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Summary. Many complex systems have emergent behaviour which results from
the way in that the components of the system interact, rather than their individual
properties. However, it is often unclear as to what this emergent bahaviour can be,
or inded how large the system should be for such behaviour to arise. In this paper we
will address these problems for the specific case of an electrical network comprising
a mixture of resistive and reactive elements. Using this model we will show, using
some spectral theory, the types of emergent behaviour that we expect and also how
large a system we need for this to be observed.

1 Introduction and Overview

The theory of complex systems offers great potential as a way of describing
and understanding many phenomena involving large numbers of interacting
agents, varying from physical systems (such as the weather) to biological and
social systems [1]. A system is complex rather than just complicated if the
individual components interact strongly and the resulting system behaviour is
a product more of these interactions than of the individual components. Such
behaviour is generally termed emergent behaviour and we can colloquially
that the complex system is demonstrating behaviour which is more than the
sum of its parts. However, such descriptions of complexity are really rather
vague and leave open many scientific questions. These include: how large does
a system need to be before it is complex, what sort of interactions lead to
emergent behaviour, and can the types of emergent behaviour be classified.
More generally, how can we analyse a complex system? We do not believe that
these questions can be answered in general, however, we can find answers to
them in the context of specific complex problems. This is the purpose of this
paper, which will study a complex system comprising a large binary electrical
network, which can be used to model certain material behaviours.

Such large binary networks comprise disordered mixtures of two different but
interacting components. These, arise both directly, in electrical circuits [2],[3],
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[4], or mechanical structures [5], and as models of other systems such as disor-
dered materials with varying electrical [6], thermal or mechanical properties in
the micro-scale which are then coupled at a meso-scale. Many systems of con-
densed matter have this form [7],[8], [9]. Significantly, such systems are often
observed to have macroscopic emergent properties which can have emergent
power-law behaviour over a wide range of parameter values which is different
from any power law behaviour of the individual elements of the network, and
is a product of the way in which the responses of the components combine.
As an example of such a binary disordered network, we consider a (set of
random realisations of a) binary network comprising a random mixture with
a proportion of (1− p) resistors with frequency independent admittance 1/R
and p capacitors with complex admittance iωC directly proportional to fre-
quency ω. This network when subjected to an applied alternating voltage of
frequency ω has a the total admittance Y (ω). We observe that over a wide
range of frequencies 0 < ω1 < ω < ω2 , the admittance displays power law
emergent characteristics, so that |Y | is proportional to ωα, for an appropriate
exponent α. Significantly, α is not equal to zero or one (the power law of the
response of the individual circuit elements) but depends upon the proportion
of the capacitors in the network. For example when this proportion takes the
critical value of p = 1/2, then α = 1/2. The effects of network size, and
component proportion, are important in that ω1 and ω2 depend upon both
p and N . In the case of p = 1/2 this is a strong dependence and we will see
that ω1 is inversely proportional to N and ω2 directly proportional to N , as
N increases to infinity. It is in this frequency range that both the resistors
and capacitors share the (many) current paths through the network, and they
interact strongly. The emergent behaviour is a result of this interaction. For
0 < ω < ω1 and ω > ω2 we see a transition in the behaviour. In these ranges
either the resistors or the capacitors act as conductors, and there are infre-
quent current paths, best described by percolation theory. In these ranges the
emergent power law behaviour changes and we see instead the individual com-
ponent responses. Hence we see in this example of a complex system (i) an
emergent region with a power law response depending on the proportion but
not the arrangement or number of the components (ii) a more random perco-
lation region with a response dominated by that of individual components and
(iii) a transition between these two regions at frequency values which depends
on the number and proportion of components in the system. The purpose of
this paper is to partly explain this behaviour.

The layout of the remainder of this paper is as follows. In Section 2 we will
give a series of numerical results which illustrate the various points made
above on the nature of the network response. In Section 3 we will formulate
the matrix equations describing the network and the associated representation
of the admittance function in terms of poles and zeros. In Section 4 we will
discuss, and derive, a series of statistical results concerning the distribution of
the poles ad zeros. In Section 5 we will use these statistical results to derive
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the asymptotic form of the admittance |Y (ω)| in the critical case of p =
1/2. In Section 6 we compare the asymptotic predictions with the numerical
computations. Finally in Section 7 we will draw some conclusions from this
work.

2 Simple Network Models and Their Responses

In this section we show the basic models for composite materials and as-
sociated random binary electrical networks, and present the graphs of their
responses. In particular we will look in detail at the existence of a power law
emergent region, and will obtain empirical evidence for the effects of network
size N and capacitor proportion p, on both this region and the ’percolation
behaviour’ when CR ω � 1 and CR ω � 1.

