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A Subpixel Image Restoration Algorithm

John GAVIN and Christopher JENNISON

In statistical image reconstruction, data are often recorded on a regular grid of
squares, known as pixels, and the reconstructed image is defined on the same pixel grid.
Thus, the reconstruction of a continuous planar image is piecewise constant on pixels,
and boundaries in the image consist of horizontal and vertical edges lying between pixels.
This approximation to the true boundary can result in a loss of information that may be
quite noticeable for small objects, only a few pixels in size. Increasing the resolution of
the sensor may not be a practical alternative. If some prior assumptions are made about
the true image, however, reconstruction to a greater accuracy than that of the recording
sensor’s pixel grid is possible. We adopt a Bayesian approach, incorporating prior in-
formation about the true image in a stochastic model that attaches higher probability to
images with shorter total edge length. In reconstructions, pixels may be of a single color
or split between two colors. The model is illustrated using both real and simulated data.

Key Words: Bayesian statistical image reconstruction; Confocal microscopy; Deconvo-
lution; Edge detection; Gibbs sampler; Markov chain Monte Carlo; Metropolis algorithm;
Subpixel resolution.

1. INTRODUCTION

Image analysis is the science of extracting information from pictures. The human eye
is very good at extracting qualitative information but more consistent, objective methods
are needed. Also, automatic processing of images is becoming more essential as more and
more data are captured via images. Statistical methods can be used to extract quantitative
information automatically. For example, we might want to count the number of objects
in an image, estimate object areas, measure distances between objects, describe the shape
of objects, or find their boundaries.

In image analysis, data are collected by a perspective projection of objects onto a
planar grid of rectangular or square pixels on a sensor array. The location and orientation
of the pixel grid can have a noticeable effect on the shape of objects at the resolution
limits of the recording sensor.

John Gavin is Research Student, and Christopher Jennison is Professor of Statistics, School of Mathematical
Sciences, University of Bath, Bath BA2 7AY, United Kingdom; e-mail: C.Jennison@maths.bath.ac.uk.

©1997 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America
Journal of Computational and Graphical Statistics, Volume 6, Number 2, Pages 182-201

182



A SuBpIXEL IMAGE RESTORATION ALGORITHM 183

1.1 ExaMPLE 1: BENEFITS OF CONTINUOUS SUBPIXEL RECONSTRUCTIONS

As an example, a continuous binary image is shown in Figure 1(a). In Figure 1(b),
the corresponding observed data, called the record, is a 16 x 16 gray-scale image. The
level of gray in each record element, also called a pixel, of this discretized image is
recorded as a real number. This number represents the weighted average of the two col-
ors in the original image. In our example, the foreground color (black) has a value of one
and the background color (white) has a value of zero. The weights are the areas of the
two colors within that pixel. There is a small amount of noise, 02 = .01, and no blurring
in Figure 1(b). The loss of information between Figure 1(a) and Figure 1(b) is due mainly
to the discrete nature of the sensor. Figure 1(c) shows a full pixel reconstruction where
each pixel is either black or white. Increasing the resolution of the sensor may be unde-
sirable or not technically possible in some applications. For example, an increase in the
intensity of illumination may damage a biological sample. However, by expressing fairly

(a) True image (b) Record

(c) Full pixel image (d) Subpixel image
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Figure 1. Benefits of Continuous Subpixel Reconstructions. A continuous binary image, the observed record
shown as a 16x16 gray-scale pixel image, a full pixel reconstruction, and a subpixel reconstruction of the
continuous image are shown in plots (a)~d) respectively. The true image shows two objects, one lying completely
inside the other. Both objects are circular rather than straight-lined and are near the resolution of the pixel
grid. Plot (c) represents a typical full pixel reconstruction. In contrast, plot (d) shows the benefits of a subpixel
reconstruction. Edges are more clearly defined and this facilitatées more accurate edge-length and surface-area
estimation.
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mild assumptions about the underlying image in a mathematical model and combining
this with the observed data, it is possible to reconstruct the image to a higher accuracy
than the scanning resolution of the sensor. This process of “subpixel resolution” can be
used to provide improved estimates of edge length and area of objects and to detect the
presence and shape of objects that are only a few pixels in size. Figure 1(d) shows the
reconstruction obtained using the algorithm we describe in this article. Apart from a few
errors at the edges of the image, the object boundaries are recovered to a higher degree
of accuracy than the full pixel reconstruction.

For each reconstruction in Figures 1(c) and (d), a pixel grid has been superimposed
and the region of black in each pixel has been drawn to lie inside the boundary of each
pixel. This is purely a graphical device to help illustrate how the image is constructed.

