equal to 10−(4+m/4) for m = 0, 1, 2, .., 24 and an absolute tolerance ’AbsTol’

equal to ’RelTol’. For each of these values of m determine the cputime that it takes to run the
calculation when using either ode45 or ode15s. (See help cputime for details of this command).
Plot (separate) graphs in each of these two cases of the cputime as a function of m. [1]

+(b) Using the results of Q.4 and Q.5 give a careful qualitative and quantitative explanation of
the form of each of the graphs in (a)(i) and (a)(ii), comparing ode45 and ode15s, and giving a
mathematical justification where necessary. [3]

CJB