2.1 Modelling Composites as Complex Rectangular Networks

An initial motivation for studying binary networks comes from models of
composite materials. Disordered two-phase composite materials are found to
exhibit power-law scaling in their bulk responses over several orders of magni-
tude in the contrast ratio of the components [10], [3], and this effect has been
observed [2],[11] in both physical and numerical experiments on conductor-
dielectric composite materials. In the electrical experiments this was previ-
ously refered to as “Universal Dielectric Response” (UDR), and it has been
observed [7],[8] that this is an emergent property arising out of the random
nature of the mixture. A simple model of such a conductor-dielectric mixtures
with fine structure is a large electrical circuit replacing the constituent con-
ducting and dielectric parts with a linear C-R network of N � 1 resistors
and capacitors, respectively as illustrated in Figure1. For a binary disordered
mixture, the different components can be assigned randomly to bonds on a
lattice [12]. with bonds assigned randomly as either C or R, with probability
p, 1 − p respectively. The components are distributed in a two-dimensional
lattice between two bus-bars. On of which is grounded and the other is raised
to a potential V (t) = V exp(iωt). This leads to a current I(t) = I(ω) exp(iωt)
between the bus-bars, and we measure the macroscopic (complex) admittance
given by Y (ω) = I(ω)/V. A large review of this and binary disordered net-
works can be found in [13, 3].

We now present an overview of the results found for the admittance conduc-
tion of the C-R network, explaining the PLER and its bounds. In particular we
need to understand the difference between percolation behaviour and power
law emergent behaviour. To motivate these results we consider initially the
cases of very low and very large frequency.
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Fig. 1. The layout of the binary electrical circuit.

Percolation and power-law emergent behaviour

As described in the introduction, in the case of very low frequency CR ω � 1,
the capacitors act as open circuits and the resistors become the main con-
ducting paths with far higher admittance than the capacitors. The circuit
then becomes a percolation network [14],[15] in which the bonds are either
conducting with probability (1 − p) or non-conducting with probability p.
The network conducts only if there is a percolation path from one electrode
to the other. It is well known [14] that if p > 1/2 then there is a very low
probability that such a percolation path exists. In contrast, if p < 1/2 then
such a path exists with probability approaching one as the network size in-
creases. The case of p = 1/2 is critical with a 50% probability that such a
path exists. This implies that if p < 1/2 then for low frequencies the conduc-
tion is almost certainly resistive and the overall admittance is independent of
angular frequency ω. In contrast, if p > 1/2 then the conduction is almost cer-
tainly capacitative and the overall admittence is directly proportional to ω. If
p = 1/2 (the critical percolation probability for a 2D square lattice) then half
of the realisations will give an admittance response independent of ω and half
an admittance response proportional to ω. In the case of very high frequencies
CR ω � 1, we see an opposite type of response. In this case the capacitors
act as almost short circuits with far higher admittance than the resistors.
Again we effectively see percolation behaviour with the resistors behaving as
approximately open circuits in this case. Thus if p > 1/2 we again expect
to see a response proportional to ω and if p < 1/2 a response independent
of ω. The case of p = 1/2 again leads to both types of response with equal
likelihood of occurrence depending upon the network configuration. Note that
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this implies that if p = 1/2 then there are four possible qualitatively different
types of response for any random realisation of the system.

For intermediate values of ω the values of the admittance of the resistors
and the capacitors are much closer to each other and there are many current
paths through the network, In Figure2 we see the current paths in the three
cases of (a) percolation, (b) transition between percolation and emergence (c)
emergence.

 

Fig. 2. An illustration of the three different types of current path observed in the
percolation, transition and emergent regions.

The emergence region has power-law emergent behaviour.This is characterised
by two features: (i) an admittance response that is proportional to ωα for
some 0 < α < 1 over a range ω ∈ (ω1, ω2). (ii) In the case of p = 1/2 a
response that is not randomly dependent upon the network configuration.
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Figures (3) and (4) plot the admittance response as a function of ω in the
cases of p = 0.4, p = 0.6 and p = 1/2. The figures clearly demonstrate the
forms of behaviour described above. Observe that in all cases we see quite
a sharp transition between the percolation type behaviour and the emergent
power law behaviour as ω varies.
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Fig. 3. Typical responses of network simulations for values of p 6= 1/2 which give
qualitatively different behaviour so that in the percolation region with CR ω � 1 or
CR ω � 1, we see resistive behaviour in case (a) and capacitative behaviour in case
(b). The figures presented are density plots of 100 random realisations for a 20× 20
network. Note that all of the realisations give very similar results.

The effects of network size N and capacitor proportion p.

