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The main theme of this article is :

Why should one consider Maximal Cohen-Macaulay Modules ? 

Although there has been a lot of work and success lately in the theory

of such modules, of which this conference witnessed, it has remained

mysterious - at least to the present author - why these modules provide

such a powerful tool in studying the algebra and geometry of singula-

rities for example.

We try to give one answer here, at least for the case of Gorenstein

rings. Their role is special as over such rings "maximal Cohen-Macaulay".

and "being a syzygy module of arbitrarily high order" are synonymous.

It turns out, that these modules, in a very precise sense, describe

all stable homological features of such rings.

The motif was the observation that maximal Cohen-Macaulay modules -

at least up to projective modules - carry a natural triangulated struc-

ture which implies that there is a naturally defined cohomology-theory

attached to these modules - the Tate-cohomology.

To be more specific let us explain the essential points in the case

of a local hypersurface ring R :

It was observed by D.Eisenbud, [Eis] , that any finitely generated

module over R admits a minimal free resolution which becomes eventually

periodic of period two.

Maximal Cohen-Macaulay modules over R - without free summands - are

characterized as having a resolution periodic right from the start.

Furthermore, the periodic part of the resolution comes from a "matrix 

factorization" of the defining equation and these matrix factorizations

behave like "free complexes modulo two", exhibiting the forementioned

*) Supported by a "Heisenberg-Stipendium" of the DFG.



triangulated structure if one considers such matrix factorizations "up

to homotopy".

Now one may proceed as follows : trace back a minimal resolution of

a module until the periodic tail is reached, turn around and extend by

periodicity to a complex which is then unbounded, acyclic and consists

only of free modules of finite rank.

If we started with a maximal Cohen-Macaulay module, except for pos-

sible free summands no information is lost as the original module can

be recovered from the image of a differential in this complex.

If we began with an arbitrary finitely generated R-module, the loss

is the non-periodic part of the resolution, which is a finite free com-

plex. In return we obtain a complete resolution - and a maximal Cohen-

Macaulay module as its 0 th syzygy module - canonically attached to the

(resolution of the) module we started with. More generally, one could

have taken any complex of modules with bounded, finitely generated coho-

mology in the beginning to obtain still such a complete resolution as

well as a maximal Cohen-Macaulay module from "its" minimal resolution.

Checking the necessary details, which is rather straightforward, one

has hence the following essentially equivalent data :

- Acyclic projective complexes up to homotopy, (that is, the "complete 

resolutions"),.

- Maximal Cohen-Macaulay modules up to projective modules,

- Right bounded complexes with bounded, finitely generated cohomology,

(the objects which are resolved), modulo finite complexes of finitely

. generated projective modules, (the "heads" of the resolutions), all

this up to homotopies and quasi-isomorphisms.

The first and third of these categories carry natural triangulated struc-

tures compatible with the associations mentioned above. Hence they induce

a natural such structure on the middle one, which turns out to be the

"triangulation" observed before.

These three equivalent structures give rise to a cohomology theory,

unbounded and stabilizing in the positive range the usual Ext-modules.

(In case of hypersurfaces, this cohomology is furthermore by construc-

tion obviously periodic of period two•)

Carrying out this program, one observes immediately that the only

fact needed on the ring - aside being noetherian - is that it has finite 

injective dimension as a module over itself, or, equivalently, that it

admits a projective dualizing module.

In particular this means that commutativity is no way essential.



Hence we develop the theory for not necessarily commutative rings

which are (strongly) Gorenstein in the sense that they are noetherian

and of finite injective dimension as modules over itself on both sides.

To define maximal Cohen-Macaulay modules (MCM for short) over such

rings we use (one of) their defining properties in the commutative case:

they will be those modules which are acyclic with respect to the duality 

defined by RHom R (-,R).
Having extended the theory to include non-commutative "Gorenstein

rings", quite different looking "classical" results become special cases

- of this same theory, for example :

the theory of MCM's over a hypersurface ring as the starting point,

the theory of integral group representations as initiated by J.Tate,

(which has as common intersection with the above the case of cyclic

groups),

the monadic description of certain (derived) categories of coherent

sheaves of modules on varieties such as projective space - originally

developed by Bernstein-Gelfand-Gelfand and Beilinson, [BGG],[Gel] -

or projective complete intersections defined by quadrics, obtained

independently by Kapranov and the author. A more detailed account is

contained in [BEH;App.] , this volume. (Here the intersection with

the f.irst theory consists of course of the projective quadrics and

the general machine can be used - as was already implicitely done by

R.G.Swan, [Sw], - to determine the higher algebraic K-groups of smooth

such quadrics.)

The presentation of the general theory here is not unambiguous.

Once the main idea is clear, one could essentially take any book on homo-

logical algebra, look at the chapter on Tate-cohomology and generalize

all its statements to the general case by a rather obvious dictionary.

As this is so, we chose a different path.

We develop first the general theory in the framework of derived or tri

angulated categories to obtain the equivalence of categories sketched

above and stated in precise form as a theorem in section 4.

This we consider the main result.

From there, all the essential properties which are known for the Tate-

cohomology of finite groups follow more or less immediately in general

and we try to make clear how it connects with the classical theory in

section 6.

But before that, in section 5 , we give some rather concrete appli-

cations to modules. It is shown that any module admits a MCM-approxima-



tion, that is a surjection from a maximal Cohen-Macaulay module onto

the given one, such that the kernel is of finite projective dimension.

Such a MCM is then uniquely determined up to direct summands and yields

a right adjoint of the inclusion of MCMs into the category of all fi.

nitely generated modules modulo projective modules. The same method -

which is essentially the duality theorem for Gorenstein rings - yields

then a method to construct for any complex a complete resolution by

"symmetrization" ,. This will be used then in section 7 to prove a dua-

lity theorem for Tate-cohomology. It contains the classical theorem

for integral group representations and our aim in section 9 is to show

that in fact it contains also Serre's duality theorem for projective

space. For this we extend the theory of Bernstein-Gelfand-Gelfand men-

 tinned before in a straightforward manner to "linear superspaces" and

show that there the theory of maximal Cohen-Macaulay modules is essen-

tially the same as the theory of coherent sheaves on the dual projec-

tive superspace. This is preceeded in section 8 by some easy examples,

like minimal primitive quotients of enveloping algebras of semi-simple

Lie-algebras or graded Lie-algebras - but for these rings the meaning
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	of a maximal Cohen-Macaulay module - with respect to representation

theory say - is not clear yet.

Concerning other applications, even for the most natural generaliza-

tion from hypersurfaces to complete intersections the general structure

of the Tate-cohomology groups is not known. We offer only a result that

- bounds the support of these groups : It is clear from the construction

that the support is in the non-regular locus, but more precisely, if

there exists a Noether normalization, the corresponding Noether differ-

ent will annihilate all Tate-cohomology.

Hence, going back to hypersurfaces, we reverse the order of ideas and

look at some peculiar features of Tate-cohomology of cyclic groups and

	  try to generalize them at least to hypersurfaces.

The result is the Herbrand-difference in section 10 which generali-

zes the classical notion of Herbrand-quotients for cyclic groups. We

develop its properties to convince the reader that it may serve as a

suitable intersection form on ("co"-)primitive algebraic cycles in case

of homogeneous polynomials whose underlying projective hypersurface is

regular. Apart from rather simple examples like quadrics or cubic sur-

faces - where we regain the E 6 -lattice algebraically - the use of this
theory in connection with the description of algebraic cycles and the

(variational) Hodge-conjecture has still to be further pursued.

A final comment on the methods : although the theory is non-commuta,

tive, all the inspiration comes from the theory of commutative Goren-



•stein rings. This has two disadvantages. First, some of the proofs can

possibly be simplified by using more sophisticated non-commutative tech-

niques. Secondly, some pre-requisites which are obvious in the commu-

tative case - for the duality for example- seemed'not to have been

treated yet, so that we have to go through the general machinery once

more. This makes in particular section 7 a little bit cumbersome.

On the other hand, this enables us to avoid the use of more special

5 	 structure - even in the case of group rings all results are established

c without using the co-algebra structure and cup-products.

Many people stimulated the work presented.

sr It will become apparent, I hope, how much this work was influenced by
M.Auslander. Large parts here can be seen as special cases or applica-

• tions of his "stable module theory". He essentially also ignited the

recent interest in the theory of maximal Cohen-Macaulay modules and al-
;lo%.: ways insisted that it should be important. His remarks - sometimes sib-

ylline at least for the author - always brought about fruitful ideas.
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i am also very grateful to L.Avramov who pointed out to me that what --

-.2 	was termed "stable cohomology theory" then is indeed a natural extension_2

of Tate's classical theory for finite groups. Without him, I would rather

have missed this beautiful and clear connection.

G.-M.Greuel, H.Knbrrer and F.-O.Schreyer helped through various dis-

cussions along the way and conversations with J.Steenbrink made me be-

--- come aware of the geometric content of the theory.

I am particularly indepted to the organizers of this conference,

G.-M. Greuel and G.Trautmann, for the opportunity to publish this work

in these proceedings, although I was hindered from attending the actual

conference. Also they showed incredible patience awaiting the final

version of this manuscript.

0. - Notation- and Convention-o 

0.1. 	 All rings considered will be associative with unit, left and right 

noetherian, all modules will be unitary - unless explicitely stated

otherwise.

If S is any ring, Mod-S ,( mod-S ), denotes the category of all (fi-

nitely generated) right S-modules, P(S) the full subcategory of all

finitely generated projective S-modules.

If 	 S = @ S
i 	

is a graded ring, Mod-S. , mod-S. , P(S.), denote the

corresponding categories of graded S-modules with degree-preserving

S-linear maps as morphisms.

13



0.2. 	 By 	 D*(S) 	 for 	 * 	 in 	 ,+,-,b1 	 we denote the derived categories 

of Mod-S , whose objects are "all" complexes of S-modules with finitely 

generated cohomology modules, non-zero only in the range indicated by "*".

(In Hartshorne's notation, [Ha], this would be : D* 	 (Mod-S) .)
.mod-S

Correspondingly, 	 K*(S) 	 denotes the homotopy categories of those

complexes of S-modules whose cohomology modules are again finitely gen-

erated.

Each D*(S) 	 or K*(S) 	 is considered a triangulated category with

respect to its natural triangulated structure.

In general, for terminology, notations and results on derived or tri-

angulated categories, we use [Ver] as basic reference.

In particular, let us mention explicitely the following conventions :

Complexes will usually be indexed upstairs and will have differen-
itials of degree 	 +1 	 : 	 X 	 (r,dX) 	 (X1, d x : X i1 	 > X i

)
iaL

Finitely generated S-modules are tacitely identified with those

complexes whose only non-zero term - if any - is in degree zero.

(in other words, the canonical embedding mod-S ---> D*(S) 	 gets

no own name.)

In any triangulated category D the translation functor will be

denoted T - rather than T 	 or -[1] . In categories derived

from complexes, it shifts those one place "to the left", that is- '

against the direction of the differential, changes the sign of the

differential but leaves morphisms "unchanged".

Deviating from [Ver] and following 	 [BBD;1.1.1.], distinguished 

triangles will be displayed linearly
x 	 U> y 	V> Z (1)>(X[1])

where "(1)" indicates the morphism of degree one if the target X[1]

is not explicitely mentioned.

0.3.	 We will mostly deal with 	 D
b
(S) 	 - which by definition now is the

derived category of all complexes of S-modules with finitely generated

total cohomology. Without further notice it will be identified with its
bfull triangulated subcategory of "projective resolutions" , K ' (P(S)) ,

which is the homotopy category of all those bounded-above complexes of

finitely generated projective S-modules whose cohomology is bounded. An

isomorphism F ---> X - in D b(S) ,b(S) - from an object F in K (P(S))

is called a projective resolution of X



1. - Peqect Comptexe4 and the Stabitized Detived Categony 

1.1. 	 A complex of S-modules is perfect, if it is isomorphic in 	 D(S)

to a finite complex of finitely generated projective S-modules.

