Contents

Li	st of 1	figures	xi
Li	st of t	ables	xiii
Pı	eface		xvii
G	Glossary		
1	Intr	oduction	1
	1.1	About This Book	1
	1.2	Why Sequential Methods	3
	1.3	A Short History of Sequential and Group Sequential Methods	5
	1.4	Some Examples	11
	1.5	Chapter Organization: A Roadmap	15
	1.6	Bibliography and Notes	18
2	Two	-Sided Tests: Introduction	21
	2.1	Two-Sided Tests for Comparing Two Treatments with Normal	
		Response of Known Variance	21
	2.2	A Fixed Sample Test	22
	2.3	Group Sequential Tests	23
	2.4	Pocock's Test	24
	2.5	O'Brien & Fleming's Test	29
	2.6	Properties of Pocock and O'Brien & Fleming Tests	31
	2.7	Other Tests	39
	2.8	Conclusions	47
3	Two	-Sided Tests: General Applications	49
	3.1	A Unified Formulation	49
	3.2	Applying the Tests with Equal Group Sizes	53
	3.3	Applying the Tests with Unequal Increments in Information	57
	3.4	Normal Linear Models	62
	3.5	Other Parametric Models	70
	3.6	Binary Data: Group Sequential Tests for Proportions	74
	3.7	The Group Sequential Log-Rank Test for Survival Data	77
	3.8	Group Sequential <i>t</i> -Tests	79

viii		CONTENTS
,		COLLEGE

1	Oma	Cided Tests	97
4		Sided Tests	87
	4.1	Introduction The Proof Family of Our Side I Come Secretarial Texts	87
	4.2	The Power Family of One-Sided Group Sequential Tests	89
	4.3	Adapting Power Family Tests to Unequal Increments in	0.0
		Information	96
	4.4	Group Sequential One-Sided <i>t</i> -Tests	99
	4.5	Whitehead's Triangular Test	105
5		Sided Tests with Early Stopping Under the Null Hypothesis	111
	5.1	Introduction	111
	5.2	The Power Family of Two-Sided Inner Wedge Tests	112
	5.3	Whitehead's Double Triangular Test	123
6	Equi	ivalence Tests	129
	6.1	Introduction	129
	6.2	One-Sided Tests of Equivalence	130
	6.3	Two-Sided Tests of Equivalence: Application to Comparative	
		Bioavailability Studies	130
	6.4	Individual Bioequivalence: A One-Sided Test for Proportions	141
	6.5	Bibliography and Notes	143
7	Flex	ible Monitoring: The Error Spending Approach	145
	7.1	Unpredictable Information Sequences	145
	7.2	Two-Sided Tests	146
	7.3	One-Sided Tests	161
	7.4	Data Dependent Timing of Analyses	166
	7.5	Computations for Error Spending Tests	169
8	Ana	lysis Following a Sequential Test	171
•	8.1	Introduction	171
	8.2	Distribution Theory	171
	8.3	Point Estimation	175
		P-values	179
	8.5	Confidence Intervals	181
9	Ren	eated Confidence Intervals	189
	9.1	Introduction	189
	9.2	Example: Difference of Normal Means	193
	9.3	Derived Tests: Use of RCIs to Aid Early Stopping Decisions	194
	9.4	Repeated P-values	202
	9.5	Discussion	202
10	Stoc	hastic Curtailment	205
10		Introduction	205
		The Conditional Power Approach	205
		The Predictive Power Approach	210
	10.3	The Frederic Lower Approach	∠1U