We have seen above how the response of the network depends strongly upon
p. It also depends (more weakly) upon the network size N . Figure 5 shows the
response for the critical value of p = 1/2 for different values of N . Observe that
in this case the width of the power-law emergent region increases apparently
without bound, as N increases, as do the magnitude of the responses for small
and large frequencies. In contrast in Figure (6) we plot the response for p = 0.4
and again increase N In contrast to the former case, away from the critical
percolation probablility the size of the power-law emergent region appears to
scale with N for small N before becoming asymptotic to a finite value for
larger values of N .

These results are consistent with the predictions of the Effective-Medium-
Approximation (EMA) calculation [16],[3] which uses a homogenisation argu-
ment to determine the response of a network with an infinite number (N =∞)
of components. In particular, the EMA calculation predicts that in this lim-
iting case, the response for p = 1/2 is always proportional to

√
ω and that it

p < 1/2 then the response is asymptotic to ε ≡ 1/2− p as ω → 0 and to 1/ε
as ω → ∞. However the EMA calculation does not include the effects of the
network size.
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Fig. 4. Responses for 100 realisations at p = 1/2 showing four different qualitative
types of response for different realisations. Here, about half of the responses have
a resistive percolation path and half have a capacitive one at low frequencies with
a similar behaviour at high frequencies. The responses at high and low values of
CR ω indicate which of these cases exist for a particular realisation. The power-law
emergent region can also be seen in which the admittance scales as

√
ω and all of

the responses of the different network realisations coincide

N=90

(a)
102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

N=380

(b)
102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

N=2450

(c)
102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

N=9000

(d)
102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

Fig. 5. The effect of network size N on the width of the power-law emergent region
for p = 1/2, in which we see this region increasing without bound.
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Fig. 6. The effect of the network size N on the power-law emergent region for
p = 0.4, in which we see this region becoming asymptotic to a finite set as N →∞ .

To compare and contrast these results, we consider for p ≤ 1/2, the dynamic
range of the response for those realisations which have a resistive solution for
both low and high frequencies (that is with probability one if p < 1/2 and
probability 1/4 if p = 1/2.). We define the dynamic range to be

Ŷ =
|Y |max
|Y |min

=
|Y (∞)|
|Y (0)|

.

In Figure (7) we plot Ŷ as a function of N for a variety of values of p ≤ 1/2.
We see from this figure that if p = 1/2 then Ŷ is directly proportional to N for
all values of N plotted. In contrast, if p < 1/2 then Ŷ is directly proportional
to N for smaller values of N and then becomes asymptotic to a finite value
Ŷ (p) as N →∞.

3 Linear circuit analysis of the network

We now describe in detail how the disordered material is modelled by by a
general network model. In this we consider two components of admittance y1
and y2 so that the proportion of the first component is (1−p) and the second
is p. These will have admittance ratio µ = y2

y1
. For a capacitor-resistor (C-R)
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Fig. 7. The variation of the dynamic range Ŷ = |Y |max/|Y |min as a function of N
and p.

network with a proportion p of capacitors with admittance y2 = iωC and
resistors admittance y1 = 1/R we have

µ = iωCR is purely imaginary. (1)

3.1 Linear Circuit Formulation

Now consider a 2D N node square lattice network, with all of the nodes on
the left-hand-side (LHS) connected via a bus-bar to a time varying voltage
V (t) = V eiωt and on the right-hand-side (RHS) via a bus-bar to earth (0V ).
We assign a (time-varying) voltage vi with i = 1 . . . N to each (interior) node,
and set v = (v1, v2, v3 . . . vN )T the be the vector of voltage unknowns. We will
also assume that adjacent nodes are connected by a bond of admittance yi,j .
Here we assume further that yi,j = y1 with probability 1 − p and yi,j = y2
with probability p. From Kirchhoff’s current law, at any node all currents
must sum to zero, so there are no sinks or sources of current other than at the
boundaries. In particular, the current from the node i to an adjoining node
at j is given by Ii,j where

Ii,j = (vi − vj)yi,j .