Perfect complexes form an essential, (i.e. closed under isomorphisms),
•

full and triangulated subcategory of D b (S) , denoted D p erf(S)
 . The

P
terminology "perfect" is borrowed from [SGA VI;I,2.1], —where it would

be "P(S)-perfect" -, but has nothing to do with the notion of a "perfect"

module or ideal as defined by grade-conditions - e.g. in [Kap;p.126].

In the sense used here, a module - considered as a complex - is perfect 

if and only if its projective dimension is finite.

1.2. 	 An intrinsic characterization of perfect complexes is given by

Lemma 1.2.1.: 	 Let 	 S 	 be a ring, 	 X 	 an object in 	 D b (S) . Then the

following conditions are equivalent

(i) X 	 is perfect ,

(ii) There is an integer 	 i(X) 	 such that for any 	 i(X) 	 and any

finitely generated 5-module M

ExtS(X,M) 
=def

 Hom
D b (S) X,T

i M) = 0 	 .

(iii) For any exact, functor F: D b (S) ---X D into another triangulated •

category D for which F(S) = 0 , - where S is considered a (complex

of) right module(s) over itself -, one has 	 F(X) = 0

Proof: 	 It follows from the definition that a complex .X 	 is perfect

iff in (any of) its projective resolution(s) 	 F ---> X 	 all the syzygy 

modules Cok(d i
F ) "far enough back" - i << 0 - are themselves projec-

tive modules. But as F has a priori bounded cohomology, this happens

iff the augmented complex (F i ---> Cok(d i )) is contractible for some

, iff condition (ii) is satisfied.

The equivalence of (i) and (ii) shows that Dperf(S)
	is a thick tri-

angulated subcategory 	 of 	 D b (S) 	 - in the sense of [Ver;I.2.1.1.] .

Condition (iii) on the other hand characterizes the thick hull of the

single object S considered as a subcategory of D b (S) 	 . It is clear

that this hull contains 	
Dperf(

S ) , which is already "thick" and con-

tains 	 S , whence one has in fact equality. This proves the equivalence

of (i) and (iii) .

gory of D
b
(S) 	 that there exists a quotient, which is again triangulated

It follows from the characterization of Dperf(S)
	as a thick subcate-



an•d unique up to natural equivalence, satisfying the universal property

that any exact functor 	 F 	 on 	 D b (S) 	 as in (iii) above factors over it.

To give the child a name, we make the

Definition 1.2.2.: 	 The triangulated quotient category

Db(s) 	
Db(S)/Derf(S)

will be called the stabilized derived category of S . The projection 

functor D
b
(S) 	 > D

b
(S) 	 is the identity on objects, which hence still

are complexes, and associates to a morphism f in D b (S) - or to an ac-

tual morphism of complexes - its class 	 f 	 in 	 D b (S) .

1.3. 	 Remarks: 	 (a) "Stabilized" as by the Lemma above the morphisms

in 	 D b (S) 	 satisfy

Hom D b (s) (X,T 1 Y) = Hom D b (S) (X,T i Y) = Ext (X,Y)

for all 	 i >> 0 - depending on the complexes X and Y .

(b) In practice, perfect complexes reflect those homological features

of (complexes of) S-modules which are induced from "regular" rings in

the following sense

Assume S can be represented as a left module of finite flat dimen-

sion over some ring P , for example if P is of finite right global 

dimension (= "regular"). Then the image of the (left) derived functor

L(-0 . 5) : D b (P) ---> D b (S)

has as its thick hull 	 Dpebrf (S)

This follows as the assumptions just guarantee that the image of

D
b
(P) 	 under the (derived) tensor-product consists only of perfect com-

plexes and as it certainely contains (an object isomorphic to) S . Now

one may conclude as in the proof of (i) <==> (iii) above.

2. - The Category o6 Modutu modulo Ptojectivez 

2.1. 	 Recall - from [He 1;§3] or [A-B;1.43] for example - the following

Definition 2.1.1.: 	 The (projectively) stabilized category of finitely

generated S-modules, denoted mod-S , is obtained by factoring out all

projective modules from mod-S .

This means that mod-S has the same objects as mod-S but that its



morphisms are given by

Homs(M,N) = def H°mmod-S M ' N) =
Homs(M,N)

{f : M ---> N 1 f factors

over a projective S-module}

for all finitely generated S-modules M and N

mod-S is still an additive category and two S-modules M and N

are isomorphic in mod-S if and only if they are stably equivalent (by

projectives) in mod-S : 	 MA4 P = s N G Q for some finitely generated
projective S-modules 	 P 	 and Q 	 - [A-B;1.44].

2.2. 	 On mod-S there is the "loop-space functor" 	 2 	 defined, intro-

duced by Eckmann-Hilton and studied in general by A.Heller, [He 1] .

It is obtained by choosing for any finitely generated S-module M a

surjection from a finitely generated: projective S-module p m : P m 	> M
and setting

(2.2.1.) 	 StSM = Ker(p M )

With these notations one has :

Lemma 2.2.2.: 	 The composition

mod-S'	 00(S) ---> D b (S) 

factors uniquely over the canonical projection functor mod-S ---> mod-S 

and yields hence a naturally defined functor

ntx
U s : mod-S 	U b 

ke) 

It transforms the loop-space functor S1 S into the inverse of the trans-

lation functor on 	 D b
(S) .

Only the last assertion needs a proof. By definition of S2 S there is
a distinguished triangle

' s ( "sm) ---" s(N) > L s (M) 	 > L s (2 sM)[1] 

in which 	 L S (P M )
	 is obviously perfect. Hence the morphism d becomes

an isomorphism in 	 Db(S) 



3. - Complete Rezotutionis and the Categong of Acyclic PAojective Comptexe4 

3.1. 	 Adopting classical terminology - see for example [C-E;XII.3] -

we make the following

Definition 3.1.1.: 	 Assume given a S-module M 	 over some ring 	 S .

Then a complete resolution of M (over S ) is an acyclic complex (A,d )

of finitely generated projective S-modules such that

Cok(d A : A-1

To abbreviate notations, the complex 	 (A=A A<0) 	with its

natural induced augmentation onto M is called the associated projec- 

tive resolution of M , whereas the complex A i. 	(A=
>1

 ,d A l Az1)[1] 	 with

its induced natural co-augmentation from M into it is the associated 

projective co-resolution of M .

Remark that M is necessarily finitely generated if it admits a

complete resolution and that a finitely generated module admits a com-

plete resolution if and only if it admits a projective co-resolution.

The complete resolution A itself is obtained as the translated 

mapping-cone of -d
0
 : A ---> A+ , that is A = C(-d

0
 )[1] , so that

-(1 0 serves as the connecting homomorphism from the associated projec-

tive resolution to the associated projective co-resolution.

3.2. 	 Instead of considering right away all those S-modules which admit

a complete resolution - a seemingly hopeless task in general - we rather

introduce the "category of complete resolutions" as independent notion

APC(S) 	 denotes the homotopy category of (unbounded) acyclic complexes 

of finitely generated projective S-modules.

(In Verdier's notation, [Ver], this would be : 	 C' 93 (P(S)) .)

It is a full subcategory of K(S) , closed under translation and forming

mapping-cones, hence inherits a triangulated structure from K(S)

3.3. 	 On APC(S) 	 we define now the following functors :

First, for any complex 	 (X,d x ) 	 in 	 K(S) 	 set

(3.3.1.) 	 Ri(X) 	 Cok(dx 	
: X-i-1
	 > X i ) 	 for any integer i .

AO



• • •id

X -

X =

(3.4.1.)1,

a X > x' 	 > ••• 	 > 

> X k+1 > 0...)  

id X
k • • •   

> 	 > 	 •••)k

11

and call it the i-th syzygy module of X . As obviously 

0 (X[1]) 	 Cok(-d 1 : X 0 > X`)

one obtains 

(3.3.2.) 	 2.(X[j]) = 2. 	 .(X)
1-3

for all integers 	 i,j 	 and all complexes 	 X .(Remark that this isomor-

phism of functors is not "canonical" : for odd j it depends - at least -

on the placement of +id in either even or odd degrees.)

If f : X ---> Y is a morphism of complexes of finitely generated

projective S-modules which is zero-homotopic, then, for any i , the

induced morphism of S-modules 2(f) : Q i (X) ---> Q i (Y) 	 factors over 

a finitely generated projective S-module - namely even over both X
-i+1

and 	 Y 	 . This shows

Lemma 3.3.3.: 	 Each 	 2 i 	defines a functor from APC(S)	 into mod-S .

It transforms the inverse of the translation functor on APC(S) 	 into

the loop-space functor Q s on mod-S .

(The reader may excuse the confusing use of Ws here.)

3.4.	 Next we will set up functors from APC(S) 	 into D b (S) 

For this recall that for any complex X 	 in 	 K(S) 	 its naive filtration,

(a
<k"kEZZ , is given by

(Remark that the notation "a <k " 	 for these "tronqués bêtes a droite"

is in accordance with [SGA 4;XVII,1.1.16] and [BBD] , but contrary to

[Ha;I§7] •)

One obviously has an equality of functors

(3.4.2.) 	 a 	 T i 	 T i a
°

for all 	 k 	 and 	 i



Lemma 3.4.4.: 	The naive truncations

system of functors

= 	 => o
ak
	

> o ak -1• • •

/11

Cdming back to acyclic complexes of finitely generated projective S-mod

ules, the following is easily established.

Lemma 3.4.3.: 	Let A and B be objects of APC(S) . Then one has

(i) In 	 D(S) 	 (the class of) the obvious morphism of complexes

a A 	 > (Q -k A)[-k]becomes an isomorphism, or - equivalently -

(ii) (a<kA)[k] 	 is a projective resolution of 	 g2-kA .

For any two integers k 	 1 , the mapping-cone over the natural

morphism (J 1 A ---> a <k A is perfect.

(iii) 	 If f : A ---> B is a morphism of complexes which is homotopic 

to zero, all the induced morphisms a <k f : a <k A ---> 	 inin

D
b
(S) 	are zero.

For (iii) just consider the commutative diagram of morphisms of com-

plexes

whose horizontal arrows become isomorphisms in
	

(S) - hence a fortiori

in 	 D b (S) - by (i) . But, as observed above, 	 f 	 zero-homotopic implies

that Q -k f factors over a projective module, and so the class of

( ..k f)[-k] 	 is zero in 	 D b (S) .

These elementary facts show

from APC(S) 	into	 D b (S) , whose transition morphisms are all isomor-

phisms. In particular, its inverse limit a< = lim a 	 exists and is an
< k

exact functor of triangulated categories 

a < : APC(S) 	 > D b (S) 



4. - Maxima Cohen-Macautay Modute4 oven Gonenztein Rino 

4.1. 	 From now on, assume for the given ring 	 S - which is still sup-

posed to be noetherian on both sides - that

S is of finite injective dimension both as a left or 

a right module over itself.

By a result of A.Zak•s, [Z], if both the left or right injective dimen-

sion of S are finite, they are the same and we will call this common

value the injective or virtual dimension of S , and will abbreviate it

as vdim S .(Consequently we will occasionally say that S is a "ring of

finite injective (virtual) dimension", if 	 vdim S < 00.)

Such rings of finite virtual dimension could (and will) be called

(strongly) Gorenstein in view of the well-known "commutative"

Theorem 4.1.1.: 	 Assume that S 	 is a (noetherian) commutative ring

of finite Krull dimension. Then the following are equivalent :

(i) The injective dimension of 	 S 	 is finite.

(ii) For any prime 	 p of 	 S , the localization 	 S 	 is Gorenstein.

(iii) 	 S 	 admits a 'canonical module which is projective.

Furthermore, under these conditions, the injective dimension of

equals its Krull dimension.

