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A survival study with treatment selection

Consider a Phase 3 trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

At an interim analysis, information on OS, Progression Free
Survival (PFS), PK measurements and safety will be used to
choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the
selected treatment and the control.
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Overall plan of the trial
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At the final analysis, we test the null hypothesis that OS on the
selected treatment is no better than OS on the control treatment.
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Protecting the type I error rate

We shall assume a proportional hazards model for OS with

λ1 = Hazard ratio, Control vs Exp Treatment 1

λ2 = Hazard ratio, Control vs Exp Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp Treatment 2 superior to control).

In order to control the “familywise error rate”, we require

P(θ1,θ2){Reject any true null hypothesis} ≤ α

for all (θ1, θ2).
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A closed testing procedure

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and a level α test of the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

Reject H0,1 overall if the above tests reject H0,1 and H0,12,

Reject H0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple
hypotheses and the “selection bias” in choosing the treatment to
focus on in Stage 2.
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Combining data across stages

Consider testing a generic null hypothesis H0: θ ≤ 0 against θ > 0.

Suppose Stage 1 data produce Z1 where

Z1 ∼ N(0, 1) if θ = 0.

After adaptations, Stage 2 data produce Z2 with conditional
distribution

Z2 ∼ N(0, 1) if θ = 0.

Weighted inverse normal combination test

With pre-specified weights w1 and w2 satisfying w2
1 + w2

2 = 1,

Z = w1 Z1 + w2 Z2 ∼ N(0, 1) if θ = 0,

and Z is stochastically smaller than N(0, 1) if θ < 0.

So, for a level α test, we reject H0 if Z > Φ−1(1− α).
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Properties of log-rank tests

For now, consider Experimental Treatment 1 vs Control.
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Logrank statistic: Comparing Exp Treatment 1 vs Control

Suppose the observed number of deaths at the time of analysis is d.

Elapsed times between entry to the study and these deaths are

τ1 < τ2 < . . . < τd (assuming no ties).

Define variables at this analysis

riT and riC Numbers at risk on Exp Trt 1 and Control at τi−

ri = riT + riC Total number at risk at τi−

O Observed number of deaths on Control

E =
∑d

i=1 riC/ri “Expected” number of deaths on Control

V =
∑d

1 riT riC/r
2
i “Variance” of O

Z = (O − E)/
√
V Standardised logrank statistic
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic at interim analysis,

I1 = Information for θ1 at interim analysis ≈ (Number of deaths)/4

S2 = Unstandardised log-rank statistic at final analysis,

I2 = Information for θ1 at final analysis ≈ (Number of deaths)/4

Here, “Number of deaths” refers to the total number of deaths on
Experimental Treatment 1 and Control arms only.

Then, approximately,

S1 ∼ N(I1 θ1, I1),

S2 − S1 ∼ N({I2 − I1} θ1, {I2 − I1})
and S1 and (S2 − S1) are independent (independent increments).

Reference: Tsiatis (Biometrika, 1981).
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A combination test for survival data

We create Z statistics

Based on data at the interim analysis:

Z1 =
S1√
I1
,

Based on data accrued between the interim and final analyses:

Z2 =
S2 − S1√
I2 − I1

.

If θ1 = 0, then Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

If θ1 < 0, Z1 and Z2 are stochastically smaller than this.

So, we can use Z = w1 Z1 + w2 Z2 in an inverse normal
combination test of H0,1: θ1 ≤ 0.

Chris Jennison Adaptive design with treatment selection and survival endpoint



A combination test for survival data

The above distribution theory for logrank statistics of a single
comparison requires

Z2 =
S2 − S1√
I2 − I1

∼ N(0, 1) under θ1 = 0,

regardless of decisions taken at the interim analysis.

Bauer & Posch (Statistics in Medicine, 2004) note this implies that
the conduct of the second part of the trial should not depend on
the prognosis of Stage 1 patients at the interim analysis.

Suppose prognoses are better for patients on Exp Treatment 1
than for those on Control, and the Stage 2 cohort size is reduced
while follow up of Stage 1 patients is extended: then, the
distribution of Z2 could be biased upwards.

Our example has another potential source of bias, depending on
how the Stage 2 statistic for testing H0,12 is defined.

Chris Jennison Adaptive design with treatment selection and survival endpoint



Analysing an adaptive survival trial

In applying a Closed Testing Procedure, we require level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0,

H0,12: θ1 ≤ 0 and θ2 ≤ 0.

Combination tests for these hypotheses are formed from:

Stage 1 data Stage 2 data

H0,1 Z1,1 Z2,1

H0,2 Z1,2 Z2,2

H0,12 Z1,12 Z2,12

The question is how we should define Z1,1, Z2,1, etc?
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Analysing an adaptive survival trial

A natural choice is to:

Base Z1,1, Z1,2 and Z1,12 on data at the interim analysis,

Base Z2,1, Z2,2 and Z2,12 on the additional information

accruing between interim and final analyses.

We could take Z1,1 and Z1,2 to be standardised log-rank statistics,
and Z2,1 and Z2,2 standardised increments between analyses.