1.2 APPLICATIONS OF SUBPIXEL METHODS

Applications of subpixel resolution include: measuring the size and shape of mi-
croscopic fibres (Hitchcock and Glasbey 1994); classification of subpixel vegetation
cover (Foody 1994; Jasinski 1990; Jasinski and Eagleson 1990); remote sensing of ac-
tive volcanos (Bhattacharya, Reddy, and Srivastav 1993); high-precision measurement
of machine component positions (Young 1987); measuring the width and path of a laser
beam (Szirdnyi 1992); locating and measuring blood vessel boundaries and diameters in
cine coronary angiography (Sandor and Spears 1985); subpixel alignment in lithography
(Gatherer and Meng 1992); pictorial data in the form of line drawings (Koplowitz and
Sundar Raj 1987; Sriraman, Koplowitz, and Mohan 1989); and subpixel deconvolution
of optical and infrared astronomical images (Weir and Djorgovski 1991).

1.3 SuBPIXEL METHODS

These applications rely on a variety of techniques that are often specific to the par-
ticular application in hand. To attempt to assess the various methodologies is beyond the
scope of this article, so we confine ourselves merely to summarizing the most commonly
used methods. See West and Clarke (1990) for a review of several subpixel methods.

1.3.1 Interpolation

View the image as a discrete approximation to an unknown, continuous object sam-
pled at points on a lattice. To enlarge the reconstruction we could sample at a greater
frequency, but this is often neither feasible nor desirable. Instead, the true image is es-
timated at interpixel points by assuming that smooth changes occur between the four
nearest neighbor record values. Among other things, this requires an assumption about
the order of the polynomial used in the interpolation. This method is usually used in
conjunction with other methods, such as filtering. For example, Lorensen and Cline
(1987) proposed a three-dimensional (3D) algorithm that effectively thresholds the data,
which they call “marching cubes.” It efficiently draws a surface through the 3D data by
interpolating between neighboring voxel values.
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1.3.2 Filters

Filters enhance or emphasize certain features of images by applying transformations
based on sets of neighboring pixels. The objective is to remove noise or enhance edges.
These methods provide fast subpixel algorithms because the filter is usually chosen to
be simple and spatially invariant, for convenience. Iteration is not usually required nor
is knowledge about the shape of the edges in the image. However, subpixel accuracy
cannot be achieved without using some form of interpolation. An assumption about the
filter width is required. Some allowance is also needed for the effect on accuracy, if
edges are in close proximity but not connected (Boult and Wolberg 1993; Huertas and
Medioni 1986; Oakley and Shann 1991; Sandor and Spears 1985).

1.3.3 Transforms

If the low-dimensional parametric description of the object is known, then a model-
fitting procedure can be used to find the parameter values for that object that best fits the
data. The method works well even in the presence of noise. For example, Hitchcock and
Glasbey (1994) parameterize small objects, peanut kernels, using Fourier descriptors for
the boundary and then optimize the parameters. They also describe an image of fibers
using a network of splines. Gatherer and Meng (1992) used a discrete Fourier transform
for subpixel alignment in lithography.

1.3.4 Template Matching

An ideal edge is fitted to the observed record values, lying in some window, by
matching statistics calculated from the proposed edge and the record values or by maxi-
mizing some joint statistic such as correlation. So the ideal edge is rotated, translated, or
rescaled to best fit the observed data where, for example, the ideal edge might be a step
or ramp edge. Because the shape of the object is assumed known, correlation can be used
to determine the translation, rotation, and scale parameters. Correlation is used because
the cross-correlation function is smooth, enabling interpolation to find the correlation
peak (West and Clarke 1990). The ideal moments are calculated by integrating the ideal
edge over a chosen window, subject to the sample moments being equal to the moments
of the ideal edge.

This approach offers a closed-form solution, works well even when noise is present,
and requires no interpolation or iteration. However, it requires assumptions about the
shape of the edge (e.g., the edge forms a straight line or is circular over the edge-
fitting window) and the. size of the window over which the edge is estimated. Tabatabai
and Mitchell (1984) discussed a method of moments algorithm and Lyvers, Mitchell,
Akey, and Reeves (1989) discussed an extension to this algorithm that includes spatial
information in the moment equations.



186 J. GaviN AND C. JENNISON

1.3.5 Stochastic Models

Jennison and Jubb (1988) and Jubb and Jennison (1991) introduced a stochastic
model for the edge process. They first find the boundary around an object and then
optimize the position of a sequence of linked line segments around the boundary to
provide a subpixel estimate of the edge. The model favors patterns with smaller total
edge length. Our model is similar to that of Jubb and Jennison (1991), but the algorithm
used to implement this model is much improved.

These methods have much to offer, but no single method is universally satisfactory
nor is this ever likely to be the case. The method proposed in this article provides an
addition to an analyst’s tool box. It has its own limitations, which must be recognized.
However, it offers mathematically and computationally attractive features not found in
other methods.