It then follows that if i is fixed and j is allowed to vary over the four nodes
adjacent to the node at i then
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j

yi,j(vi − vj) = 0. (2)

If we consider all of the values of i then there will be certain values of i that
correspond to nodes adjacent to one of the two boundaries. If i is a node
adjacent to the left boundary then certain of the terms vj in (2) will take the
value of the (known) applied voltage V (t). Similarly, if a node is adjacent to
the right hand boundary then then certain of the terms vj in (2) will take the
value of the ground voltage 0. Combining all of these equations together leads
to a system of the form

Kv = V (t)b = V eiωtb, (3)

where K ≡ K(ω) is the (constant in time) N ×N sparse symmetric Kirchhoff
matrix for the system formed by combining the individual systems (2), and
the adjacency vector b ≡ b(ω) is the vector of the admittances of the bonds
between the left hand boundary and those nodes which connected to this
boundary, with zero entries for all other nodes. As this is a linear system, we
can take

v = Veiωt

so that the (constant in time) vector V satisfies the linear algebraic equation

KV = V b. (4)

If we consider the total current flow I from the LHS boundary to the RHS
boundary then we have

I = bT (V e−V) ≡ bTV − V c

where e is the vector comprising ones for those nodes adjacent to the left
boundary and zeroes otherwise and c = bTV. Combining these expressions,
the equations describing the system are then given by

KV − bV ≡ 0, cV − bTV = I. (5)

The bulk admittance Y (µ) of the whole system is then given by Y = I/V so
that

Y (µ) = c− bTK−1b. (6)

Significantly, the symmetric Kirchoff matrix K can be separated into the two
sparse symmetric N×N component matrices K = K1 +K2 which correspond
to the conductance paths along the bonds occupied by each of the two types
of components. Furthermore

K1 = y1L1 and K2 = y2L2 = µy1L2 (7)
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where the terms of the sparse symmetric connectivity matrices L1 and L2 are
constant and take the values −1, 0, 1, 2, 3, 4. Note that K is a linear affine
function of µ. Furthermore,

∆ = L1 + L2

is the discrete (negative definite symmetric) Laplacian for a 2D lattice. Simi-
larly we can decompose the adjacency vector into two components b1 and b2

so that
b = b1 + b2 = y1e1 + y2e2

where e1 and e2 are orthogonal vectors comprising ones and zeros only corre-
sponding to the two bond types adjacent to the LHS boundary. Observe again
that b is a linear affine function of µ. A similar decomposition can applied to
the scalar c = c1 + µc2.

3.2 Poles and Zeroes of the Admittance Function

To derive formulæ for the expected admittances in terms of the admittance
ratio µ = iωCR we now examine the structure of the admittance function
Y (µ). As the matrix K, the adjacency vector b and the scalar c are all affine
functions of the parameter µ it follows immediately from Cramer’s rule applied
to (5) that the admittance of the network Y (µ) is rational function of the
parameter µ, taking the form of the ratio of two complex polynomials P (µ)
and Q(µ) of respective degrees r ≤ N and s ≤ N , so that

Y (µ) =
Q(µ)
P (µ)

=
q0 + q1µ+ q2µ

2 + . . . qrµ
r

p0 + p1µ+ p2µ2 + . . . psµs
(8)

We require that p0 6= 0 so that the response is physically realisable, with
Y (µ) bounded as ω and hence µ → 0. Several properties of the network
can be immediately deduced from this formula. First consider the case of ω
small, so that µ = iωCR is also small. From the discussions in Section 2,
we predict that either there is (a) a resistive percolation path in which case
Y (µ) ∼ µ0 as µ→ 0 or (b) such a path does not exist, so that the conduction
is capactitative with Y (µ) ∼ µ as µ → 0. The case (a) arises when p0 6= 0
and the case (b) when q0 = 0. Observe that this implies that the absence of
a resistive percolation path as µ → 0 is equivalent to the polynomial Q(µ)
having a zero when µ = 0.. Next consider the case of ω and hence µ large. In
this case

Y (µ) ∼ qr
ps
µr−s as µ→∞.

Again we may have (c) a resisitive percolation path at high frequency with
response Y (µ) ∼ µ0 as µ → ∞, or a capacitative path with Y (µ) ∼ µ. In
case (c) we have s = r and pr 6= 0 and in case (d) we have s = r − 1 so that
we can think of taking pr = 0. Accordingly, we identify four types of network
defined in terms of there percolation paths for low and high frequencies, which
correspond to the cases (a),(b),(c ),(d) so that
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(a) p0 6= 0
(b) p0 = 0
(c) pr 6= 0
(d) pr = 0

The polynomials P (µ) and Q(µ) can be factorised by determining their re-
spective roots µp,k,,k = 1 . . . s and µz,k,,k = 1 . . . r which are the poles and
zeroes of the network. We will collectively call these zeroes and poles the res-
onances of the network. It will become apparent that the emergent response
of the network is in fact a manifestation of certain regularities of the locations
of these resonances. Note that in Case (b) we have µz,1 = 0. Accordingly the
network admittance can be expressed as

Y (µ,N) = D(N)

r∏
k=1

(µ− µz,k)

s∏
k=1

(µ− µp,k)
. (9)

Here D(N) is a function which does not depend on µ but does depend on the
characteristics of the network.

