Sheet2 Link to calculator for modular exponentiation: tinyurl.com/Master04. Link to calculator for modular inverses: tinyurl.com/Master05. List of a few primes:

Number	100	1000	10000	100000	1000000
Next	101	1009	10007	100003	1000003
Previous	97	997	9973	99991	999983

Questions 4 onwards are to be done in pairs — A and B.

- 1. Work out 7⁵ (mod 11). Do this yourself: $7^{\pm}49 \equiv 5 \pmod{11}$, so $7^5 = 7^{2+2+1} \equiv 5 * 5 * 7 \cdots$. Check your answer with the calculator.
- 2. Work out $23^{29} \pmod{97}$ using the calculator.

3. Diffie-Hellman Key Exchange. Suppose that A and B agree the prime 11 (in practice, they would choose a far larger number), and the base 2. A chooses 3 and B chooses 7 (both have no common factor with p - 1 = 10). What does A send to B? What does B send to A? What shared secret do they end up with?

4. Diffie-Hellman Key Exchange.

Choose a prime p (I suggest two digits^{*}) between you (note that this *isn't* a secret!)), and a base g (say 2, also not a secret). A and B then choose a private number each (a and b: these *are* the secrets). A computes $g^a \pmod{p}$ and tells this to B. Simultaneously, B computes $g^b \pmod{p}$ and tells this to A. Then A raises the message from B to the power $a \pmod{p}$ and B raises the message from A to the power $b \pmod{p}$. A and B then check that they have the same number, which could be used as the key of a code.

- 5. Repeat with a larger prime from the table above.
- 6. Diffie-Hellman Message Passing.

Choose a prime p (I suggest two digits, but bigger than 26) between you, and a base g (say 2). A and B then choose a private number each (a and b). A then chooses secretly a letter (call it L), and encodes as (a = 1, b = 2, c = 3, ...). A sends $L^a \pmod{p}$ to B. B raises this to the power $b \pmod{p}$ and sends this to A. A in the meantime has computed a', the inverse of $a \pmod{p}$, and raises B's message to this power, modulo p. B in the meantime has computed b', the inverse of $b \pmod{p}$, and raises A's message to this power, modulo p. B should now have the letter L that A sent.

7. Repeat with a larger prime from the table above.

 $^{\ \ * \ \ 11, \ 13, \ 17, \ 19, \ 23, \ 29, \ 31, \ 37, \ 41, \ 43, \ 47, \ 53, \ 59, \ 61, \ 67, \ 71, \ 73, \ 79, \ 83, \ 89, \ 97.}$