1.4 Our METHOD

Our proposed method of subpixel reconstruction uses a probabilistic model for the
original image that is combined with the recorded signal by Bayes’s theorem to produce
a posterior image distribution. Markov chain Monte Carlo (MCMC) algorithms are then
used to search for the mode of the posterior distribution, which we take as our point
estimate of the true but unknown image. This Bayesian formulation offers a unified
approach to image analysis covering low-level analysis, such as the removal of noise and
blur, to higher level work such as tomographic reconstruction, segmentation, classification
and texture modeling and, at the highest level, object recognition (Besag, Green, Higdon,
and Mengersen 1995).

In our model for the true image, we assume that the boundaries between regions of
color are smooth and that regions of any one color are fairly large. Thus, the image has
locally at most two colors.

We break down the formidable problem of finding the mode of the posterior image
distribution into stages and use the solution at the end of each stage as the starting point
for the next. As the algorithm progresses, it focuses on finer details of the image but it
is constrained from straying too far from its starting point as it searches larger image
spaces in the later stages.

In Section 2 of this article, we describe the Bayesian approach to image reconstruc-
tion and introduce our model for the true image. We define an algorithm for implementing
this model in Section 3, present an application from microscopy in Section 4, and draw
our conclusions in Section 5.

2. MODELS AND INFERENCE
2.1 BAYESIAN IMAGE RECONSTRUCTION

The methodology used in this article is based on the Bayesian approach to two-
dimensional image reconstruction proposed by Grenander (1983), Geman and Geman
(1984), and Besag (1986). A Markov random field probability model is used to introduce
prior knowledge about the image. This is combined with the observed data to produce a
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posterior distribution for the image X given the observed data Y. Let the prior density
for the scene X be denoted by fx(x), where x € Q; let the probability density of the
observed image Y given X = z be fy|x(y,x); and let fy (y) denote the marginal density
of Y. Then, in a Bayesian analysis, inference about X is based on the posterior density
of X givenY =y

Ixiy(@y) = fvix(y, 2) fx )/ fr (y) o frix (W, z) fx(z), z €. (2.1)

A commonly used estimator of the true image is the mode over x of the posterior density
fxv (z,y). This maximum a posteriori (MAP) estimator is a convenient choice for our
subpixel problem. See Besag et al. (1995) for other possible estimators.

2.2 THE TrRUE IMAGE

In this article, we consider images composed of two colors—c' and c?. In principle,
we would like to allow any division of the image between these colors in continuous
space; however, our methods rely on the assumption that regions of a particular color are
fairly large and the boundaries between areas of opposite color are smooth. For practical
reasons, we allow at most a single straight line edge to divide any pixel between the two
colors in our reconstructions and we incorporate this property into our prior model for
the true, continuous scene.

2.3 THE PrIOR IMAGE DISTRIBUTION

Our prior distribution for the true scene X is on a class of binary images, composed
of colors ¢! and ¢?, in which boundaries are continuous and piecewise linear. An image
is made up of a rectangular array of pixels that are either of a single color or divided
into two regions of different colors by a single straight line edge; the edge meets with
adjacent edges in neighboring pixels. Edges are not allowed to pass through a corner of
a pixel, to avoid anomalies, but edges can be arbitrarily close to a corner. The color of a
pixel is the same as that of all of its neighbors, with agreement on each side of an edge
when one is present. We define 2 to be the set of images satisfying these conditions
(see Fig. 3(d) for an example of a scene z € 2). We index the pixels of an image by
i =1,2,...,n and denote the coloring of pixel ¢ by x;. We shall also use the notation
z(2) € {c!, ¢?} to denote the color of image z at the point z € R2.

Let L(z) denote the total edge length in the reconstruction x, which is the sum of
the lengths of straight line segments in those pixels that contain an edge. In our prior
model] we set

fx(z) =kexp{ - BL(z)} z €, (2.2)

as the density for image z. Here (3 is a smoothing parameter that controls the distribution,
lower values of 3 leading to a greater probability of images with long edges. The constant
k ensures that fx integrates to one but its value need not be known to implement our
method.

Technically, the density fx(z) must be defined with respect to a measure on €.
We define two images in the space () to be “similar” if one can be obtained from the
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other by repositioning the points of intersection of straight line edge segments on the
pixel edges that they cross. Thus, €2 can be partitioned into a finite collection of similar
images. Let u(x) be the measure obtained by ascribing equal probability to all elements
of this partition and then supposing that the end-points of each edge segment are placed
uniformly within the appropriate pixel edge. The density in Equation (2.2) is defined
with respect to this measure p.