It is a feature of the stability of the network (bounded response), and the
affine structure of the symmetric linear equations which describe it [3], that
the poles and zeros of Y (µ) are all negative real numbers, and interlace so
that

0 ≥ µz,1 > µp,1 > µz,2 > µp,2 . . . > µz,s > µp,s(> µz,r) (10)

Because of this, we may recast the equation (11) in terms of ω so that

|Y (µ,N)| = |D(N)|

r∏
k=1

|ω − iWz,k|
s∏

k=1

|ω − iWp,k|
(11)

where Wz,k ≥ 0,Wp,k > 0.

4 The distribution of the resonances

The previous section has described the network response in terms of the loca-
tion of the poles and the zeros. We now consider the statistical distribution of
these values and claim that it is this distribution which leads to the observed
emergent behaviour. We note that if we consider the elements of the network
to be assigned randomly (with the components taking each of the two possible
values with probabilities p and 1−p then we can consider the resonances to be
random variables. There are three interesting questions to ask, which become
relevant for the calculations in the next section, namely
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1. What is the statistical distribution of Wp,k if N is large.
2. Given that the zeros interlace the poles, what is the statistical distribution

of the location of a zero between its two adjacent poles.
3. What are the ranges of Wp,k, in particular, how do Wp,1 and Wp,N vary

with N and p.

In each case we will find good numerical evidence for strong statistical regu-
larity of the poles, especially in the critical case of p = 1/2, leading to partial
answers to each of the above questions. For the remainder of this paper we
will now only consider this critical case.

4.1 Pole location

In the critical case, the two matrices L1 and L2 representing the connectivity
of the two components, have a statistical duality, so that any realisation which
leads to a particular matrix L1 is equally likely to lead to the same matrix L2.
Because of this, if µ is an observed eigenvalue of the pair (L1, L2) then it is
equally likely for there to be an observed eigenvalue of the pair (L2, L1). The
latter being precisely 1/µ. Thus in any set of realisations of the system we
expect to see the eigenvalues µ and 1/µ occuring with equal likelihood. It fol-
lows from this simple observation that the variable log |µ| should be expected
to have a symmetric probability distribution with mean zero. Applying the
central limit theorem in this case leads to the expectation that log |µ| should
follow a normal distribution with mean zero (so that µ has a log-normal dis-
tribution centred on µ = −1). Similarly, if µ1 is the smallest value of µ and
µN the largest value then µ1 = −1/µN . In fact we will find that in ths case
of p = 1/2 we have µ1 ∼ −1/N and µN ∼ −N . In terms of the frequency
response, as µp,k = −CR Wp,k, it follows that log(Wp,k) is expected to have
a mean value of − log(CR). Following this initial discussion, we now consider
some actual numerical computations of the distribution of the poles in a C-R
network for which CR = 10−6 so that − log10(CR) = 6. We take a single
realisation of a network with N ≈ 380 nodes, and determine the location of
CR Wp,k for this case. We then plot the location of the logarithm of the poles
as a function of k. The results are given in Fig 8 for the case of p = 1/2. Two
features of this figure are immediately obvious. Firstly, the terms Wp,k ap-
pear to be the point values of a regular function f(k). Secondly, as predicted
above, the logarithm of the pole location shows a strong degree of symmetry
about zero. We compare the form of this graph with that of the inverse error
function, that is we compare erf(log(CR Wpk)) with k. The correspondence is
very good, strongly indicating that log(f) takes the form of the inverse error
function. .

4.2 Pole-Zero Spacing

The above has considered the distribution of the poles. As a next calculation
we consider the statistical distribution of the location of the zeros with respect
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Fig. 8. The location of the logarithm of the poles as a function of k and a comparison
with the inverse error function.

to the poles. In particular we consider the variable δk given by

δk ≡
Wp,k −Wz,k

Wp,k −Wp,k−1
(12)

which expresses the relative location of each zero in terms of the poles which
it interlaces. In Figure 9 we plot the distribution of the mean value δ̄k of δk

over 100 realisations of the network. plotted as a function of the mean location
of log(Wp,k) for p = 1/2. This figure is remarkable as it indicates that when
p = 1/2 the mean value of δk is equal to 1/2 almost independently of the
value of log(Wp,k). There is some deviation from this value at the high and
low ends of the range, presumably due to the existence of the degenerate poles
at zero and at infinity, and there is some evidence for a small asymmetry in
the results, but the constancy of the mean near to 1/2 is very convincing.
This shows a remarkable duality between the zeros and the poles in the case
of p = 1/2, showing that not only do they interlace, but that on average the
zeros are mid-way between the poles and the poles are mid-way between the
zeros.
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Fig. 9. Figure showing how the mean value δ̄k, taken over many realisations of the
critical network, varies with the mean value of log(Wp,k).