(i) => (ii) 	 is true for any noetherian commutative ring, but

(ii) ==> (i) 	 needs the finite Krull dimension. For this and

(ii)<==> (iii) see, - for example, [Aus 1;§1.4,Thm.2] and [FGR;5.5,5.6

Remark: We opt here for the term strongly Gorenstein, as in the

commutative case it is indeed more restrictive than the usual definition

which requires only (ii) above, but not the finite Krull dimension

see [Ha;p.296] for example.

On the other hand, M.Auslander introduced the notion of a (non-commu-

tative) Gorenstein ring - see [FGR;p.47] - which, in general, does not

imply "strongly Gorenstein". For example, as J.E.Roos, [Ro], pointed

out, there are even rings of finite global dimension which are not

Gorenstein in M.Auslander's sense.

Nevertheless, using J.E.Roos' results, many interesting (non-commu --

tative) examples satisfy both definitions, namely those rings 	 S which

/13



admit a filtration such that the associated graded ring is commutative,

Gorenstein and of finite Krull dimension.

Let us also record the obvious fact that being strongly Gorenstein

is left-right symmetric

A ring 	 S 	 is strongly Gorenstein if and only if this holds for 

the opposite ring of S .

4.2. 	 We now come to the main object(s) of our study :

Definition 4.2.1.: 	 Let 	 S 	 as above be a ring of finite injective

dimension. Then a finitely generated S-module is maximal Cohen-Macaulay 

(MCM for short), if and only if

	

Ext is (M,S) 	 0 	 for 	 i A 0

The full subcategory of maximal Cohen-Macaulay modules in mod-S is

denoted MCM(S) , and, accordingly, its image in mod•-S 	 by MCM(S) 

Again, the terminology, is borrowed from commutative algebra, as over

a local, commutative Gorenstein ring it coincides with the usual notion.

(Following M.Auslander - 	 Aus 1;3.2.2 , 	 A-B;Ch.3 	 - one also could iden-

tify maximal Cohen-Macaulay modules as those of "G(orenstein)—dimension 

zero". But, only dealing with (strongly) Gorenstein rings, we believe

"MCM" to be more suggestive.)

(To keep the definition "coordinate-free" one may replace the module

S in the above definition by any faithfully projective (right) S-module

P : 	 An object M in mod-S is MCM if and only if

	

Ext is (M,P) 	 0 	 for i A 0 ,

see for example [Ba;II.1.2.] .)

The analogy to the commutative case is supported as maximal Cohen-

Macaulay modules in general share the following elementary properties :

Lemma 4.2.2.: 	 Let 	 S be a ring which is strongly Gorenstein. Then

(i) Any finitely generated projective S-module is MCM, that is, 	 P(S)

is a full subcategory of MCM(S) .

(ii) If 0 	 > M 1 	 > M 2 	> M 3 	> 0	 is an exact sequence in
mod-S , then

- M 2 , M 3 in 	 MCM(S) 	 implies that M 1 	is MCM,

- 	 M 1 , M3 in 	 MCM(S) 	 implies that M 2 	 is MCM,
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M 1 , M 2 in 	 MCM(S) 	 implies that M 3 	is MCM iff	 Hom (f,S)
is surjective.

(iii) 	 A module M 	 is MCM over S 	 if and only if M* = Hom 5 (M,S) 	 is
MCM as a right module over S" . Furthermore, MCM's are reflex-

ive : 	 M = M** , and a sequence of such is short exact in mod-S

if and only if the dual sequence in mod-S" is exact.

In other words : The functor Hom s (-,S) 	 induces an exact duality 
between MCM(S) 	 and MCM(S") .

Any module in mod-S admits a finite resolution by MCM's of

length at most equal to 	 vdim S .(In such a resolution all but

the last module can be chosen to be finitely generated projec-

tive.)

Everything, except perhaps the first assertions in (iii), is obvious

from the definition and left to the reader.

That M is maximal Cohen-Macaulay over S iff M* is so over S"

follows immediately by dualizing a projective resolution of M : By the

very definition of MCM, this yields a projective co-resolution - 3.1.-

of M* in mod-S
o
p and M* is hence a syzygy module of arbitrarily

high order. But as the (left) injective dimension of 'S 	 is finite, this

shows that M* 	 is necessarily 	 Hom s (-,S)-acyclic, that is MCM.
Furthermore, dualizing once again, it follows that M 	 is reflexive.

4.3. 	 Remarks: 	 (a) Again, the duality-statement in (iii) above should

rather be "coordinate-free" : Any invertible S-bimodule w s may serve
as a dualizing module : The functor Hom s (-,w s ) 	 still defines an exact

duality between 	 MCM(S) 	 and 	 MCM(S") ,(cf. [Ba;II.5.]).

An obvious advantage of such a "coordinate-free" description is that

it behaves better functorially. As an example, it is left to the reader

to convince himself of the fact - not needed in the sequel - that being

"strongly Gorenstein" or "MCM" is invariant under Morita-equivalence.

(b) 	 In D.Quillen's terminology, [Qu 1;§2], property (ii) above can be

rephrased as follows :

MCM(S) 	 is an exact subcategory of mod-S , in which any epimorphism

is admissible and in which the admissible monomorphisms are exactly those

morphisms f , which are monomorphic in mod-S and whose dual 	 f* is 

epimorphic in 	 mod-5 ° p .

In particular, there are defined algebraic K-groups for MCM(S) 	 and

property (iv) of the LemMa shows - by Thm.3, Cor.3 of (loc.cit.) - that

the K-groups of mod-S and MCM(S) 	 are the same.
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4.4. 	 Now 	 we 	 can 	 state 	 the 	 main 	 result 	 :

	Theorem	 4.4.1.: 	Let	 S 	 be 	 a 	 left 	 and 	 right 	 noetherian 	 ring, 	 of fi-

nite

(1)

injective 	 dimension 	 as 	 a 	 module 	 over 	 itself 	 on 	 either 	 side. 	 Then

The 	 syzygy-functor 	 Q0 	,	 defined 	 in 	 (3.3.), 	 induces 	 an 	 equivalence

of 	 categories 	 - 	 denoted 	 by 	 the 	 same 	 symbol 	 - 	 :

:0 	 APC(S) 	 >	 MCM(S)

(2) The restriction 	 of 	 L s 	,	 defined 	 in 	 (2.2.), 	 to 	 MCM(S.) 	yields an

equivalence of 	 categories 	 - 	 again 	 denoted 	 by 	 the 	 same 	 symbol 	 -

MCM(S) 	 > 	 D b
L s 	: 	 (S)

(3) The triangulated 	 structures 	 induced 	 on 	 MCM(S) 	by	 either 	 2 0 or

L are 	 the 	 "same" 	 (in 	 the 	 sense 	 that 	 the 	 identity 	 on 	 MCM(S) be-

comes an exact isomorphism of triangulated categories), and - with

respect to these structures - both functors are exact equivalences

of triangulated categories, transforming the corresponding trans-

lation functor T into an inverse of the loop-space functor Q s ,

(2.2.), restricted to MCM(S) .

Before going into the proof, let us resume the situation "graphically"

There is a diagram of categories and functors, commutative up to natural

isomorphisms of functors, whose rows are "exact sequences" of categories

( the unlabeled morphisms are the canonical embeddings.)



Proof of the Theorem:

(i)0 	
takes its values in 	 MCM(S) .

Assume given an acyclic complex A of finitely generated projective

S-modules. Then

Ext
S
 (2

0
 A,S) = Exti+j(Q 

-j
.A,S)

for all 	 i > 0 , j „1- 0 . Now take 	 j > vdim S -

(ii)
Q0 	

is surjective on objects.

Let M be a maximal Cohen-Macaulay module over S , 	 P(M*) 	 > M* a

projective resolution of M* in mod-S
o
p . As in the proof of the Lemma_

above,

0 	 > M** 	 > Hom op(P(M ) S") = P(M*)*

will be a projective co-resolution of M** in mod-S . Now M = M** ,

as M is reflexive, and hence extending the projective co-resolution

of M** by a projective resolution of M yields a desired pre-image.

(iii) Q 0 	is a full functor.

Let f : M ---> N be a S-linear map of maximal Cohen-Macaulay modules

over S . Extend it to a morphism f' : P(M) ---> P(N) between chosen

projective resolutions and analogously f* : N* ---> M* to a morphism

(f*) . : P(M*)  > P(M*) . Connecting P(M) and P(M*)* as well as

P(N) 	 and 	 P(N*)* to complete resolutions of M and N 	 respectively,

f' and ((f*)')* fit together to yield a morphism of these complete

resolutions. By construction, this provides a pre-image of f , hence

Q
0
 is full.

•

It remains to be seen that SZ O is faithful, to complete the proof of

assertion 	 (1)

Instead of proving this - and assertion 	 (2) - directly, we rather show :

a < : APC(S) 	 > D
b
(S) 	 is an equivalence of categories.

This will readily imply the claim, as by (3.3.),(3.4.) 	 there are natural

isomorphisms of functors

°o

whence a 	 an equivalence gives that S/
0
 is faithful - and therefore

also an equivalence by the above - so that finally also 	 Ls will be an

equivalence of categories, establishing 	 (2) . So we prove :
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(iv) a 	is essentially surjective.

By (3.4.) , it will suffice to find for any complex 	 X 	 in 	 D ° (S) an

integer k , an object A in APC(S) 	 and a morphism X ---=> 	 ofof

complexes whose mapping cone is perfect. Also, replacing if necessary

X by any of its resolutions, we may assume that X 	 itself is already

a (bounded-above) complex of finitely generated projective S-modules.

But then, all syzygy modules of X which sit "far enough back" have to

be maximal Cohen-Macaulay. More precisely, using the same argument as

kin (i) above, a <k (X) = Cok(d x ) = Im(d x 1
 : X k ---> X k+1

) 	 is certainely

MCM for 	 k 	 min(i : H 1 (X) 	 0) - vdim S , and, 	 a < (X)[k] 	 is a resolu-

tion of this module which then can be extended to an acyclic complex of

projectives by the argument already used in (ii) above.

(v) a < 	 is fully faithful.

We use Verdier's criterion - [Ver;I.5.3.] - : It suffices to prove that

for a given perfect complex Y 	 in D b
(S) 	 and an object A in APC(S) 

there exists an integer k 	 such that all morphisms in 	 D b (S) 	 from

a^ k A into Y are zero. As a 
l< A is a bounded above complex of projec-

tive modules, morphisms in 	 Db(S) 	 from a < ,
K
A into 	 Y 	 are in bijection

with homotopy classes of (actual) morphisms of complexes and it is hence

to show that any such morphism of complexes is indeed zero-homotopic.

	

Furthermore, it is enough to prove this assertion in case 	 Y = P[-i] ,

P a finitely generated projective S-module and i an integer, as these

objects generate - up to isomorphisms in D (S) - any perfect complex by

forming mapping-cones.

	

Now, in this particular case, take any 	 k > i 	 and let 	 f' 	 be a com-

plex-morphism from a k A to P[-i]

• • • i-1 	d ' d
i+1 	 A i+l > ? • • •       

fi

	

> P 	 > 0 	 > 0 •••

	The S-linear map	 f i 	factors hence necessarily over Cok(d i ) , let

g : Cok(d ) 	 > P 	 be the induced map. It remains to show that g 	 can

be further factored over the inclusion (by choice of k !) of Cok(d ) =

-
.A into A

i+1 
. But from the exact sequence

A0 ---> 2 .A 	 mi+1 	
> 2 	 A 	 > 0

-i -1

• • • > 0   



it-follows that the obstruction for this lies in 	 Ext s (2_ i _ / A,P) , which

group vanishes as 	 P 	 is finitely generated projective and 2_ i _ l A is

still maximal Cohen-Macaulay by the argument in (i) above.