2.4 OBSERVED DATA AND LIKELIHOOD

The observed data record Y = {Y; € R : 4 = 1,2,...,n} is recorded on a regular
lattice of points {z; € ®? : i = 1,2,...,n}. The sensor’s output for each record element
Y; represents the average intensity within that pixel but it can be subject to degradation
because of blurring and noise in the recording sensor. So at the ith pixel, a single record
element Y; is observed that reflects the mixture of colors present in some neighborhood
of pixel i. The exact form of the blurring and noise is problem specific and in general a
detailed analysis is required to specify these parameters. In the examples in this article,
we assume Gaussian blurring and additive Gaussian noise, so

Y, = / 2(2)g(zi 2)dz + e, (2.3)

where z(z) € {c',c?} is the value of the true image at the point z € R?, g(2;, 2) is
a Gaussian blurring function that decreases in value as the distance between z and the
point z; increases, and e; is independent, additive, Gaussian sensor noise. Our method
does not rely specifically on these assumptions and we would expect it to work for other
cases of the general degradation process described by Geman and Geman (1984, sec. II,
eq. (2.1)).

In practice, we use a discrete approximation to the blurring kernel in which g(z;, z)
is assumed to be piecewise constant in z across pixels. In this case, [ z(z)g(z;,z)dz
depends on X only through the proportion of each color in each pixel. We denote the
average value of z(z) over points z in pixel j by h;(z) = c'pj + ¢?p?, where p;
and p? are the proportions of pixel j covered by colors ¢! and ¢?, respectively. Letting
Kij = g(2, #;), Equation (2.3) becomes Y; = Zj:jeéi K;jhj(x) + e;, where the set §;
contains indexes j of pixels sufficiently close to ¢ that K;; # 0.

Note that when blurring is present, pixels around the border of the image are only
observed indirectly through their contributions to the records of neighboring pixels. In
this case, there are fewer elements in the record Y than there are pixels in the image X.
We shall assume the blurring coefficients K;; and noise variance o> are known or can
be estimated from the data. The probability density of the signal y given the true image
z is then

Frix(y,z) o exp{—(20%) ! |ly — Kh(=)|}. (2.4)
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2.5 THE POSTERIOR DISTRIBUTION

The posterior distribution is formed by substituting Equations (2.2) and (2.4) into
Equation (2.1) to get

fxiy(z,y) o exp{—BL(z) - (26*) |y — Kh(z)|[*}, T e (2.5)

The posterior distribution is still a Markov random field but with larger neighborhoods
than in the prior because of blurring.

The MAP estimate is defined to be the mode over (2 of the posterior distribution of
X given the observed record Y = y. Thus, we are faced with the problem of maximizing
the right-hand side of Equation (2.5) over x € (2.

3. FINDING THE MAP SUBPIXEL ESTIMATE
3.1 THE ALGORITHM

Our ultimate aim is to find the image x in the sample space {2 that maximizes
the posterior probability fx|y (z,y) defined by Equation (2.5). The sample space 2, as
defined in Section 2.3, is complex and it is difficult to find a good initial estimate in
Q directly. Instead, we proceed in stages, optimizing first over simpler image spaces in
order to obtain a good starting image in () for the final optimization. At each stage we
seek the maximum of

¢(z) = exp{ — BL(z) — (26*)7"|ly — Kh(z)|*} (3.1)

over images z in specified spaces, where L(z) is the total edge length in image z and
h;(z) the average value of x over pixel 7. Our algorithm for seeking the MAP estimate
is summarized as follows.

3.1.1 Algorithm 1: Subpixel Reconstruction

Stage 1. Full pixel reconstruction. Define {2; to be the set of images in which each
pixel is of a single color, ¢! or c?. From a convenient starting point, search for
the image in §2; that maximizes ¢(z), using simulated annealing based on the
Gibbs sampler (see Sec. 3.6.1).

Stage 2. Initial subpixel estimation. Define ), to be the space of images in which
each pixel takes one of the 14 states shown in Figure 2. Starting from the final
reconstruction from Stage 1, search for the image in {2, that maximizes ¢(z),
again using simulated annealing based on the Gibbs sampler.

Stage 3. Conversion to an image in (). Apply a deterministic algorithm (see Sec. 3.4)
to convert the end product of Stage 2 to an image in {2 with as little modification
as possible.

Stage 4. Final subpixel estimation. Starting from the reconstruction obtained in Stage
3, search for the image in 2 that maximizes ¢(z). This time a form of simulated
annealing based on the Metropolis algorithm is used (see Sec. 3.6.2).
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Allowable colorings

p
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Figure 2. Stage 2 Proposals. This figure shows the 14 pixel colorings allowed in Stage 2. These 14 possibilities
arise from constraining every edge segment to terminate midway along a pixel boundary.