4.3 Limiting Finite Resonances

Let N ′ be the number of finite non-zero resonances, the location of the first
non-zero pole and zero be Wz,1,Wp,1, and the location of the last finite pole
and zero be Wp,N ′ ,Wz,N ′ . Observe that in the case of p = 1/2 we expect a
symmetrical relation so that Wp,1 and Wp,N ′ might be expected to take recip-
rocal values. The value of N ′ can be considered statistically, and represents
probability of a node contributing to the current paths and not being part
of an isolated structure. Statistical arguments presented in [3] indicate that
when p = 1/2 this is given by

N ′ = 3
(

2−
√

3
)
N = 0.804 . . . N.

We now consider the values of Wp,1 and of Wp,N ′ . These will become very
important when we look at the transition between emergent type behaviour
and percolation type behaviour which is one of the objectives of this research.
A log-log plot of the values of Wz,1,Wp,1 and of Wz,N ′ ,Wp,N ′ as functions of
N for the case of p = 1/2 is given in Figure10 . There is very clear evidence
from these plots that each of Wz,1,Wp,1 and Wz,N ′ ,Wp,N ′ both have a strong
power law dependence upon N for all values of N . Indeed we have from a
careful inspection of this figure that

Wz,1,Wp,1 ∼ N−1 and Wz,N ′ ,Wp,N ′ ∼ N.
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Fig. 10. Figure showing how the maximum pole and zero locations Wp,N′ ,Wz,N′

scale as N and the minimum pole and zero locations Wp,1,Wz,1 scale as 1/N .

4.4 Summary

The main conclusions of this section are that there is a strong statistical
regularity in the location of the poles and the zeros of the admittance function.
In particular we may make the following conclusions based on the calculations
reported in this section.

1. Wp,k ∼ f(k) for an appropriate continuous function f(k) where f depends
upon N very weakly.

2. If p = 1/2 and if Wz,1 6= 0, then

W1p,W1z ∼ N−1, WN ′p,WN ′z ∼ N.

3. If p = 1/2 then δ̄k ≈ 1/2.

All of these conclusions point towards a good degree of statistical regularity in
the pole distribution, and each can be justified to a certain extent by statistical
and other arguments. We will now show how these statistical regularities
lead to power law emergent region, and how this evolves into a percolation
response.

5 Asymptotic Analysis of the Power Law Emergent
Response

We will use the results in the summary of the previous section to derive the
form of the conductance in the case of a critical C-R network. The formulae
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that we derive will take one of four forms, depending upon the nature of the
percolation paths for low and high frequencies.

5.1 Derivation of the response

We now consider the formulae for the absolute value of the admittance of the
C-R network at a frequency of ω given by

|Y (ω)| = |D(N)|

r∏
k=1

|ω − iWz,k|
s∏

k=1

|ω − iWp,k|

where the zero interlacing theorem implies that

0 ≤Wz,1 < Wp,2 < Wz,2 < W2p < . . . < Wp,s(< Wz(s+1)).

Here we assume that we have s = N ′ poles, but consider situations with
different percolation responses at low and high frequencies depending upon
whether the first zero Wz,1 = 0 and on the existence or not of there is a
final zero Wz,(N ′+1). These four cases lead to four functional forms for the
conductance, all of which are realisable in the case of p = 1/2. In this section
we derive each of these four forms from some simple asymptotic arguments. At
this stage the constant D(N) is undetermined, but we will be able to deduce
its value from our subsequent analysis. Although simple, these arguments
lead to remarkably accurate formulae when p = 1/2, when compared with the
numerical calculations, that predict not only the PLER but also the limits of
this region.

Simple trigonometric arguments imply that

|Y (ω)| = |D(N)|

r∏
k=1

√
ω2 +W 2

z,k

s∏
k=1

√
ω2 +W 2

p,k

(13)

To obtain an asymptotic formula from this identity, we will assume that
s = N ′ is large, and that there is a high density of poles and zeros along
the imaginary axis. From the results in the previous section we know that
asymptotically the poles Wp,k follow a regular distribution and that the the
zeroes have a regular spacing between the poles. The conclusions of the previ-
ous section on the distribution of the poles and the zeros leads to the following
formulae



18 D. P. Almond,C. J. Budd,N. J. McCullen

Wp,k ∼ f(k)
Wp,(k+1) −Wz,k

Wp,(k+1) −Wp,k
= δk,

Wp,(k+1) −Wpk) ∼ f ′(k)
Wz,(k+1) ∼ f(k) + (1− δk)kf ′(k)