For intersection hypotheses: Z1,12 is formed from Z1,1 and Z1,2,
while Z2,12 = Z2,j , where j is the selected treatment.

However, treatment j is selected because it has better PFS
outcomes at the interim analyses, so it is likely that future OS for
these patients will also be better.

This approach would lead to a bias in the null distribution of Z2,12.
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The method of Jenkins, Stone & Jennison (2011)

If we base a combination test on the two parts of the data accrued
before and after the interim analysis, bias can result:

Z1 Z2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

Instead, we divide the data into the parts from the two cohorts:

Stage 1 Overall survival Overall survival Z1
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival Z2
cohort (during Stage 2)
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Partitioning data for a combination test

To avoid bias: All patients in the Stage 1 cohort are followed for
overall survival up to a fixed time, shortly before the final analysis.

“Stage 1” statistics are based on Stage 1 cohort’s final OS data

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from pooled log-rank test, or a Simes or Dunnett test.

“Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp Treatment 1 is selected:

Z2,1 from log-rank test of Exp Tr 1 vs Control, Z2,12 = Z2,1

If Exp Treatment 2 is selected:

Z2,2 from log-rank test of Exp Tr 2 vs Control, Z2,12 = Z2,2.
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Partitioning data for a combination test

Discussion

Jenkins, Stone & Jennison (2011) introduced the proposed method
in a design where a choice is made between testing for an effect in
the full population or a sub-population.

They stipulated that the amount of follow up for the Stage 1
cohort should be fixed at the outset to avoid any risk of inflating
the type I error rate.

Some adaptive designs allow an early decision based on summaries
of “Stage 1” data at an interim analysis.

In our three-treatment design, the statistics Z1,1, Z1,2 and Z1,12

are not known at the time of the interim analysis, so we cannot
define a formal stopping rule.

However, with only a little OS data available at the interim
analysis, this is not a serious limitation.
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Assessing the benefits of an adaptive design

We compare with a non-adaptive trial in which randomisation is to
both experimental treatments and control throughout the trial.
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All
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- Follow up

of OS

A closed testing procedure is used to control familywise error rate.

When the total numbers of patients and lengths of follow-up are
the same in adaptive and non-adaptive designs,

Does the adaptive design provide higher power?

Are there other advantages?
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Assessing the adaptive design: Model assumptions

Overall Survival
Log hazard ratio

Exp Treatment 1 vs control θ1

Exp Treatment 2 vs control θ2

Logrank statistics are correlated due to the common control arm.

Progression Free Survival

Log hazard ratio

Exp Treatment 1 vs control ψ1

Exp Treatment 2 vs control ψ2

Denote correlation between logrank statistics for OS and PFS by ρ.

Proportional hazards models for both endpoints are not essential
(or possible?) — the implications for the joint distribution of
logrank statistics are what matter.
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Assessing the adaptive design: Model assumptions

Log hazard ratios for OS: θ1, θ2.

Log hazard ratios for PFS: ψ1, ψ2.

We suppose [ . . . logrank statistics are distributed as if . . . ]

ψ1 = γ × θ1 and ψ2 = γ × θ2

Final number of OS events for Stage 1 cohort = 300 (over 3
treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3
treatment arms)

Number of PFS events at interim analysis = λ× 300.

When the log hazard ratio is θ, the standardised logrank statistic

based on d observed events is, approximately, N(θ
√
d/4, 1).
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Testing the intersection hypothesis H0,12

We have null hypotheses H0,1: θ1 ≤ 0 and H0,2: θ2 ≤ 0.

In the closed testing procedure, we must also test

H0,12 = H0,1 ∩H0,2 : θ1 ≤ 0 and θ2 ≤ 0.

We could test H0,12 by pooling the Exp Trt 1 and Exp Trt 2
patients and carrying out a logrank test vs the Control group.

Alternatively we could use a Simes test or a Dunnett test.

Simes’ test:

Given observed values p1 and p2 of P1 and P2, Simes’ test of
H0,12 yields the P-value

min ( 2 min(p1, p2), max(p1, p2) ).

Simes’ test protects type I error conservatively when P1 and P2 are
independent or positively associated.
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Dunnett’s test of an intersection hypothesis

Dunnett’s test for comparisons with a common control

Suppose Z1 and Z2 are the Z-values for logrank tests of Exp Trt 1
vs control and Exp Trt 2 vs Control.

If z1 and z2 are the observed values of Z1 and Z2, the Dunnett
test of H0,12 yields the P-value

P (max(Z1, Z2) ≥ max(z1, z2))

where (Z1, Z2) is bivariate normal with Z1∼N(0, 1), Z2∼N(0, 1)
and Corr(Z1, Z2) = 0.5.

Our investigations of different tests of the intersection hypothesis
showed the Dunnett test to give the most efficient overall testing
versions of both adaptive and non-adaptive designs.
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Comparing adaptive and non-adaptive trial designs

With selected values of ψ1, θ1, ψ2, θ2 and ρ, we simulate logrank
statistics from their large sample distributions.