3.2 EXAMPLE 2: ALGORITHM 1 APPLIED TO A SMALL IMAGE

Examples of the types of images produced in the four stages are shown in Figure 3
with the edge length associated with the center pixel in each 3 x 3 image highlighted by
broken lines. Note that in Stage 1 edges lie on the pixel boundary only and in Stage 2
pixels can also be divided by lines with vertices located midway along a pixel edge.
The intention in these first two stages is to produce an initial approximation to the MAP
subpixel estimate in an unconstrained search over the spaces 2; and €2,. There is no
guarantee that the reconstruction at the end of Stage 2 will be in the set 2 as edges of
regions of a particular color may lie along pixel boundaries rather than within pixels;
even a method such as that of Geman, Geman, Graffigne, and Dong (1990) in which
a penalty for “taboo” states is increased during the course of simulated annealing, does
not necessarily ensure that taboo states will not arise. Thus, a deterministic algorithm is
required in Stage 3 to amend any features that contravene the rules obeyed by images
in Q. After Stage 3, all edges lie within pixels and their vertices are at the midpoints
of the pixel edges. From this point, the pixel-to-pixel route of each edge is fixed. Thus,
the end product of Stage 3 determines a subset of (2 to be searched in Stage 4 when the
vertices of each edge segment are allowed to move within their specified pixel edges.
The starting temperature for simulated annealing in Stage 4 can be set to a high value
in order to explore this subspace of (2 fully.

Note that it is not essential to fix the pixels in which edges lie throughout Stage 4.
Jubb and Jennison (1991) described an algorithm that allows edges to be re-routed through
a new sequence of pixels in their equivalent of our Stage 4. Such re-routing would
certainly be desirable when simulating from the posterior distribution in Equation (2.5)
over all of Q. This problem is complicated by the dependency of the dimension of the
parameter vector needed to define an image (one variable specifying the location of each
vertex) on the number of edges present. Grenander and Miller (1994) and Srivastava,
Miller, and Grenander (1991) have proposed jump-diffusion simulation which would
allow regions of one color to appear or disappear and Green (1994, 1996) described an
explicit class of MCMC methods that use reversible Metropolis—Hastings jumps between
subspaces that might also be applicable in this context.
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 3. The Four Stages in a Reconstruction. Each 3x3 image is an example from the state space used
in the specified stage of Algorithm 1. In each image the center pixel’s contribution to the edge length L(x) is
highlighted using dashed lines for edges lying on the pixel boundary and dotted lines for the edge inside the
pixel.

3.3 ExAMPLE 3: RECONSTRUCTIONS FROM ALGORITHM 1 FOR A 16 X 16 IMAGE

As a more substantial example, Figure 4 shows steps in the reconstruction of the
image depicted in Figure 1(d) (p. 183). Therecord Y = {Y; e R : i = 1,2,...,n}
used here is the 16 x 16 array of gray-level values shown in Figure 1(b). There is no
blurring in this example, just independent, Gaussian noise with variance o = .01. The
foreground and background colors are ¢! = 1 and ¢? = 0, respectively. The algorithm is
initialized at the beginning of Stage 1 by thresholding the record Y at 1/2. The parameter
for the prior image model in Equation (2.2) is subjectively set at 3 = 25 and 50 sweeps
of simulated annealing with a geometric cooling schedule are used in each of Stages 1,
2, and 4. These choices are discussed later in Section 4.

The initial image for Stage 1 is shown in Figure 4. The reconstructions at the end
of Stages 2, 3, and 4 are also shown. In Stage 2, edges that contravene the rules defining
Q are liable to increase L(z) and decrease ¢(z). Thus, it is not surprising that the
Stage 2 image infringes these rules in only a few isolated instances on the edges of the
ring and in several contiguous pixels on the right side of the large black circle. These
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Figure 4. Stages in the Reconstruction of a 16x16 Image. These reconstructions illustrate each of the four
stages in Algorithm 1. In the Stage 1 reconstruction, each pixel takes one of two colors. In Stage 2 each pixel is
permitted to take one of the 14 states, shown in Figure 2, with no further restrictions. Only a few places require
adjustment in Stage 3 in order to obtain an image in 2. Note that the final reconstruction has a tendency to
“cling” to the boundary as this reduces the total edge length within the image and so can increase ¢(x).

pixels are rectified in Stage 3 and further processing in Stage 4 yields a reconstruction that
approximates the original image well. The most noticeable errors occur where boundaries
between black and white regions meet the image edge. Here distortions can arise as our
prior model penalizes edges running close and almost parallel to the image edge. The
model favors more abrupt termination of such edges at an earlier point.