Here, as we have seen, the function log(f(k)) is given by the inverse of the
error function, but its precise form does not matter too much for the next
calculation. To do this we firstly consider the contributions to the product in
(13) which arise from the terms involving the first pole to the final zero, so
that we consider the following product

P ≡ |D(N)|
N ′∏
k=1

√
ω2 +W 2

z,(k+1)√
ω2 +W 2

p,k

(14)

Note that this product has implicitly assumed the existence of a final zero
Wz,(N ′+1). This contribution will be corrected in cases for which such a final
zero does not exist. Using the results in (14), in particular on the mean spacing
of the zeros between the poles, we may express P as

P 2 = |D(N)|2
N ′∏
k=1

ω2 + (f(k) + (1− δ̄k)f ′(k))2

ω2 + f2(k)

= |D(N)|2
N ′∏
k=1

ω2 + f2(k) + 2(1− δ̄k)f(k)f ′(k) +HOT

ω2 + f2(k)

= |D(N)|2
N ′∏
k=1

1 +
2(1− δ̄k)f(k)f ′(k)

ω2 + f2(k)
.

Now take the logarithm of both sides and using the approximation log(1+x) ≈
x for small x, we have approximately

log(P 2) ≈ log(|D(N)|2) +
N ′∑
k=1

2(1− δ̄k)f(k)f ′(k)
ω2 + f2(k)

.

(15)

We now approximate the sum in (15) by an integral, so that

log(P 2) ≈ log(|D(N)|2) +

N ′∫
k=1

(1− δ̄k)
2f(k)f ′(k)
ω2 + f2(k)

dk.

(16)
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Making a change of variable from k to f , gives

log(P 2) ≈ log(|D(N)|2) +
∫ Wp,N′

Wp,1

(1− δ̄(f))
2f df
ω2 + f2

(17)

We look at the special form that the above equation takes when p = 1/2. In
this case, from the results of the last section, we know that δ̄k is very close
to being constant at 1/2, so that in (17) we have 1 − δ̄ = 1/2. We can then
integrate the expression for P exactly to give

log(P 2) ≈ log(|D(N)|2) +
1
2

log
(

(Wp,N ′)2 + ω2

(Wp,1)2 + ω2

)
so that

P ≈ |D(N)|
(

(Wp,N ′)2 + ω2

(Wp,1)2 + ω2

) 1
4

.

In this critical case it is equally likely that we will/will not have percolation
paths at both small and large values of ω. Accordingly, we must consider four
equally likely cases of the distribution of the poles and zeros which could arise
in any random realisation of the network. Thus to obtain the four possible
responses of the network, we must now consider the contribution of the first
zero and also of the last zero.

Case 1: First zero at the origin, last zero at N ′ + 1

In this case we multiply P by ω to give |Y1|(ω) so that

|Y1(ω)| ≈ |D(N)1|ω
(

(Wp,N ′)2 + ω2

(Wp,1)2 + ω2

) 1
4

(18)

Case 2: First zero not at the origin, last zero at N ′ + 1.

In this case we multiply P by
√
W 2
z,1 + ω2 to give |Y (ω)|. We also use the

result from the previous section that asymptotically Wz,1 and Wp,1 have the
same form. This gives

|Y2(ω)| ≈ |D(N)2|(W 2
p,N ′ + ω2)

1
4
(
W 2
p,1 + ω2

) 1
4 (19)

Case 3: First zero at the origin, last zero at N ′

In this case we multiply P by ω and divide by
√
W 2
z,N ′ + ω2 to give |Y |.

Exploiting the fact that asymptotically Wp,N ′ ∼Wz,N ′ we have

|Y3(ω)| ≈ |D(N)3|
ω(

W 2
p,N ′ + ω2

)1/4 (
W 2
p,1 + ω2

) 1
4

(20)
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Case 4: First zero not at the origin, last zero at N ′

In this case we multiply P by
√
W 2
z,1 + ω2 and divide by

√
W 2
z,N ′ + ω2 to

give |Y (ω)|. Again, exploiting the fact that asymptotically Wp,N ′ ∼Wz,N ′ we
have

|Y4(ω)| ≈ |D(N)4|
(

(Wp,1)2 + ω2

(Wp,N ′)2 + ω2

) 1
4

(21)

We know, further, from the calculations in the previous section that for all
sufficiently large values of N

CR Wp,1 ∼
1
N

and CR Wp,N ′ ∼ N.