(3) finally is just (2.2.2) and (3.3.11 reformulated. 	 qed

4.5. 	 The proof shows how to find (quasi-)inverses of 2
0
 or

Assume chosen projective resolutions P(M) 	 M and P(M*) -a-> M*
for any maximal Cohen-Macaulay module M over S . Then - by (ii) above

and (3.1.) - a complete resolution of M, denoted CR(M) , is obtained by

translating the mapping-cone of the composition

: P(M) —2—> M —2—> M** q w > P(M*)*

(4.5.1.)

CR(M) = C(d m )[-1]

and one has by construction 2 0 (CR(M)) =

An inverse of 	 t. 	involves :

- choosing for any complex X 	 in 	 , 	 a projective resolution

F 	 > X ,

- truncating this resolution at some

	

k 	 min(i : H i (X) = H i (F) 	 0) - vdim S

to obtain a <k (F) 	 - for which then 2 k (a k F) = 2 k (F) 	 is MCM,

extending this truncated complex to an acyclic complex a <k (F)

of finitely generated projective S-modules and finally

- taking the 0
th

-syzygy module of this extension :

(4.5.2.)

X <---

L S 1( ) = 2 0 (6 k (F)#)

a
	> a (F) < oak 	a' (F) 

L; 00  

1-
Obviously, to find a representative of 	 L s (X)	 like this will be rather

tedious in practice and we will give an often more useful device in the

next section - at least in case that X is (in D
b
(S) isomorphic to)

just a single S-module - by exhibiting a left adjoint of the embedding

MCM(S) ---> mod-S 

But first we use the description here to investigate the behaviour of

the just established equivalences with respect to duality and then to find

the distinguished triangles for the induced exact structure on MCM(S) .
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4. ,6. 	 Let w s	 be a dualizing module for 	 S 	 as in Remark 4.3.(a) .
As w s 	is by definition finitely generated projective as an S-module,

- the functor 	
S

Hom S (-' w ) 	 on complexes transforms objects in APC(S) 

into objects of APC(S ° P) ,
- the functor Hom s (-,w 5 ) 	 preserves the properties of being "MCM"

or "projective" 	 - apply (4.2.2.iii) mutatis mutandis ,

- the derived functor RHom 5 (-,w 3 ) 	 maps 	 D P (S) 	 into 	 D P (S ° P) , as
with 	 S 	 also w 	 is of finite injective dimension, and preserves

the property of "perfection"

Having observed all this, it follows that these functors induce exact

dualities on each of the three categories involved in Theorem 4.4.1.

More precisely

Proposition 4.6.1.: 	With notations as before, there is the following

commutative diagram of triangulated categories and exact functors, whose

rows are given by the equivalences of (4.4.1.) for S and 	 S op 	 respec-
tively and whose vertical arrows are exact dualities induced by the

functors above

APC(S 

op

	 > MCM(S)"
LS 	> D b 	 op    

Hom • - ,w )[ -1]
	

Hom s (-,w s ) 	 RHom (-,w )

APC(S ° P ) 	QI3	 > MCM(S P) 
	 L S °13 	 Db( op )

Proof: 	The commutativity of the right-hand square expresses just the

fact that maximal Cohen-Macaulay modules are by definition Hom s (-,w s )-

acyclic.

For the square on the left, the foregoing construction of CR(-) 	 as

an inverse of the syzygy functor 	 shows that for any maximal Cohen-

- Macaulay module M a complete resolution of its w s -dual 	 Hom 5 (M,w 5 )

can be obtained as

	

CR(Hom (M,w s )) ; C(H m (d ,w ))[-1] 	 , by definition of 	 CR(-)

and the fact that on MCM(S) ,

Nom S op(HomS 	 '(- w
S'
) w S )
	 id

C(Hom s ( 	 )[-1]) 	 , by definition of mapping-

cones.

= Hom(C(d m ),w s )
	 , by a (non-canonical) iso-

morphism of complexes.



- Hom(C(d m )[-1],w s )[-1] 	 obviously

Hom(CR(M);co s )[-1] 	 by definition of 	 CR(M) .

Applying 2 0 	then yields the result.

(In less formal terms, the shift by [-1] on the left is caused by the

fact that connecting a projective resolution of M with the dual of one

for M* "naively", creates a complex indexed by the integers with zero

"doubled". Re-indexing "correctly" - as in (3.1.) - introduces the shift

if one dualizes.)

4.7. 	 Next we want to describe the triangulated structure on MCM(S) 

directly. In general, such a structure on an additive category is deter-

mined by its distinguished triangles and we will use the Theorem to de-

scribe those in the induced structure on MCM(S) 

For this, let f : M 	 > N be any S-linear map of maximal Cohen-

Macaulay S-modules. Choose an embedding i : M ---> Q of M into a

finitely generated projective S-module such that its cokernel is still

MCM. (This means just that Q serves as the first term in a projective

co-resolution of M .) Then define a'mapping-cone 	C(f)	 of 	 f 	 as the

push-out - or amalgamated sum - of f and i , so that there is a com-

mutative diagram of short exact sequences of S-modules :

	> Cok(i) ---> 0

(4.7.1.) f

	> C(f)	 Cok(i) ---> 0  

Remark that Cok(i) 	 represents T(M) , the translate of M , as by

(2.2.1.) 	 Q s (Cok(i)) 	 is represented by 	 M 	 and by (4..4.1.(3)) the trans-
lation functor T on 	 MCM(S) 	is an inverse of Q s . Now call

(4.7.2.) 	 M 	 > N 	 > C(f) 	 > TM 	 Cok(i)

a typical triangle. Then the distinguished triangles in 	 MCM(S) 	are

given by all those sequences of morphisms in MCM(S) 	which are iso-

morphic to the image of a typical triangle under the projection functor

MCM(S) 	 > MCM(S) .

That this yields in fact exactly all distinguished triangles in MCM(S) 
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is- most easily seen by applying Q 0 	to the distinguished triangles in

APC(S) 

4.8. 	 Remark: 	 Starting with (4.7.1.-2.) to define distinguished trian-

gles on 	 MCM(S) , it is possible - but lengthy - to verify directly the

axioms - (TR 1) up to (TR 4) in [Ver;I.1.1.] - defining a triangulated

category.

The key-fact, from this point of view, is that MCM(S) 	 is an exact 

subcategory of mod-S , (see Remark 4.3.(b)), which is Frobenius :

This means - following A.Heller, [He 1;§3], - that with respect to the

given exact structure there exists an object - namely S in MCM(S) -

serving at the same time both as a (small, admissible) projective gener-

ator - which then yields by the usual procedure (admissible) projective

resolutions - and as a (small, admissible) injective cogenerator - which

hence allows the construction of (admissible) projective co-resolutions.

From these assumptions - exact and Frobenius - it follows already that

MCM(S) , the stabilized category obtained by dividing out - in the sense

of (2.1.) - the projective-injective objects, is triangulated in a natu-

ral way, the distinguished triangles being defined as above.

For example, the Most laborious axiom of a triangulated structure,

namely (TR 2) of (loc.cit.), which says that distinguished triangles can

be rotated, was already anticipated by A.Heller, [He 1;Thm.5.3.], where

it was (just ?) a "remarkable property" - triangulatQA structures were

not defined yet ! (That "Frobenius" was the right categorical notion in

our context was pointed out to me by D.Happel, who also described other

examples arising from the representation theory of artinian algebras -

see [Hap].)

Continuing in this abstract setting,.one may wonder for which morphisms

of triangulated categories - as the embedding 
Dperf

 (S) ---> 	 (S) 	 or

the derived tensor-product L(-O p S) :D
b
(P) ---> D

b
(S) 	 of the Remark

1.3.(b) - an "excision theorem" like (4.4.1.(2)) can be established.

As a first step in this direction, one has of course to know how to

recognize the "excised" subcategory, which is MCM(S) 	 as a full subcate-

gory of D
b
(S) 	 in our case. Here, this can be done as follows - see

[BBD] for the no(ta)tions used :
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Both 	 D b (S) 	 and D b (S ° P) , the derived category of left S-modules,

carry natural t-structures whose hearts are precisely (equivalent to)

the abelian categories mod-S , respectively S-mod = mod --S7 , which

were "derived".

Now a "dualizing complex" - which in this case is just 	 S 	 or, more

generally, any dualizing module w s ,(4.3.(a)), - establishes an exact

duality

RHomS
	 '
(- w

S )
	

ob(s)op 	 ob(sop)

as already used in (4.6.). Pulling back the natural - t-structure from

ob(sop)op onto Db(S) 	 by this duality establishes hence a second such

structure on D b (S) , whose "heart" - equivalent to 	 (S-mod)" by con-

struction - consists of all those complexes 	 X 	 of (right) S-modules

for which the w
S
 -dual 	 RHomS
	 '
(X w

S )
	 has its only non-vanishing coho-

mology in degree zero.

The intersection in D
b
(S) 	 of the hearts of these two t-structures

is by the very definition equivalent to its full subcategory of all

maximal Cohen-Macaulay modules over S , that is MCM(S), - endowed

already with its exact structure.

It seems hence reasonable to expect that duality theory is at the

heart of the matter - and at least for "rings with dualizing modules",

that is the (not necessarily commutative) generalization of Cohen-

Macaulay rings, one may indeed extend (4.4.1.(2)). The prize to pay is

some more categorical machinery as one needs a more complicated sta-

bilized version of MCM(S) 	- one has then also formally to invert the

still existing "loop-space functor", (2.2.), on the category of MCM's

modulo projectives.

4.9. 	 We close this section with a remark on K-groups.

Following D.Quillen [Qu 1], we denote COS) = K i (mod-S) 	 the algebraic

K-groups of all finitely generated (right)_S-modules and 	 KOS) = K i (P(S))

the groups obtained from all finitely generated projective_S-modules.

On the other hand, as for any triangulated categóry - [SGA V;VIII]

there is defined the Grothendieck-group of MCM(S) , which will be de-

noted K
0 (S) . Then one has

- a short exact sequence : 	 K0(S) 	 > K6(S) 	 > K O ( S) 	 > 0

by [SGA V;VIII.3.1.] and (4.4.1.(2)) , as well as

- group-homomorphisms 	 K.(S) ---> KI(S) 	 for any i 	 by

[Qu 1;§7].



Hence the following question seems rather natural :

Given a ring 	 S which is strongly Gorenstein, does there exist a

"stabilized" higher algebraic K-theory for S , in the sense that there

are naturally defined groups KOS) = K i (MCM(S)) for i > 0 which fit

the short exact sequence and natural group-homomorphisms just mentioned

into a long exact sequence

*** ---) 	
K.(S) 	 > Ki(S) 	 > KOS) 	 >

As will be seen later - ( 	 ) -, in some special cases such groups

can be defined, but starting from rather different interpretations of

MCM(S) 	and its equivalent companions.

5. - Maximat Cohen-Macaulay App4oximationz 

5.0. 	 From now on, it will be assumed - if not explicitely stated oth-

erwise - that "modules" are finitely generated and that "complexes of 

modules" have finitely generated, bounded cohomology.

The aim of this section is to investigate "how the subcategory of

maximal Cohen-Macaulay modules is embedded into the category of all fi-

nitely generated modules".

As a more practical aspect of the general theory developed so far,

we will give three (essentially equivalent) presentations of an arbi-

trary module in terms of a maximal Cohen-Macaulay module and a module

of finite projective dimension. This extendt (and follows) results of

M.Auslander, [Aus 1], and M.Auslander-M.Bridger, [A-B].

5.1. 	 We start with the following Lemma which shows that over a ring

S ,which is noetherian and of finite injective dimension, maximal Cohen-

Macaulay modules and modules of finite projective (or injective) dimen-

sidn are "orthogonal" with respect to Extt .

Lemma 5.1.1.: 	Let S	 be a ring which is strongly Gorenstein. Then

(i) A S-module M 	 is MCM iff 	 Ext (M,U) 	 0 	 for 	 i 	 0 	 and all

S-modules U of finite projective dimension.