For the adaptive design, we define

P (1) = P (Select Treatment 1 and Reject H0,1 overall)

P (2) = P (Select Treatment 2 and Reject H0,2 overall)

For the non-adaptive design, we set

P (1) = P (θ̂1 > θ̂2 and H0,1 is rejected overall)

P (2) = P (θ̂2 > θ̂1 and H0,2 is rejected overall)

Hence, we define the overall expected “Gain” or utility measure

E(Gain) = θ1 × P (1) + θ2 × P (2).
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Comparing tests of the intersection hypothesis

Intersection tests produce Z1,12 in an adaptive trial design with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

P (1) E(Gain)

θ1 θ2 Pooled Simes Dunnett Pooled Simes Dunnett

0.3 0.0 0.77 0.85 0.86 0.232 0.254 0.259

0.3 0.1 0.78 0.81 0.82 0.238 0.245 0.247

0.3 0.2 0.68 0.68 0.69 0.238 0.237 0.238

0.3 0.25 0.58 0.58 0.58 0.250 0.249 0.249

0.3 0.295 0.48 0.47 0.47 0.275 0.274 0.274

All simulation results are based on 1,000,000 replicates.

The Dunnett test has the highest power. Unlike the pooled test, it
is well aligned (consonant) with individual tests of H0,1 and H0,2.

Chris Jennison Adaptive design with treatment selection and survival endpoint



Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for H0,12 with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

Non-adaptive Adaptive

θ1 θ2 P (1) P (2) E(Gain) P (1) P (2) E(Gain)

0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259

0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247

0.3 0.2 0.70 0.11 0.234 0.69 0.16 0.238

0.3 0.25 0.60 0.26 0.244 0.58 0.30 0.249

0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

Here, λ = 1 implies there are 300 PFS events at the interim analysis.

The adaptive design has higher P (1) when θ1 is well above θ2.

With θ1 and θ2 closer, the adaptive design still has higher E(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only succeed if there is adequate
information to select the correct treatment at the interim analysis:

Treatment effects on PFS should be be reliable indicators of
treatment effects on OS,

There must be good information on PFS at the interim analysis.

We have investigated varying the parameters γ and λ where

ψ1 = γ × θ1, ψ2 = γ × θ2, with θ1 = 0.3 and θ2 = 0.1

Final number of OS events for Stage 1 cohort = 300 (over 3 arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 arms)

Number of PFS events at interim analysis = λ× 300.

NB It is quite plausible that γ should be greater than 1, i.e., a
larger treatment effect on PFS than on OS.
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Comparing adaptive and non-adaptive trial designs

We compare designs with θ1 = 0.3, θ2 = 0.1, ρ = 0.6, α = 0.025,

PFS log hazard ratios: ψ1 = γ θ1, ψ2 = γ θ2,

Number of PFS events at interim analysis = λ× 300.

Non-adaptive Adaptive

γ λ P (1) P (2) E(Gain) P (1) P (2) E(Gain)

1.5 1.2 0.88 0.00 0.264

1.2 1.1 0.85 0.01 0.256

1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247

0.9 0.9 for all γ and λ 0.78 0.03 0.238

0.8 0.8 (PFS is not used) 0.74 0.04 0.225

0.7 0.7 0.68 0.05 0.208

Adaptation works well when there is enough PFS information for
treatment selection at the interim analysis.
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Related work

1. Irle & Schäfer (JASA, 2012) propose similar adaptive designs
for survival data.

Changes to the design and critical values for test statistics preserve
the conditional probability of rejecting a null hypothesis.

As the “Conditional Probability of Rejection” principle is related to
combination tests, the method has much in common with that of
Jenkins, Stone & Jennison (2011).

Irle & Schäfer’s method imposes the same requirement of a fixed
length of follow-up for “Cohort 1” patients.

Determining the conditional probability of a future event can be
problematic, since the final information level (in a log-rank statistic,
say) is not known at the time this probability is calculated.

We recommend our combination test approach as simpler to
explain and easier to implement.
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Related work

2. Friede et al. (Statistics in Medicine, 2011) consider a seamless
phase II/III trial design with treatment selection based on both
short-term and long-term responses.

They give an example of a trial comparing treatments for multiple
sclerosis. When the treatment selection decision is made, only a
short-term response is available for some subjects but these
patients will go on to provide a long-term response later.

As for a survival endpoint, follow-up of patients on the selected
treatment is likely to produce results that are biased towards a
positive treatment effect, since the treatment selection decision
was based on promising short-term response data.

Friede et al. follow a similar approach to Jenkins, Stone &
Jennison (2011) and apply a combination test to the long-term
response data from the cohorts of patients admitted before and
after the interim decision point.

Chris Jennison Adaptive design with treatment selection and survival endpoint



Conclusions about the benefits of an adaptive design

1 The adaptive design offers the chance to select the better
treatment and focus on this in the second stage of the trial.

2 Overall, adaptation is beneficial as long as there is sufficient
information to make a reliable treatment selection decision.

3 Other evidence may be used in reaching this decision:

Safety data

Pharmacokinetic data

Overall survival

4 In addition to reaching a final decision, both non-adaptive and
adaptive trials compare the two forms of treatment: the
conclusions from this comparison may be more broadly useful.
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