3.4 THE CONVERSION ALGORITHM

An image in €, can be fully specified by stating the color present in each corner
of each pixel. Note that of the 18 possible combinations of two colors only 14 are
permitted. These are shown in Figure 2. The other possibilities are excluded because
of the restriction to only one line segment crossing any one pixel, for simplicity. If an
image in Q; is also in the set €2, the same color must be associated with all four pixel
corners meeting at a vertex or with both pixel corners when two pixels meet at a side of
the image. It is straightforward to check that this is a necessary and sufficient condition
for an image in 2, to be in 2 and we base our conversion algorithm on this fact.
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3.4.1 Algorithm 2: Conversion from (2, to 2

Initialization. Use the final reconstruction from Stage 2 to assign a color to each of the
four corners of each pixel.

Sweep 1. Visit each pixel of the image and each of the four corners within that pixel in a
fixed raster scan, taking rows from the top of the image to the bottom and moving
from left to right within each row. Observe the colors of the four adjacent pixel
corners or two adjacent corners around the boundary, except at the four corners
of the image.

o If all corners have the same color, leave them unchanged.

e If one color dominates by occupying three out of four corners, then recolor
the minority corner to agree with the other three.

o If the colors are evenly split, one to one or two against two, calculate the
average value of the record elements associated with all the pixels concerned
and color all corners with the color that lies closest to the average value of
the record elements.

Remark:  Here we take the record element associated with a pixel to be the
record element to whose mean the pixel makes the largest contribution.

Sweep 2. Visit pixels in a raster scan taking rows from the top of the image to the
bottom and moving from left to right within each row.

o If the colors in the four corners of a pixel correspond to a pixel coloring in
Figure 2, assign this coloring to the pixel.

o If not, we must have one pair of diagonally opposite corners of one color and
the other pair of the other color. To rectify this, switch the value in the pixel’s
southeast corner and also the values in the corner of each neighboring pixel
which meet at this vertex. The pixel currently being visited now has a pattern
of corner values in agreement with a coloring in Figure 2 and we assign it this
coloring.

In Sweep 1, we use information from the record to achieve an accurate reconstruction.
We expect that this first sweep will resolve matters in most pixels and that very few pixels
will be met in Sweep 2 that do not conform to a coloring in Figure 2. When such pixels
do arise, the algorithm deals with them in a somewhat ad hoc manner, but one which is
guaranteed to produce an image in 2. Treatments that make greater use of record values
are possible, but we see little benefit in creating a more complex procedure for handling
a small number of border-line pixels.

3.5 EXAMPLE 4: CONVERSION TO AN IMAGE IN (2

Figure 5 shows the conversion of the example in Figure 3 from Stage 2 to Stage 3
using Algorithm 2. The color of each corner of each pixel, from Stage 2 of Figure 3, is
used to initialize Figure 5(a). During the first sweep, each corner of each pixel along with
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(a) Initial assignment (b) After sweep 1 (c) After sweep 2
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Figure 5. Conversion to an Image in Q). This figure shows the effect of applying Algorithm 2 to the reconstruction
from Stage 2 of Figure 3. In plot (a), the circles denote the grouping of corner values at pixel vertices. During
Sweep 1, rules are applied to ensure that all corners meeting at a vertex have the same color. During Sweep 2,
the corners within each pixel are used to decide the coloring for that pixel. To avoid an anomaly in pixel 5, the
color of the southeast corner and its neighbors are flipped. This switch has a knock-on effect on pixel 9, so that
the southeast corner of that pixel also changes.

its neighboring corners is processed and the circles in Figure 5(a) highlight the corners
involved in each step. For the circles labeled A, B, and C, there is a tie between the two
colors. This is resolved by considering the average of the records associated with those
pixels.

During the second sweep of the image, the four corners within each pixel are con-
sidered and one of the 14 proposals shown in Figure 2 is inserted, based on the coloring
of the four corners within that pixel. An ambiguity arises at the pixel labeled 5, in Fig-
ure 5(b), because the coloring is not one of the possibilities shown in Figure 2. The
southeast corner of pixel 5 is flipped and this has a knock-on effect on pixel 9, which
now has a pattern of colors similar to that of pixel 5. After switching the southeast
corner, we obtain the result shown in Figure 5(c) which is the Stage 3 reconstruction of
Figure 3.

3.6 SIMULATED ANNEALING
3.6.1 Simulated Annealing With the Gibbs Sampler

In the algorithm just described, an analytic approach to maximizing ¢(z) within
each stage is not feasible because of the high dimensionality of the spaces of images
under consideration. Instead, we use the stochastic optimization algorithm of simulated
annealing at each stage. Simulated annealing is based on an MCMC method for sampling
from a target probability distribution. In our algorithm, we use simulated annealing based
on the Gibbs sampler (Geman and Geman 1984) and the Metropolis—Hastings algorithm
(Metropolis et al. 1953; Hastings 1970). The modification that enables simulated anneal-
ing to optimize rather than sample is the raising of the target distribution to higher and
higher powers over the course of the algorithm and this places an increasing probability
at the globally optimum state.