(ii) A S-module 	 U 	 is of finite projective dimension iff

Ext
i
(M,U) = 0 	 for all 	 i A 0 	 and all MCM S-modules 	 M

(iii) 	 A S-module 	 U 	 is of finite projective dimension iff it is of

finite injective dimension.



A S-module is MCM and of finite projective dimension iff it is

projective.

(v) 	 Any S-linear map from a MCM to a module of finite projective di-

mension factors over a projective module.

Proof: 	 In (i), (resp.(iv)), the "if"-part follows from the definition

of MCM (and (4.2.2.i)), the "only if"-part by induction on the projec-

tive dimension of 	 U (resp. 	 M ).

In (ii) again, the "only if"-part is obtained by induction on the pro-

jective dimension of U , whereas the "if"-part follows from (iv) and

(4.2.2.iv) : Take 	 M 	 to be the "last" module in a finite resolution of

U , in which all modules are MCM and all except perhaps M are projec-

tive. Then M is necessarily both MCM and of finite projective dimen-

sion, hence itself projective.

Using (4.2.2.iv) once more, it is clear that (ii) and (iii) are equiva-

lent.

Finally, assertion (v) follows from (i) as-well as (ti).

The next result shows that in fact maximal Cohen-Macaulay modules to-

gether with those of finite projective (injective) dimension "span" the

category mod-S

Theorem 	 (The Syzygy-Theorem for Gorenstein Rings)

Let S be a ring which is strongly Gorenstein.

(1) 	 Any finitely generated S-module N admits a presentation

(5.1.3) 	 0 	 > U 	 > M —R—> N ---> 0 	 where

- U 	 is of finite projective dimension,

- M 	 is maximal Cohen-Macaulay.

(2) 	 Such a presentation is unique up to (projectively) stable equiva-

lence : If N = M 1 /U 1 tsa second presentation of the same kind,

there exist finitely generated projective S-modules 	 P and Q

such that M 	 P = M 1 	 Q and U 	 P = U 1 @ Q

(3) 	 The surjection p : M ---> N is universal with respect to the

following property : Whenever f : M' ---> N is a morphism from

some MC.M S-module M' 	 to N , it factors over p 	 and this fac-

torization is unique in 	 mod-S .

An essentially equivalent form of this . Theorem is
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Theorem 5.1.4.: 	 Let 	 S 	 still be strongly Gorenstein. Then

(1) Any finitely generated S-module N occurs in an exact sequence

(5.1.5) 	 0 ---> N 	 > V ---> L ---> 0 	 where

- 	 V 	 is of finite projective dimension,

- 	 L 	 is maximal Cohen-Macaulay.

(2) Such a presentation is unique up to (projectively) stable equiva-

lence in the same sense as above.

(3) The injection 	 i : N ---> V 	 is universal with respect to the

following property : Whenever j : N 	 > V' 	 is a morphism from

N 	 to some S-module 	 V' 	 of finite projective dimension, it fac-

tors over 	 i 	 and this factorization is unique in 	 mod-S .

(4) Comparing with the representation as in (5.1.3), 	 L 	 is isomorphic

to 	 T(M) , the translate of M , in 	 MCM(S) 

Proof of (5.1.2.) and (5.1.4): 	 The asserted uniqueness in (2) as well

as the claimed universal mapping property in (3) - which statements are

easily seen to be equivalent anyway - follow immediately from the Lemma

above. One also may deduce these properties - together with (5.1.4.(4)) -

from Theorem (4.4.1) : Converting as usual the exact sequences (5.1.3.)

and (5.1.5..) into distinguished triangles in 	 D
b
(S) 	 and then projecting

them into the stabilized derived category D b (S) , 	 U 	 resp. 	 V become

zero-objects, whence one obtains isomorphisms in 	 D
b
(S) :

U = 0 ---> M 	 N ---> 0 = U[1] 	 and

V = 0 	 > L 	 > N[1] 	 > 0 = V[1] .

Furthermore, as- L s : MCM(S) ---> D b (S) 	 is an exact equivalence, this
shows that M resp. 	 L are unique up to isomorphism in MCM(S) : 	 M
1 

represents 	 L 	 (N) 	 and 	 L 	 represents 	 L s
1
 (N[1]) = (L s

1
 (N))[1]= T(M) .

Hence it remains to verify the existence of the claimed representa-

tions. For this let 	 F 	 > N 	 be a projective resolution of N .

As 	 S 	 is of finite injec.tive dimension, the complex 	 F* = Hom 5 (F,S)
has still bounded cohomology. Now let T: G ---> F* be a projective

resolution (over S o p of course) of F* - remark that although F* is

a complex of projective 5 0 P-modules, it is in general not bounded above!

Dualizing again, one obtains a quasi-isomorphism from F** = F to a

bounded-below complex G* of finitely generated projective S-modules :



0 	 >

p *

(G - 1 )* ***E G*

(5.1.6.)

-k-1 	...F 	 > F
-k 

>••• 	 > F 	 > F0 > 0 	 E F 	 F**

2.}   

where we have set 	 6 j = Hom s (dj +1 ,S) 	 for all 	 j

(Remark that the largest k , for which G k A 0 , can be chosen to be

(5.1.7.) 	 k = max(i : Ext is (N,S) A 0) 	 • )

As 	 cp* 	 is a quasi-isomorphism, the only cohomology of 	 is the given

module N 	 in degree zero. Now set:

M = Ker(6 1 ) 	 and 	 U = Im(6 ° ) , so that 	 N 	 M/U ,
V = Cok( 6 ° ) 	 and 	 L = Im(6 1 ) , so that 	 N = Ker(V 6'

  > L) ,

where 	 6' 	 is the surjection induced from 6
1

It follows from the construction Ahat U and V are of finite projec-

tive dimension, as they are resolved respectively by the "negative (non-

positive) tail" of G* ,, whereas 	 M 	 and 	 L 	 are necessarily MCM as

they allow respectively the "non-negative (positive) head" of G* 	 as

projective co-resolutions. Hence we have found the desired representa-

tions of 	 N .

Remark also that this construction yields another, direct proof of

(5.1.4.(4)/: 	 M 	 and 	 L occur in the short exact sequence

(I) 0 ---> M = Ker(6 1 ) ---> (G ° )* ---> Im(6 1 ) 	 L ---> 0

which shows, using (4.7i, that 	 L 	 M[1] in 	 MCM(S) . 	 qed

5.2. 	 Remarks: 	(a) In a presentation as (5.1.3.), 	 U 	 cannot be an ar-
bitrary module of finite projective dimension as it embeds into the MCM

M . More precisely, the definition of U 	 shows that it occurs in the

short exact sequence

(II) 0 	  > U 	 Im(60 ) 	 > (G
o
)* 	 > Cok(6

0
 ) = V ---> 0

whence it is already the first syzygy module of the module V of finite

projective dimension. Applying 	 Ext(-,S) 	 to 	 (5.1.3.) ,(5.1.4.), one

obtains furthermore

Ext ls (U,S) = Ext is +1 (N,S) 	 Ex.q1-1(V,S) 	 for 	 i > 0 	 .



0 	 >      > L ---> 0 	 (I)        

( * )                    

0 	 > d' 
> L 	 > 0 	 (5.1.5.)

(5.1.3.) 	 (II)

(b) 	 As communicated to us by G.Evans, he and P.Griffith independently

obtained (5.1.2.) in the commutative case.

5.3. 	 The four exact sequences (5.1.3.), (5.1.5.), (I) and (II) fit

into the following commutative diagram

(5.3.1.)

where 	 i' 	 is the natural inclusion induced by
	

and p' 	 the natu-

ral surjection induced by 	 (3
0

To interpret this diagram in terms of triangulated categories, consider

its image in 	 D
b
(S) . It is then just the "display" of the octahedron

constructed - by choice - either over the composable monomorphisms

U = Im(S
0
 ) ---> M = Ker(6

I
) 	

i'> (G0)*

or the composable epimorphisms

(G )* —P-2-> V 	 Cok(0) -A2-> L 	 WO)
The distinguished triangles of the octahedron are given by the four

exact sequences above, its two "visible" commutative faces are marked

by 	 (*) , its "top" is 	 L , its "bottom" is 	 U 	 and the "equator" is

represented by the square (i', p', i , p) , - see [BBD;1.1.7.-8.] .

Accordingly, we will call (5.3.1.) "the" canonical representation or

octahedron associated to a module N over a strongly Gorenstein ring

S . It is unique up to (projectively) stable equivalence in the sense



that to one of the "triangles" (*) one may add one and the same projec-

t tive module to each of the three vertices.

Remark that the "equator" is a bi-cartesian square which yields hence

a "Mayer-Vietoris"-sequence

(5.3.2.) 	 0 	 M 	 > N @ (G 0 )*)* 	 > V 	 > 0

exhibiting the given module N - up to adding a projective module - as

an extension of a module of finite projective dimension by a MCM.

Again this representation of N is unique in mod-S , proving the so-

called "Approximation Theorem" of M.Auslander - [Aus 1;Ch.3,Prop.8],

[A-B;4.27,2.41] :

Corollary 5.3.3.: 	 With the notations of (5.1.2.), there exist 	 a

finitely generated projective S-module Q and an exact sequence

0 	 > M —> N Q 	 V —> 0

in which

- M is a maximal Cohen-Macaulay module,

V 	 is of finite projective dimension,

so that in mod-S 

- the morphism M 	 N @ Q = N is universal with respect to mor-

phisms from MCM's to N and

- the morphism ,N 	 N A Q 	 > V is universal with respect to mor-

phisms from N 	 into modules of finite projective dimension.

Proof: 	 Take 	 Q = 	 )* 	 and rewrite (5.1.2.), (5.1.4.)

5.4. 	 Following a suggestion of M.Auslander, we give the objects just

constructed the following names :

Definition 5.4.1.: 	 Given a S-module N 	 and its canonical represen-

tation (5.3.1.), the occurring maximal Cohen-Macaulay module M (with

the projection p onto N) will be called a MCM-approximation of N .

Accordingly, the module V (with the embedding i of N into it) is

a hull of finite projective dimension of N .

Choosing MCM—approximations (hulls of finite projective dimension)

for any S-module yields a functor, denoted M (resp. 	 H) from mod-S 

to MCM(S) (resp. 	 fpd(S) , the full subcategory of mod-S spanned by

all modules of finite projective dimension).



In terms of these functors, the universal mapping properties (5.1.2.(3)) 	 3°
and (5.1.4.(3)) express of course just that M yields a right adjoint 

of the embedding MCM(S) ---> mod-S , whereas H defines a left adjoint 

of the embedding fpd(S) ---> mod-S .

Summarizing the above results "categorically", one may say that

mod-S 	 is almost obtained by glueing MCM(S) 	 and 	 fpd(S) 	 along the

pairs of adjoint functors :

inclusion
(5.4.2.) 	 MCM(S) 	 > mod-S 	 H 	 > fpd(S) 

inclusion

if compared to the notion of "glueing triangulated categories" as it is

defined in 	 BBD;1.4.3. 	 - to which we also refer for terminology :

- MCM(S) 	 and fpd(S) 	 are full subcategories of mod-S 	 (this cor-

responds to axiom 	 1.4.3.5. 	 of (loc.cit.)) ,

MCM(S) 	 is left-orthogonal to 	 fpd(S) 	 and 	 fpd(S) 	 is right-or-

thogonal to 	 MCM(S) , (whAch is (5.1.1.(i) and (ii)) rephrased

and corresponds to axiom 	 1.4.3.3. ),

- the embedding of MCM(S) 	 into mod-S ,(it corresponds to

admits 	 M 	 as its right adjoint ( j* 	 of axiom 	 1.4.3.2. ),

- the embedding of fpd(S) 	 into. mod-S ,(it corresponds to

admits. H 	 as its left adjoint ( i* 	 of axiom 	 1.4.3.1. ),

and, most important,

- 	 the presentations in (5.3.1.) describe the desired unique decom-

position of an object in mod-S into its "components" in MCM(S) 

and 	 fpd(S) , (more precisely, (5.3.3.) corresponds to the distin-

guished triangle 	 j i j* ---> id ---> i * i 	 (1) > 	 in 	 1.4.3.4. ).