Substituting these values into the above formulae gives:

|Y1(ω)| ≈ |D(N)| ω
(

(N/CR)2 + ω2

(1/NCR)2 + ω2

) 1
4

(22)

with similar formulae for Y2, Y3, Y4. The values for the constants |D(N)| can,
in each case, be determined by considering the mid range behaviour of each
of these expressions. In each case, the results of the classical Keller duality
theory [16] predict that each of these expressions takes the same form in the
range 1/N � CR ω � N and has the scaling law given by

|Yi(ω)| ≈
√
ωC

R
, i = 1, 2, 3, 4. (23)

Note that this is a true emergent expression. It has a different form from the
individual component power laws, and it is also independent of the percolation
path types for low and high frequencies. It is precisely the expression expected
from an infinite lattice with p = 1/2 due to the Keller duality theorem [16] ,
in that |Y |2 = ωC/R is equal to the product of the conductances of the two
separate components. As we have seen, the origin of this expression lies in the
effect of averaging the contributions of each of the poles and zeros (and hence
the associated simple linear circuits) through the approximation of the sum
by an integral. In the case of (say) Y1 we see that the mid-range form of the
expression (22) is given by

|Y1| = |D(N)|
√
Nω√
CR

.

This then implies that |D(N)| = C/
√
N so that

|Y1(ω)| ≈ ωC√
N

(
(N/CR)2 + ω2

(1/NCR)2 + ω2

) 1
4

(24)
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Very similar arguements lead to the following expressions in the other three
cases:

|Y2(ω)| ≈ C√
N

((N/CR)2 + ω2)
1
4
(
(1/NCR)2 + ω2

) 1
4 (25)

|Y3(ω)| ≈
√
N

R

ω

((N/CR)2 + ω2)
1
4 ((1/NCR)2 + ω2)

1
4

(26)

|Y4(ω)| ≈
√
N

R

(
(1/NCR)2 + ω2

(N/CR)2 + ω2

) 1
4

(27)

The four formulae above give a very complete asymptotic description of the
response of the C-R network when p = 1/2. In particular they allow us to
see the transition between the power-law emergent region and the percolation
regions and they also describe the form of the expressions in the percolation
regions. We see a clear transition between the emergent and the percolation
regions at the two frequencies

ω1 =
1

NCR
and ω2 =

N

CR
. (28)

Hence, the number of components in the system for p = 1/2 has a strong
influence on the boundaries of the emergent region and also on the percolation
response. However the emergent behaviour itself is independent of N . Observe
that these frequencies correspond directly to the limiting pole and zero values.
This gives a partial answer to the question, how large does N have to be to
see an emergent response from the network. The answer is that N has to be
sufficiently large so that 1/NCR and N/CR are widely separated frequencies.
The behaviour in the percolation regions in then given by the following

|Y1(CR ω � 1)| ≈ ωC
√
N, |Y1(CR ω � 1)| ≈ ωC√

N
. (29)

|Y2(CR ω � 1)| ≈ 1√
NR

, |Y2(CR ω � 1)| ≈ ωC√
N
. (30)

|Y3(CR ω � 1)| ≈ ωC
√
N, |Y3(CR ω � 1)| ≈

√
N

R
. (31)

|Y4(CR ω � 1)| ≈ 1√
NR

, |Y4(CR ω � 1)| ≈
√
N

R
. (32)

We note that these percolation limits, with the strong dependence upon
√
N

are exactly as observed in Section 2.
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6 Comparison of the Asymptotic and Numerical Results
for the Critical Case

We can compare the four formulae (24,25,26.27) with the numerical calcula-
tions of the network conductance as a function of ω for four different con-
figurations of the system, with different percolation paths for low and high
frequencies. The results of this comparison are shown in Figure 11 in which
we plot the numerical calculations together with the asymptotic formulae for
a range of values of N given by N = S(S−1) with S = 10, 20, 50, 100. We can
see from this that the predictions of the asymptotic formulae (24,25,26.27) fit
perfectly with the results of the numerical computations over all of the values
of N considered. Indeed they agree both in the power law emergent region
and in the four possible percolation regions. The results and the asymptotic
formulae clearly demonstrate the effect of the network size in these cases.

7 Discussion

In this paper we have seen that the electrical network approximation to a
complex disordered material has a remarkably rich behaviour. In this we see
both percolation behaviour (which reflects that of the individual components)
and emergent bahaviour which follows a power-law quite different from that
of the original components. The analysis of this system has involved studying
the statistical properties of the resonances of the response. Indeed we could
argue that both the percolation and emergent power-law responses are simply
manifestations of this spectral regularity. The agreement between the asymp-
totic and the numerical results is very good, which supports our claim, and
shows a clear link between the system behaviour and the network size. We
hope that this form of analysis will be applicable to many other complex sys-
tems. Many questions remain open, for example a rigorous justification of the
observed spectral regularity and an understanding of the relationship between
the network model approximation and the true behaviour of the disordered
material.
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