CONTENTS	ix

	10.4 A Parameter-Free Approach	213
	10.5 A Case Study with Survival Data	215
	10.6 Bibliography and Notes	219
11	General Group Sequential Distribution Theory	221
	11.1 Introduction	221
	11.2 A Standard Joint Distribution for Successive Estimates of a	
	Parameter Vector	221
	11.3 Normal Linear Models	222
	11.4 Normal Linear Models with Unknown Variance: Group	
	Sequential <i>t</i> -Tests	224
	11.5 Example: An Exact One-Sample Group Sequential <i>t</i> -Test	226
	11.6 General Parametric Models: Generalized Linear Models	228
	11.7 Bibliography and Notes	232
12	Binary Data	235
	12.1 A Single Bernoulli Probability	235
	12.2 Two Bernoulli Probabilities	244
	12.3 The Odds Ratio and Multiple 2×2 Tables	251
	12.4 Case-Control and Matched Pair Analyses	254
	12.5 Logistic Regression: Adjusting for Covariates	256
	12.6 Connection with Survival Analysis	257
13	Survival Data	259
	13.1 Introduction	259
	13.2 The Log-Rank Test	260
	13.3 The Stratified Log-Rank Test	261
	13.4 Group Sequential Methods for Survival Data with Covariates	262
	13.5 Repeated Confidence Intervals for a Hazard Ratio	265
	13.6 Example: A Clinical Trial for Carcinoma of the Oropharynx	267
	13.7 Survival Probabilities and Quantiles13.8 Bibliography and Notes	274 276
	13.8 Bioliography and Notes	270
14	Internal Pilot Studies: Sample Size Re-estimation	279
	14.1 The Role of an Internal Pilot Phase	279
	14.2 Sample Size Re-estimation for a Fixed Sample Test14.3 Sample Size Re-estimation in Group Sequential Tests	281 293
	14.5 Sample Size Re-estimation in Group Sequential Tests	293
15	Multiple Endpoints	299
	15.1 Introduction 15.2 The Bonferroni Procedure	299
	15.2 The Bonterroni Procedure 15.3 A Group Sequential Hotelling Test	300 302
	15.4 A Group Sequential Version of O'Brien's Test	302
	15.5 Tests Based on Other Global Statistics	310
	15.6 Tests Based on Marginal Criteria	311
	15.7 Bibliography and Notes	314
	13.7 Bioliography and House	517

x		CONTENTS
16	Multi-Armed Trials	317
	16.1 Introduction	317
	16.2 Global Tests	317
	16.3 Monitoring Pairwise Comparisons	321
	16.4 Bibliography and Notes	324
17	Adaptive Treatment Assignment	327
	17.1 A Multi-Stage Adaptive Design	327
	17.2 A Multi-Stage Adaptive Design with Time Trends	331
	17.3 Validity of Adaptive Multi-stage Procedures	333
	17.4 Bibliography and Notes	335
18	Bayesian Approaches	337
	18.1 The Bayesian Paradigm	337
	18.2 Stopping Rules	338
	18.3 Choice of Prior Distribution	341
	18.4 Discussion	343
19	Numerical Computations for Group Sequential Tests	345
	19.1 Introduction	345
	19.2 The Basic Calculation	346
	19.3 Error Probabilities and Sample Size Distributions	351
	19.4 Tests Defined by Error Spending Functions	353
	19.5 Analysis Following a Group Sequential Test	355
	19.6 Further Applications of Numerical Computation	357
	19.7 Computer Software	360
Re	ferences	363
Inc	lex	387

List of figures

2.1	A Pocock test for five groups of observations	28
2.2	An O'Brien & Fleming test for five groups of observations	32
2.3	Boundaries for Pocock, O'Brien & Fleming, Haybittle-Peto, and Wang & Tsiatis tests	47
3.1	Pocock and O'Brien & Fleming tests for four groups of observations expressed in terms of Z_k and S_k	73
4.1	Two power family one-sided tests for four groups of observations	94
4.2	One-sided test with four groups of observations	100
4.3	One-sided triangular tests for four groups of observations	107
5.1	A power family inner wedge test for five groups of observations	117
5.2	Comparison of two inner wedge tests	126
8.1	Sub-densities $p(k, z; \theta)$ when $\theta = 0$ for a four-stage O'Brien & Fleming test	174
8.2	Sub-densities $p(k, z; \theta)$ when $\theta = \delta$ for a four-stage O'Brien & Fleming test	175
8.3	Sampling densities of $\hat{\theta}$ when $\theta=0$ for a four-stage O'Brien & Fleming test	176
8.4	Sampling densities of $\hat{\theta}$ when $\theta = 1$ for a four-stage O'Brien & Fleming test	177
8.5	Stopping boundaries where the consistency condition does and does not hold for the MLE ordering	185
9.1	RCIs, parent test and derived tests	195
10.1	Conditional and unconditional power curves for a one-sided test	208
10.2	Stopping boundary for a stochastically curtailed one-sided test using the conditional power approach	209
10.3	Stopping boundary for a stochastically curtailed two-sided test using the conditional power approach	210
10.4	Stopping boundary for a stochastically curtailed one-sided test using the predictive power approach with a uniform prior	212