What is lacking from a "complete" glueing is essentially the existence

of the other adjoints ( i , j * ) : even by adding projectives not any

module can in general be embedded into a MCM nor represented as a quo-

tient of a module of finite projective dimension by a MCM.

5.5. 	 After this "meta-mathematical" digression, consider the following

case(s) where a MCM-approximation can be neatly described :

Proposition 5.5.1.: 	 Let 	 S 	 be strongly Gorenstein, 	 N 	 a S-module

such that 	 Ext s (N,S) = 0 except for a single value 	 i = n .

Then a(ny) MCM-approximation of N is given by

(5.5.2.) 	 M(N) = Hom s (S/ n Ext n (N,S),S) 	 ,



wperen 	 SExt (N,S) 	 denotes the corresponding syzygy module in some pro-

jdctive resolution of 	 Ext ns (N,S) 	 as left S-module.

The proof is a literal repetition of the proof of (5.1.2.), observing

that - with its notations - 	 F* 	 is, by the special assumption, quasi-

isomorphic to 	 Ext rsl (N,S)[-n] , and hence G a projective resolution of
this module. But then M(N) 	 is represented by

Ker(Hom s (d G ,S)) 	 Hom5(Cok(4),S) = Hom ( 	 G S) 	 and

o G n Ext
n
(N,S) 	 by definition.

Applying this to the case of a commutative local Gorenstein ring we get

Corollary 5.5.2.: 	 Let R 	 be a local commutative Gorenstein ring of

dimension 	 r with residue class field k . Then M(k) 	 can be obtained

as the R-dual of the r-th syzygy-module in a (minimal) free resolution

of k over R

Sticking with the case of the Corollary, 	 M(k) 	 has a well-defined rank 

and choosing indeed a minimal resolution to obtain the MCM-approximation,

its rank is given by

r-1
(5.5.3.) 	 rankRM(k) 	 EA-1)

r-i-1
bi

i=0

where b i 	 denotes the i-th Betti-number of k over R .
Now, as in general the Betti-numbers of a local Gorenstein ring grow

rather fast, the rank of this maximal Cohen-Macaulay module will accord-

ingly be quite large - and the ranks of its syzygy modules even larger,

unless 	 R 	 is a hypersurface ring, (see [Her],[Eis]).

Hence we ask

Is the number given in (5.5.3.) the minimal possible rank for a non-

free MGM which occurs as the syzygy module of some artinian R-module?

Considering more generally the case of not necessarily commutative but

local rings 	 S 	 which are strongly,Gorenstein, one still has minimal re-

solutions, and an object in mod-S admits a unique (up to S-isomorphism)

minimal representative in mod-S , characterized by the property that it

does not contain a free summand. In particular, we can - and will - in

this case "minimize" the functors M or H ,(as well as, for example,

complete resolutions). This enables one to define several new invariants

for any S-module N : The rank of H(N) 	 and the number of indecomposable 

summands 	 of H(N) 	 or M(N) .



5.6.	 The reader may have observed that the proof of (5.1.2.-4.). in
	 32.

. particular (5.1.6.), yields an extension of the construction of complete

resolutions of MCM's, as given in (4.5.), to arbitrary S-modules.

Furthermore, essentially the same argument provides a functorial way to

obtain such complete resolutions for arbitrary objects in D b (S)
In other words, the projection functor D b (S) ---> D

b
(S) 	 factors

naturally over the equivalence a < : APC(S) ---> D b
(S) , completing the

picture given in (4.4.).

Nevertheless, the result is quicker to state than to formalize :

Complete resolutions can be obtained by "symmetrizin " projective 

resolutions with respect to duality.

This shall mean :

- 	 Assume given a complex X of S-modules - with bounded and finitely

generated cohomology by our general assumption -, and consider it as

an object in 	 D
b
(S) .

Choose a projective resolution .P(X) 	 > X 	 of X 	 and dualize it 

to obtain 	 P(X)* 	 Hom*(P(X),S) .

By construction, this is a bounded below complex of finitely gene--

rated projective S 0 P-modules with bounded cohomology, (4.6.), hence

a "projective co-resolution" of RHom 5 (X,S) , considered as an ob-
ject in the full, triangulated subcategory 0 - ' 13 (P(S °19 )) 	 of D b (S") •

in analogy to (0.3.). Therein,'this object is unique up to homotopy-

equivalence.

Now choose a projective resolution T x : P(P(X)*) ---> P(X)* of
this co-resolution - it corresponds to the morphism T of (5.1.6.) -

and dualize again, this time of course with respect to Homop(-,S) ,

to obtain

the Norm-map of X - called so here in analogy to the classical case

of finite groups, see [C-E;XII.1.] for example - :

(5.6.1.) 	 N(X) : P(X) 	 can.  > P ( X ) ** 	9 X 	 P(P(X)*)*

which by construction is a quasi-isomorphism from a projective reso-

lution of X 	 to a projective co-resolution of X .

(Considered in 	 D
b
(S) , the morphism N(X) 	 is hence nothing but the

usual "incarnation" of the duality-isomorphism for Gorenstein rings :

X 	 > RHom op(RHom S (X ' S),S) .)

Coming to an end, set - in accordance with (4.5.) - :



(5.6.2.) 	 CR(X) = C(N(X))[-1]

and call this translated mapping cone over the Norm-map a complete 

resolution of X .

This complete resolution of X gives by its definition rise to a dis-

tinguished triangle in K(P(S)) , the homotopy-category of all complexes

of finitely generated projective (right) S-modules, cf. (0.3.), :

(5.6.3.) 	 CR(X) 	 r(X) 	P(X) 	N(X) 	P(P(X)*)*
	

i(X)  > CR(X )[ l]

which is the "typical" distinguished triangle associated to the mapping

cone over N(X) 	 "rotated once to the left".

The occurring morphism r(X) 	 is just the restriction of the complete

resolution to the given projective resolution, whereas 	 i(X) 	 is the

morphism "inflating" the chosen to-resolution to a complete resolution.

(For the role of the shift, see once again the remark preceeding (4.7.)

as well as (3.1.).)

To abbreviate notations, we will set in the sequel

(5.6.4.) 	 C(-) = P(P( - )*)*

Remarks: 	 (a) Recall - [Ver;II.1.4.] dualized - that choosing pro-

jective resolutions just means "categorically" to give a left adjoint

to the embedding
-

'
b
(P(S)) ---> D b (S) . From this point of view, 	 C

becomes a functor from D b (S) 	 into K + 'b (P(S)) , the homotopy-category
of projective co-resolutions. Composing each of these two functors with

the respective inclusion 1(
+/-,b

(P(S)) --->
(b)

(P(S)) , the "norm" can

hence be thought of as a natural transformation of functors from D b (S)

into
(b)

(P(S)) . Similarly, (5.6.3) constitutes a functor into the

category of (distinguished) triangles of functors, if one d/cares to

introduce such a thing.

(b) 	 As usual, any choice of a dualizing module 	 will define a "norm"

and then "complete resolutions" and so on, but all these objects will be

isomorphic. Hence we will in general not distinguish these constructions

and rather allow ourselves to choose the "suitable" dualizing module

depending on the concrete situation.

To analyze further the distinguished triangle (5.6.3), we introduce the

following two invariants of an object X 	 in 	 D b (S)



	

(5.6.5.) 	 mX = max (t 	 H i (X) # 0 ) 	 and

= max(i : H i (RHom s (X,S)) # 0 )

(In terms of the t-structures mentioned in (4.8.), these numbers measure

"how far" the given object X is from the respective "hearts" of these

structures : 	 X 	 is in the essential image of MCM(S) 	 in 	 D b (S) 	 iff

mX 	 X
= m* = 0 .)

Now choosing projective resolutions "minimally" - so that 	 P (X) = 0

for 	 i > m
X 	

- it follows that the morphisms in (5.6.3.) can be assumed

to satisfy

- r(X) 	 is the identity in each degree not larger than 	 -m*
X '

- i(X) is the identity in each degree not smaller than mX '

and hence

- the Norm-map N(X) 	 is non=zero only in the "twilight-zone" of those

degrees i for which -4 5 i 	 mX .

Finally, having chosen complete resolutions for objects in 	 D b (S) , we

define accordingly their MCM-approximations, extending (5.4.1.), as

(5.6.6.) 	 M(X) = 2 0 CR(X)

Remark: 	(c) If compared to the situation for actual modules, what is

missing in this more general context is an analogue of the functor H ,

which would hence associate to any complex in D
b
(S) 	 its "perfect part"

in 	
Dperf

 (S) . But, even if such an analogue exists, there will be the

same shortcoming as in (5.4.) : 	 D b (S) 	 can in general not be obtained

by "glueing together" 	 D
b
(S) 	and 

Dperf(S)
	as simple examples already

show - see also section 7 .

Remark that if there exists a stabilized higher K-theory as asked for

in (4.9.), an obstruction for the glueing will ge given by any non-zero

connecting homomorphism K i (S) ---> K i _ 1 (S)

To resume the situation, we have seen :

Theorem 5.6.7.: 	For any ring	 S which is strongly Gorenstein, one

may extend (4.4.1.) to a diagram of exact functors between triangulated

categories, commutative up to isomorphisms of such functors :



projection

S 	
> D

b
(S)

quasi-inverses 	 ofdefine a <M 	 )In particular, the functors 	 CR (resp.

CR

APC(S) 

m

> MCM(S) 

a

(resp. 	 L s ) and extend naturally the functors defined earlier, (4.5.1.)

resp. (5.4.1.) .

6 . - The Tate-Cohomotoqy 

6.1. 	 The essential use of the triangulated structures on any of the

equivalent categories 	 APC(S) , MCM(S) 	or D b (S) 	is that they define

one and the same cohomology theory for S-modules (or, more generally,

for complexes in 	 D b (S) ) .

Definition 6.1.1.: 	Let M , N	 be two (complexes of) modules (with

bounded, finitely generated cohomology) over a ring S which is strongly

Gorenstein. Then the i-th Tate-cohomology group of M with values in N 

(over S ) is defined to be

Ex .q(M,N) .d 
f 

Hom b
(S) (M,T

i
N)

for any integer
•

A first more concrete description of these groups for actual S-modules

can be obtained from Theorem (4.4.1.) as follows :

	Lemma 6.1.2.: 	Let M	 and N 	 be in mod-S . Then, for any

(i) E t s (M,N) 	 Hom5(s1sM(M),N) 	 - with notations as in section 2 -

and also

(ii) Extls(M,N) 	 HiHom(CR(M),N)



.Proof: 	By the defining properties of MCM-approximations, 	 M(-) yields
	 3 (0

an inverse of 	 L S , and by (4.4.1.(3)) the loop-space functor 	 Q 	 rep-

resents an inverse of the translation functor on MCM(S) , so that

Hom p b (s) (M,T N) = Hom p b (s) (TM,N) = Hommcm(s) (R s M(M),M(N)) .

But, on the other hand, (5.4.), (the restriction of) 	 M 	 on 	 mod-S 	is

a right adjoint of the embedding of MCM(S) 	into mod-S , so that

Hom
MCM(S) 

 (C2 SM(M),M(N)) = Nom mod-S (RWM) '
N)

whence (i) .

To verify (ii), remark that 	 CR(-) 	 establishes an inverse of a < , by

(5.6.7.), and that by (4.4.1.(v)) one may replace 	 a < 	by	 a sk 	for

some sufficiently large k - depending on i -, so that the cohomology

group in question can be calculated as :

Hom D b (S) (M,T N) = Hom
K(S)

(a
Ck

CR(M),T N)

which last group of homotopy classes of morphisms of complexes equals

by definition 	 H i Hom(a <k CR(M),N) - see [ALG X;p.82] for example.