Simulated annealing based on the Gibbs sampler is used in Stages 1 and 2 of Algo-
rithm 1 to seek the maximum of ¢(z) over sample spaces §2; and §2,, respectively. In
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each iteration t = 1,2,...,n, the image is swept in a raster scan and pixels are updated
in turn. Let z_; denote the values of all pixels other than 7 in an image z. If the current
image is x, just before pixel ¢ is updated, then the Gibbs sampler would generate a new
image x’ with probability proportional to ¢(x’), for all z’ in the sample space satisfying
x’_, = 2_;. So in Stage 1, pixel i can take either color c' or ¢ and in Stage 2 pixel i can
take any of the 14 possible colorings shown in Figure 2. The modification in simulated
annealing is that in iteration ¢, the probability of z’ is proportional to {¢(z)}'/T®),
where T'(t), referred to as temperature, decreases with ¢.

In our example, we used a geometric temperature schedule falling from initial tem-

perature a = 5 to final temperature b = .1 in N = 50 sweeps,
Tt) = a(b/a)tV/WN-D t=1,...,N.

Following Geman, Geman, and Graffigne (1987), the image attaining the maximum value
of ¢(x) during the N sweeps was noted and the algorithm was rerun at zero temperature
from this starting point, until convergence at a local maximum of ¢(z). This last stage
is equivalent to applying the strictly uphill search of iterated conditional modes (Besag
1986) from the starting point formed by simulated annealing.

3.6.2 Simulated Annealing With a Metropolis Update

The Stage 4 image space is continuous and it is convenient to use simulated annealing
based on the Metropolis-Hastings algorithm. After Stage 3, the coloring of the image is
specified up to the location of the vertices of the linked edge segments, each of which
can lie within a specified pixel edge.

Suppose the vector § = (6,,...,6,) contains parameters, taking values in (0, 1),
which specify the location of the vertices. Let z(6) denote the image defined by 6, let
0_; denote the values of 6 in all elements other than i and let §’ be the vector with ith
element 6] and 6’ , = 6_,.

The goal is to find the value that maximizes ¢{z(6)} over 6 € (0,1)". The Metropo-
lis algorithm is designed to sample from the distribution of  with density proportional

to ¢p{z(9)}.

3.6.3 Algorithm 3: Sweeping an Image in

e Sweep the image, updating every vertex location once. In effect, the vector 6 is
swept and its elements 6; are updated in turn, where i = 1,2,...,r.

Remark:  Typically the number of updates required to sweep an image is far
less than the number of pixels in the image (r < n) as only a few pixels contain
two colors. This reduces the amount of computation required.

¢ In updating 6; a proposal value 6, is drawn from the uniform density on (0, 1).
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A Stage 4 Metropolis update

Figure 6. A Stage 4 Move. In Stage 4, the Metropolis algorithm proposes a move from the point A to a point B
randomly selected along the common pixel boundary between the two linked edges. The move from the point A
to the point B would add an additional edge length of |CB| + |BD| — |CA| — |AD| and change the proportion
of black in the two pixels by the areas of triangles ABC and ABD. The choice between moving from A to B or
staying at A is then made according to Equation (3.3).

Replace 6; by 6. with probability

a(6,6') = min[l, ¢{z(6')} /¢{w(€)}] (3.2)

otherwise the value 6; is retained.
e Increment ¢ by one and go to the previous step to update the next element 6,4,
until ¢ = 7.

The effect of changing a single vertex location 6; is illustrated in Figure 6. The
coloring of two pixels is simultaneously affected as the two edge-segments meeting at the
vertex in question are repositioned. The only modification with the simulated annealing
algorithm is the replacement of Equation (3.2) by

o(6,0) = min[l,{¢{m(0’)}/¢{x(0)}}l/ T(t)]. (3.3)

The optimization in Stage 4 is not especially onerous, because the number of vertices is
typically much less than the number of pixels in the image.
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4. AN APPLICATION IN MICROSCOPY

In this section we illustrate how the subpixel model can be used to restore a blurred
microscopic image of the type considered by Hitchcock and Glasbey (1994). The ob-
served image of a fungus mycelium is shown on an opaque background in Figure 7(a). It
consists of a network of hyphae from a single fungal organism growing on a microscope
slide which has been coated with a cellophane-coated nutrient agar (Ritz and Crawford
1990). A fundamental characteristic of this class of fungi is their mycelial growth form,
which is an effective mechanism by which habitats can be explored in order to find new
food bases and subsequently exploit them. The fungi need to search their habitat effi-
ciently to maximize their chances of finding food while simultaneously minimizing the
amount of energy consumed. Some evidence suggests that the fungi forage according to
the spatial distribution of their food. Traditionally, results were based on qualitative data
from field and laboratory experiments. Today, image analysis can be used to examine
the spatial structure of the fungal hyphae in relation to their environment. Glasbey and
Horgan (1994, chaps. 5 and 6) used a thinning operation to get a skeleton that is one
pixel thick to estimate the total length of hyphae. They allow for effects due to lines
being represented as lattice points rather than being in continuous space. Crawford, Ritz,
and Young (1993) discussed further work on fungal morphology and its relationship to
soil structure.