xii		LIST OF FIGURES
-----	--	-----------------

10.5	Stopping boundary for a stochastically curtailed two-sided test	
	using the predictive power approach	213
10.6	Stopping boundary for a stochastically curtailed two-sided test	
	using the parameter-free approach	215
10.7	Power and conditional power curves for the case study	217

List of tables

2.1	Pocock tests: constants $C_P(K, \alpha)$	26
2.2	Pocock tests: constants $R_P(K, \alpha, \beta)$	27
2.3	O'Brien & Fleming tests: constants $C_B(K, \alpha)$	29
2.4	O'Brien & Fleming tests: constants $R_B(K, \alpha, \beta)$	30
2.5	Pocock and O'Brien & Fleming tests: an example	33
2.6	Sample size distributions for Pocock and O'Brien & Fleming tests	34
2.7	Properties of Pocock tests	37
2.8	Properties of O'Brien & Fleming tests	38
2.9	Wang & Tsiatis tests: constants $C_{WT}(K, \alpha, \Delta)$	40
2.10	Wang & Tsiatis tests: constants $R_{WT}(K, \alpha, \beta, \Delta)$	41
2.11	Properties of Wang & Tsiatis tests for $\alpha = 0.05$ and $1 - \beta = 0.8$	42
2.12	Properties of Wang & Tsiatis tests for $\alpha = 0.05$ and $1 - \beta = 0.9$	43
2.13	Haybittle-Peto tests: constants $C_{HP}(K, \alpha)$	45
2.14	Properties of Haybittle-Peto tests	46
3.1	Properties of two-sided tests for unequal group sizes	59
3.2	Properties of two-sided tests for various information sequences	60
3.3	Properties of two-sided group sequential <i>t</i> -tests	82
4.1	Power family one-sided tests: constants and properties for	
	$\alpha = 0.05 \text{ and } 1 - \beta = 0.8$	90
4.2	Power family one-sided tests: constants and properties for	
	$\alpha = 0.05 \text{ and } 1 - \beta = 0.9$	91
4.3	Power family one-sided tests: constants and properties for	
	$\alpha = 0.05 \text{ and } 1 - \beta = 0.95$	92
4.4	One-sided tests: minimum expected sample sizes	95
4.5	Properties of power family one-sided tests for various information	
	sequences	98
4.6	Properties of group sequential one-sided <i>t</i> -tests	103
4.7	Whitehead's triangular tests: constants $R_{Wh}(K, \alpha, \beta)$ and	
	properties	108
4.8	Properties of Whitehead's triangular tests for various information sequences	110
	sequences	110
5.1	Power family two-sided inner wedge tests: constants and	
	properties for $\alpha = 0.05$ and $1 - \beta = 0.8$	114