Now for k 	 large enough (again compared to i ), 	 "a sk " 	 can obviously

be dropped as the "complex" 	 N is bounded above.



6.2. 	 Before we give a more "classical" description of the newly intro- 31-

duced cohomology theory, we use the general machinery - in particular

(4.4.1.) and (5.6.) - to investigate how the "ordinary" 	 Ext's 	 compare

with the "stabilized" 	 Ext's .

This will be done by calculating the Tate-cohomology as homotopy-groups

in APC(S) , considered as a full triangulated subcategory of K(P(S)) ,

the homotopy category of all complexes of finitely generated projective

S-modules.

For this purpose and the readers convenience, let us recall the follow-

ing facts on homotopy-groups of such complexes :

Lemma 6.2.1.: 	 Let S be any ring, 	 X and Y two complexes of fi-

nitely generated projective (right) S-modules. Denote - as before - by

Hom*S (X ' Y) 	 the complex of morphisms of the underlying graded S-modules,

(which, following [ALG X.81], should be 	 Homgr 5 (X,Y) ).

(i) 	 Hom*S(X' Y) 	 is acyclic if 

(a) X 	 is bounded above and Y 	 is acyclic, or

(b) The injective dimension of S as a right module over itself is

finite, 	 X 	 is acyclic and 	 Y 	 is bounded below.

The natural morphism of complexes Y R S HomS(X,S) ---> Hom (X,Y)

- as defined in [ALG X.99;(16)] say - is an isomorphism if X

is bounded below and Y is bounded above.

Proof: 	 (a) of (i) is well-known - dualize [Ha;I.4.4.] e.g. - and (ii)

is obvious from the definitions of the complexes involved. Statement (b)

in (i) can be seen most easily by extending the argument in (v) of the

proof of (4.4.1.).

This Lemma yields the following informations on homotopy classes of

morphisms between the various functors CR , P or C as introduced in

(5.6.) 	 :

Lemma 6.2.2.: 	 Let 	 S 	 be a ring which is strongly Gorenstein, 	 X

and Y two complexes in D b (S) . Then

(i) The complex of abelian groups 	 Hom(CR(X),C(Y)) 	 is acyclic and

the restriction-morphism r(Y) : CR(Y) ---> P(Y) 	 of (5.6.3)

induces a quasi-isomorphism

HomS(CR(X),r(Y)) : Hom(CR(X),CR(Y)) 	 > HomS(CR(X),P(Y)) .

(ii) The complex of abelian groups 	 Hom(P(X),CR(Y)) 	 is acyclic and

the Norm-map of Y , 	 N(Y) , induces a quasi-isomorphism

HomS(P(X),N(Y)) : Hom(P(X),P(Y)) —=—> HomS(P(X),C(Y)) 	 .



proof: The first statement in (i) is case (b), the first statement in
	 SS

(ii) is case (a) of the foregoing Lemma.

The remaining assertions follow then by applying 	 Hom(CR(X),-) 	 resp.

Hom*(P(X),-) 	 to the distinguished triangle (5.6.3.) for 	 Y .

To state the main result on Tate-cohomology we use - as in (5.6.) - the

Notations 6.2.3.: 	If X	 is any complex of finitely generated pro-

jective S-modules (any object of D b (S) ), we denote X* the complex

of finitely generated projective S o p-modules KomS(X,S) ,(resp. the

object RHom 5 (X,S) 	 in D b (S") ).
Accordingly we denote for two objects X and Y in Db (S) 	 by

4 IL

	

Tor s (Y
'
 X*) 	 H-I(Y 	

S
 RHom

S
 (X,S))

the corresponding hyper-Tor group- , which is certainly defined as soon

as 	 S 	 is of finite injective dimension as a right module over itself.

Remark that by the very definition, these hyper-Tor groups can be

calculated as 	 Tor i (Y,X*) 	 H1(P(Y) 	 P(Hom(P(X),S)),) , hence using

(5.6.4.) and (6.2.1.(ii)) one obtains for any two complexes 	 X , Y

in 	 D b
(S) with 	 S 	 strongly Gorenstein

(6.2.4.) 	 Tori(Y,X*) 	 H 	 Hom(C(X),P(Y))

With these preparations - and the notations as in (5.6.) - we get :

Theorem 6.2.5.: 	Let	 S be a ring which is strongly Gorenstein.

(1) 	 For any two complexes X and Y in D b (S) , the complex of

abelian groups 	 Hom(CR(X),CR(Y)) 	 is quasi-isomorphic to the

mapping cone over 	 N(X,Y) 	 Hom(N(X),N(Y)) .

More precisely, there is a morphism of complexes 	 d(X,Y) , so

that the following diagram is commutative

Hom(CR(X)[1],CR(Y))[1] 	 Hom(CR(X),CR(Y)) 
d(X, ) > C(N(X,Y))

Hom*(i(X),r(Y))[1]

Hom*(C(X),P(Y))

d 	 (1

(+)

> Hom(P(X),C(Y)) 	 ,

(1)

N(X,Y)

where 	 d(X,Y) 	 is a quasi-isomorphism, the triangle marked (+)



S5
is the "typical" distinguished triangle associated to the mapping

cone over 	 N(X,Y)

(2) 	 The above diagram is self-dual in the sense that "transposition"

with respect to 	 ( )* = Nom'(0P) (-,S) 	 yields isomorphisms of

distinguished triangles in the (full) derived category of abelian

groups

Homop(C(X),P(Y)) 	 N 	 > Homop(P(X),C(Y)) 
d-1 3

> Homop(CR(X),CR(Y)) (1) >
(1) 

( )*

-1
d iHom(C(Y*),P(X*)) 	 N > Hom(P(Y*),C(X*)) 	 > Hom(CR(Y*),CR(X*)) (1) >

for any two objects X and Y in D
b
(S

op
) . ( d-1 represents

of course the inverse of d in the derived category.)

(3) Evaluating (1) and (2) by taking cohomology, one obtains a long

- even unlimited - exact sequence of abelian groups

i- 	 HiN(X,
..--> Exts (X,Y) —> Tor

s 
(Y,X*) )> Ext is (X,Y) -C-1> 	 Ext is (X,Y)

(where 	 is the map obtained by applying the projection functor

Ext is ( ,Y) 	 Homob(s)(X,TiY) ---> Hom D b (S) (X,T i Y) = Ext is (X,Y)

as well as isomorphisms

Ext is (X,Y) ; Ext ls op(Y*,X*)

for all integers 	 i 	 and all objects 	 X , Y 	 in 	 D b (S) .

(4) All statements as well as diagrams in (1) - (3) are func -torial

in X 	 and Y

Proof: 	 (1) Remark first that the existence of the claimed morphism

d(X,Y) 	 follows readily from - the fact that

N(X,Y).Hom(i(X),r(Y)) = H ril(i(X)N(X),N(Y)r(Y)) = 0

by.definition of the morphisms involved, (5.6.1.).

That d(X,Y) 	 is necessarily a quasi-isomorphism follows from the

so-called "diagram of 9 squares" - see [BBD;1.1.11.]- obtained by



• (C C)> 
.

'(C,P) 	
 -7 A

C,CR)

'( 	 ,r)

'(CR[1],CR) '(CR[1],P) ---> *(C11[1],C) ----> '(CR[1],611)[1]

•

applying 	 Hom(-,-) 	 to the distinguished triangle (5.6.3.) for 	 X 	 in

its contravariant argument and to the corresponding triangle for Y in

its covariant argument.

(In the following display of this diagram, we abbreviate 	 Hom(-,-) 	 as

'(-,-) 	 and suppress the arguments 	 X 	 and 	 Y .

The rows and columns in "solid" arrows represent distinguished tri-

angles, the right-most column (bottom row) are the "anti-distinguished"

triangles obtained (up to a canonical isomorphism) by translating the

left-most column (the top row).

The square marked (-) is anti-commutative.)

*(CR,CR) 	 > *(CR,P) 	 > *(CR,C) 	 > *(CR,CR)[1]

*(P,CR) P,P) 
= 	

> •(P C)
	

P, R)[11
A 	

(#) 	 •••

.-• N(X,Y)

(6.2.6.)

In this diagram, by (6.2.2.), the underlined complexes are acyclic and

then the morphisms marked "=" 	 are quasi-isomorphisms.

The factorization - marked by (#) above - of N(X,Y) = Hom(N(X),N(Y))

over the quasi-isomorphism Hom(P(X),N(Y)) 	 implies the existence of

a morphism from Hom(CR(X),P(Y)) 	 into the mapping cone over N(X,Y)

which is necessarily a quasi-isomorphism.

Now the claimed morphism d(X,Y) 	 can be obtained by composing this

with the quasi-isomorphism Hom(CR(X)•,CR(Y)) —=—> Hom(CR(X),P(Y)) ,

the horizontal arrow in the upper left corner, whence d(X,Y) itself

is also a quasi-isomorphism.

Remark that this proof exhibits isomorphisms in the derived category

(of abelian groups) between the distinguished triangles represented re-

spectively by the second column or the third row and the triangle



, given by 	 ( N(X,Y), d -l j , *(i,r)[1])
	 44

`(Strictly speaking, this last triple does not represent a distinguished

triangle, unless the morphism 	 Hom(i(X),r(Y))[1] , whose source is

by definition 	 Hom(CR(X)[1],CR(Y))[1] , is composed with the canonical 

- [SGA 4;XVII.1.1.5.] - isomorphism from 	 Hom(CR(X),CR(Y)) 	 into its

source, as indicated in the diagram of (1).)

Taking into account the foregoing remark, it is clear from the defini-

tions that "transposition" corresponds to "reflecting" the above dia-

gram on the "diagonal".

For example,

C(X)* 	 P(P(X)*)** 	 P(X

and

P(Y)* ; P(Y**)* 	 P(P(Y*)*)* 	 C(Y*)

by (6.2.3.), (5.6.4.), and the duality on complete resolutions has been

observed already in (4.6.1.).

That these dualities are in fact compatible, so that the given diagram

in (2) commutes, is left to the reader.

Concerning (3), recall that always 	 Ext is (X,Y) 	 H1Hom(P(X),P(Y)) , so
that (6.2.4.) and passing to cohomology in (6.2.2.(ii)) add (6.2.6.)

yields the identifications needed. (See also Remark (b) below.)

The functoriality asserted in (4) is evident.

qed

Remarks: 	 (a) Obviously, the Theorem contains an understatement :

As usual, one may replace throughout its formulation- or proof - the

term "abelian group" by "module over the centre of S ".

(b) The proof of the Theorem - in particular (6.2.6.) - reveals the

following possibilities to obtain in practice the natural transforma-

tion 	 c' : Ext(-,-) ---> Ext(-,-) : 	 Identify these groups with

- H' 	 of Hom(P,P) , Hom(P,C) 	 or Hom(C,C) 	 for 	 Ext 	 - 	 this

corresponds to the "central square" of (6.2.6.) -,

and accordingly with

- H' 	 of Hom(CR,P) , Hom(CR,CR) 	 or Hom(C,CR[11) 	 for 	 Ext' 	
'

so that c' 	 becomes represented - in the corresponding order - by

- 	 H' 	 of 	 Hom(r,P) , d -l j 	 or 	 Hom(C,i) .

Furthermore, in the first of these incarnations, one may drop the 	 "P"

in the covariant argument and take the complex itself instead - using

once again (4.4.1.(v)) and (6.2.1.(a)).



The first of these descriptions is closest to a "classical" treatment,

whence we make it explicit - it has been used implicitly already, e.g.

' 	 in (4.4.1.(v)), 	 (6.1.2.) 	 :

Assume given two (complexes of) S-modules X , Y (with bounded and

finitely generated cohomology).