4.1 ExXxAMPLE 5: FuNGAL MYCELIUM RECONSTRUCTION—1

At each of the 41 x 51 pixels in Figure 7(a), a blurred gray-scale record element in
the range [0,255] is observed. Our objective is to reconstruct, without noise and blurring,
the true image that consists of two long fungus arms plus some isolated fungus objects,
several of which are only a few pixels in size.

The foreground and background colors were estimated from a histogram of the data
to be ¢! = 240 and ¢ = 30, respectively, but the algorithm is not very sensitive to
these parameters. The record variance o> = 4 was estimated from samples taken from
parts of the image that contain just one color. The blurring kernel was estimated by
taking cross-sections through the data. Where we have a discontinuity in the image, we
match the shape of the observed features to the theoretical features of an ideal edge. If
no blurring were present, a one-dimensional slice through the image would show most
record element values near ¢' or ¢ and the value would change abruptly at the boundary
between these two levels. The rate at which the cross-section moves from the one color
level to the other provides an estimate for the variance of the bivariate Gaussian blurring
kernel of .75. The blurring kernel was truncated to a 3 x 3 window, as kernel weights
outside this window were close to zero.

For Stages 1, 2, and 4, simulated annealing was used with a starting temperature of
5, for 100 sweeps of the image on a geometric schedule, to finish at a temperature of .1,
followed by a strictly uphill search to convergence. Other temperature schedules were
also considered but the results were not sensitive to small changes in these parameters.

Figures 7(b) and (c) show reconstructions where the smoothing parameter values
are 0 = 50 and § = 450, respectively. Both reconstructions have an artificial boundary
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Figure 7. Fungal Mycelium Reconstruction—I1. Plot (a) shows a part of a fungus mycelium growing on a
microscope slide. The image is 41x51 pixels in size. Plots (b) and (c) show reconstructions of the image where
the smoothing parameters are 3 = 50 and 3 = 450, respectively, with an artificial boundary imposed to
highlight the individual pixels. The reconstruction for B = 450 without the artificial boundary is shown in
plot (d).
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Figure 8. Fungal Mycelium Reconstruction—2. Plot (a) shows a microscopic view of a more complex fungal
structure. Individual fungal arms are only 2-3 pixels wide on average. Plot (b) shows a reconstruction of the
image in Plot (a).

around each pixel to illustrate the amount of subpixel detail recovered. The reconstruction
for 3 = 450 without this artificial boundary is also shown in Figure 7(d). Generally, the
boundaries become smoother and very small objects are more likely to disappear as the
value for (3 increases, because there is a greater penalty for edge length.

4.2 EXAMPLE 6: FUNGAL MYCELIUM RECONSTRUCTION—2

We briefly illustrate a second example to show that the algorithm can be used with
more complex images. Figure 8(a) shows a larger record than in Figure 7(a). Figure 8(b)
shows the final reconstruction using the same parameters as in the previous example
except § = 300. Just the edges of the fungal arms are shown as this gives a clearer view
of the reconstruction.

5. CONCLUSIONS

A multistage algorithm is used to refine the reconstructed image in stages, down
to a subpixel level. The final reconstruction segments the pixels in the image by al-
lowing boundaries to consist of piecewise continuous straight lines across pixels. Thus,
reconstructed boundaries are not constrained to lie along the boundary between pixels.

Reconstructing the image in stages, where the final estimate from one stage is used
as the starting point for the next stage, breaks a large optimization problem down into
a more manageable format. Furthermore, each stage in the reconstruction has a good
starting point so the amount of work required at each stage is reduced.

The algorithm does not require knowledge of the number, shape, or orientation of
the objects in the image. The proposed method is computationally intensive so it is most
suitable for reconstructing small objects; although Example 6 shows that the algorithm
can be applied to large images. The algorithm is not dependent on the particular case
of Gaussian blurring nor additive Gaussian noise that we have concentrated on in this
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article, and Stages 2 and 3 might be reasonable ways of reducing the state space when
searching for a subpixel reconstruction.

We have developed extensions of the algorithm described here to deal with 3D
images, and these are described by Gavin (1995). We also note that our methods have
the potential to be extended to images containing several colors: the basic algorithm
can be applied within any region containing just two colors and additional features are
needed only in small regions where three or more colors meet.
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