xiv LIST OF TABLES

5.2	Power family two-sided inner wedge tests: constants and properties for $\alpha = 0.05$ and $1 - \beta = 0.9$	115
5.3	Power family two-sided inner wedge tests: constants and	113
	properties for $\alpha = 0.05$ and $1 - \beta = 0.95$	116
5.4	Properties of power family inner wedge tests for various	
	information sequences	119
5.5	Properties of power family inner wedge <i>t</i> -tests	121
5.6	Whitehead's double triangular tests: constants $R_{DT}(K, \alpha, \beta)$ and	
	properties	125
6.1	Properties of power family equivalence tests for various	
	information sequences	136
6.2	Properties of power family <i>t</i> -tests for equivalence	139
6.3	AUC equivalence test data	140
7.1	Lan & DeMets error spending tests: constants $R_{LD}(K, \alpha, \beta, \rho)$	150
7.2	Properties of Lan & DeMets error spending tests with $\alpha = 0.05$	100
	and $1 - \beta = 0.8$	151
7.3	Properties of Lan & DeMets error spending tests with $\alpha = 0.05$	
	and $1 - \beta = 0.9$	152
7.4	Power attained by Lan & DeMets error spending tests for various	
	information sequences	155
7.5	Power attained by Lan & DeMets error spending tests when the	150
7.0	number of analyses differs from that planned	156
7.6	One-sided error spending tests: constants $R_{OS}(K, \alpha, \beta, \rho)$ Properties of one-sided error spending tests with $\alpha = 0.05$ and	164
7.7	Properties of one-sided error spending tests with $\alpha=0.03$ and $1-\beta=0.8$	165
7.8	Properties of one-sided error spending tests with $\alpha = 0.05$ and	
	$1 - \beta = 0.9$	166
7.9	Properties of one-sided error spending tests with $\alpha = 0.05$ and	
	$1 - \beta = 0.95$	167
9.1	Simultaneous coverage probabilities for naive 95% confidence	
	intervals	190
9.2	Ratios of widths of 95% RCIs to unadjusted 95% confidence	
	intervals	193
9.3	Properties of one-sided tests derived from RCIs	198
10.1	Interim mortality data for the case study	218
	Additional person-years under three possible scenarios for	
	continuing the case study	219
11 1	Repeated <i>t</i> -tests: constants $Z_P(K, m, \alpha)$ and $Z_B(K, m, \alpha)$	227
11.1	Repeated i -tests. Constants $\mathcal{L}_{P}(\mathbf{K}, m, \alpha)$ and $\mathcal{L}_{B}(\mathbf{K}, m, \alpha)$	221
12.1	Selected two-stage and three-stage one-sided binomial tests	238
12.2	90% confidence intervals following a three-stage sampling plan	240

LIST OF TABLES xv

12.3	90% confidence intervals following a three-stage sampling plan (continued)	241
12.4	Continuation and acceptance regions for a three-stage test of	
	$p_A = p_B$ Acceptance region of a modified three-stage test of $p_A = p_B$	247 248
	Hypothetical interim data for the Ille-et-Vilaine study Interim results for the data of Table 12.6	253 254
12.8	Hypothetical interim data for the Leisure World study	255
12.9	Interim results for the data of Table 12.8	255
13.1	Summary data and critical values for a group sequential stratified log-rank test in a trial for carcinoma of the oropharynx	270
	Repeated confidence intervals for the log hazard ratio for the oropharynx trial data	271
	Group sequential estimates of Cox model parameters for the oropharynx trial data	272
13.4	Test statistics and critical values for a group sequential test based on a Cox regression model for the oropharynx trial data	273
	Properties of "internal pilot" tests for the difference of two binary response probabilities using Herson & Wittes' approach	284
	Properties of "internal pilot" tests for the difference of two binary response probabilities using Gould's approach	285
	Properties of "internal pilot" tests for the ratio of two binary response probabilities	287
	Properties of "internal pilot" tests of Wittes & Brittain and of Birkett & Day for two normal distributions of unknown variance	289
14.5	Properties of "internal pilot" tests of Denne & Jennison for two normal distributions of unknown variance	292
15.1	Bonferroni procedures with p endpoints: constants $C_P(K, \alpha)$ for Pocock tests	301
15.2	Bonferroni procedures with p endpoints: constants $C_B(K, \alpha)$ for O'Brien & Fleming tests	302
15.3	Worksheet for a group sequential test using Hotelling's \mathcal{T}^2 statistic	305
15.4	Worksheet for a group sequential test using O'Brien's GLS statistic	310
16.1	Repeated χ^2 tests of homogeneity of J normal means: constants $C_P(p,K,\alpha)$ and $C_B(p,K,\alpha)$	319
17.1	Properties of power family one-sided tests using adaptive sampling	330
18.1	False positive rates for stopping rules based on Bayesian posterior probabilities	339