Choose a projective resolution P(X) 	 and construct from it a com-

plete resolution 	 CR(X) 	 as in (5.6.) or (4.5.).

The homotopy-classes of morphisms of complexes of degree i 	 from

P(X) ,(resp. CR(X) ), into 	 Y 	 represent the i-th (stabilized) co-

homology group of X with values in Y .

Representing a'homotopy-class by an actual morphism of complexes

from P(X) 	 to Y , composing it with the restriction morphism r(X)

from CR(X) 	 onto P(X) 	 and passing again to the homotopy-class

describes the image of an element from Ext s (X,Y) 	 under c i 	
in

Ext(X,Y)

The above Theorem is then just the "triangulated" version of saying that

this procedure is independent of the choices involved - and furthermore

identifies the "mapping cone" over these natural maps 	 c i

(6.3.) 	 As observed in (5.6.), for a given object 	 X 	 in 	 D b (S) 	 the

"Norm-map" 	 N(X) 	 can be chosen to be non-trivial in only finite_ly many

degrees. This implies that the exact sequence in (6.2.5.(3)) is quite

"degenerate".

More precisely, in addition to the invariants m X , mX introduced
in (5.6.5.), consider also

(6.3.1.)

i*
X

inf(i : H i (X) # 0 ) 	 and

inf(i : H i (RHom s (X,S)) 	 0 ) .

In terms of these invariants, one gets immediately

Lemma 6.3.2.: 	 With notations as above, for any given complexes

and 	 Y in 	 D b
(S) , one has

(i) Tor
s 

(Y,X*) 	 0

(ii) Exts(X,Y) 	 0 	 for all 	 i < max( i Y -
	

X '

for all 	 i > m*X + m Y 	and'

Proof: 	 By (6.2.4.), 	 Tor! i (Y,X*) 	 Hl(P(Y) 	 P(P(X)*)) , and the com-
plex 	 P(Y) 	 P(P(X)*)) 	 can be assumed to be zero in degrees larger



than 	 m y + mX 	 by definition of these numbers, (5.6.5.), whence (1).
For (ii), remark that by duality it is enough to have the claimed van-

ishing behaviour for all 	 i < i y - m x , which is obvious.

In view of this Lemma, we set

(6.3.3.) 	 mm(X,Y) = max( 	 ) - 1 	 and

M 	 M(X,Y) = mX + m y

to obtain

Corollary 6.3.4.: 	 Using the just defined integers, depending on 	 X

and 	 Y 	 in 	 D
b (S) , the long exact sequence of (6.2.5.(3)) breaks up

according to

(i) 	 The natural homomorphism c (X,Y) : Ext s (X,Y) ---> Ext s (X,Y) 	 is
- an isomorphism for i > M and

a surjection 	 for i = M 	 .

(ii) 	 The connecting homomorphism Ext s (X,Y) ---> Tor i _ (Y,X*) 	 is

- an isomorphism for i < m and
- an injection 	 for 	 i 	 m 	 .

(iii) 	 It remains an exact sequence
•

0 —> ExtI(X,Y) 	 Tor
s m-1(Y,X*) —>-..—> Ext s (X,Y) —> Exts(X,Y) —> 0.

Remark: 	 The converging spectral sequence

E2' j = Ext i (H - j(X),S) 	 ===> 	 H i+ j(RHom s (X,S))

for a complex X in D
b
(S) 	 shows that always

-mX 	 X
i* 	Xm* 	 vdim S 	 i X

which implies readily that for any two complexes X and Y as above

necessarily m < M , so that the exact sequence in (iii) above is in
any case "non-trivial".(Easy examples show furthermore that in general

the bounds given in (6.3.2.) cannot be improved, so that in this sense

the above Corollary is "best possible".)

Example 6.3.5.: 	 Let M , N be two S-modules, S strongly Gorenstein.

Then

m = m(M,N) = max( 0 , iA - mA ) - 1 	 -1

0 ‘ M = m(M,N) = mM 	 vdim S



Sp one gets the universal bounds - improving (6.1.3.)

Ext
i
(M,N) 	 Ext(M,N) 	 for all 	 i > vdim S a mA 	 ,

Ext s (M,N) = Tor_ i _ 1 (N,RHom 5 (M,S)) 	 for all 	 i < 	 -1 	 m 	 .

If for any S-module N we call - in accordance with the local commuta-

tive case -

mA the "co-depth" of N , and recall that by definition

I 	 is the "grade" of N , [A-B;2.21.],

the above can be rephrased as

For S-modules M , N , the Tate-cohomology of M with values in N 

yields "new" (stable) groups 	 Ext ls (M,N) 	 only in the range 

-1 	 max(0,grade(M) - codepth(N)) - 1 	 i 	 codepth(M) 	 vdim S 	 .

6.4. 	 It follows from the example - and could be expected in view of

(4.4.1.) and the definition - that Tate-cohomology takes a particularly

simple form on maximal Cohen-Macaulay modules.

Corollary 6.4.1.: 	 Let M be a maximal Cohen-Macaulay module over

S and denote M* - = Hom 5 (M,S) 	 its S-dual. Then

(i) Extls(M,-) = , Ext is (M,-) 	 for all 	 i > 0

(ii) Extis(M,-) = Tor S i _ 1 (,M*) 	 for all 	 i < -1 ,

(iii) There is an exact sequence of functors

-
0 —> Ext

1s (M,-) —> - @ s M* n
(

M, - )  > Hom 5 (M,-) —> Ext s0 (M,-) —> 0 ,

where for any (right) S-module the morphism n(M,N) 	 is given by

(n(M,N)(n @ p))(m) = n.cp(m)

for any neN,TeM* and meM, and

(iv) Ext S
0
 (M ' N) = Nom S (M ' N) 	 , the S-linear homomorphisms from M 	 to

N modulo those which factor over pro-

jective modules.

Proof: 	 The first two statements are obtained from the above example

and the foregoing Corollary as by definition M is MCM iff

codepth(M) = 0 = grade(M) .

(iv) is just (6.1.2.(i)) reformulated for 	 i = 0 .

Instead of deducing (iii) directly from the above results, we make the



Remark: 	 In more generality, M.Auslander - [Aus 1;Ch.3,Prop.1 bis],

s'ee also [A-B;2.8.] - introduced and studied the exact sequence of

functors

0 —> Tor 2 (-,D(M)) —> 	 M
	

n(M ' -) > Hom T (M,-) —> Tor T0-,D(M)) --> 0

on mod-T , where

T 	 is an arbitrary ring,

M 	 is a (right) T-module which admits a presentation

Q 	> P ---> M ---> 0

by finitely generated projective T-modules P and Q , and

D(M) 	 is the left T-module obtained by dualizing the presentation

with respect to T :

f*, Q *0 ---> M * ---> r - 	/ 4 - ---> D(M) ---> 0 .

( D(M) 	 is well-defined in the category of left T-modules modulo

projectives.)

If now T = S is strongly Gorenstein, M a maximal Cohen-Macaulay

S-module, then

D(M) = Ker(f)* = (4M)* 	 and 	 SZSM
	

is again MCM, (4.2.2.(ii)), so

that

- 	 2
Tor i (-,D(M)) = Tor.(-,(2 s M) 	 = Ext s i-1 (S2 s ,-) 	 for all 	 i > 0

by assertion (ti) above. But, in view of (6.1.2.(i)) together with

the fact that a s on MCM(S) 	 represents the inverse of the trans-
lation functor, this shows

Tor i (-,D(M)) = Ext s i+1 (M,-) 	 for all 	 i > 0

whence the exact sequence (6.4.1.(iii)) becomes a special case of the

exact sequence above.

One may take (6.4.1.) as the starting point for a "synthetic" definition

of Tate-cohomology by "dimension shifty"

For any ring 	 S which is strongly Gorenstein, there is a unique family

of cohomological bi-functors 	 ExtS(-,-) , characterized by

(i) ( 6-functor) 	 In classical terminology, 	 Ext(-,-) 	 is a 6-functor

in both arguments, contravariant in the first, covariant in the

second

(ii) (effaceable and co-effaceable) 	 For any module U of finite pro-

jective dimension and for any integer i , one has



Ext is (U,-) = 0 = Ext is (-,U)

and for any finitely generated S-module N there exist modules

U 	 and V of finite projective dimension, such that N 	 is a

quotient of U - obvious -, and a submodule of 	 V - by (5.1.4.) .

(iii) 	 ("initial condition") 	 For a maximal Cohen-Macaulay S-module in

the contravariant argument, these cohomological functors are de-

termined by (6.4.1.).

It is clear, that these three "axioms" determine the Tate-cohomology

groups completely and in a unique way for all modules in mod-S .

6.5. 	 As a final observation in this direction, we will use the above

description to "narrow the gap" in the "unstable range" , (6.3.5.), be-

tween -1 and vdim S .

For this, remark first that the very "historical" reason for the intro-

duction of the loop-space functor C s on mod-S was the isomorphism
of functors 	 Ext s (sl sj -,-) 	 > Ext i+ J(-,-) 	 for all 	 i > 0 , j 	 0 	 - cf.

[ALG X.128;Cor.4].

On the other hand, by definition of the groups involved, there are nat-

ural surjections 	 Ext is ( + ,-) 	 Homs(SZis-,-) 	 for all 	 i 	 0 .

These surjections yield precisely the image of the natural transforma-

tions 	 c i : Ext i
S( ' 	 '

) 	 > Ext
i
(- -) 	 in case of a ring 	 S 	 which is

S
strongly Gorenstein. More specifically :

Proposition 6.5.1.: 	 For any two modules in mod-S one has natural

isomorphisms

lim  >NomSS(s2i+n M,St nN)
	S

> Ext i (M ' N)

n+ia0
for all integers 	 i.

The direct limit on the left is essentially constant in the sense that

all transition-maps are isomorphisms as soon as 	 i+n 	 is at least equal

to 	 vdim S .

In particular, this limit "collapses" if 	 vdim S , but defines a

finite ascending filtration of Ext s (M,N) 	 by abelian subgroups

= Im(Homs (clis+km,c2ks N) ---> Ext is (M,N)) 	 , k 	 max(0,-i) .

For i a 0 , F i( equals the image of Ext is AM,4N) 	 in Ext is (M,N) .



The proof can be obtained directly from the "axiomatic" treatment above,

Itlr, more conceptually, by applying the functor of MCM-approximations :

As M( - ) 	 is a right adjoint of the embedding MCM(S) ---> mod-S , it
commutes necessarily with the loop-space functor. But as R s on MCM(S) 
represents the inverse of the translation functor, one gets

Hom s (R s +n M,Q s N) 	> RomMCM(S) (M(R +n M),M(1 110)) 	 by applying M and

( 2 s -" M(M),Q insM(N)),MOZN)) = Hom mcm(s)fmfgl i+n
Hom

MCM(S) 	S 

Hom
MCM(SP

fTnm(m),Ti+nm(N))

= Hommcm(s) (M(M),T 1 M(N))

= Ext is (M,N)

using the definition (6.1.1.) and the equivalence L s 	of (4.4.1.(2)).
Applying 2 s and passing to the limit establishes then the result in
view of the fact that one has an isomorphism of functors MS S = 	 ,

as soon as 	 j 	 vdim S , cf. (4.2.2.(iv)).

This proposition shows in which sense Tate-cohomology "stabilizes" the

ordinary 	 Ext's 	 and provides the link to the "stable module theory"

of M.Auslander-M.Bridger,[A-B] .

Furthermore, it reveals a forth equivalent description of MCM(S) , the

category of all maximal Cohen-Macaulay modules modulo projectives over

a ring which is strongly Gorenstein

It can be obtained - up to natural equivalence - from mod-S , the 

stable module category, by "inverting" the loop-space functor 2 s .

To formalize this statement, remark first the following general fact

Lemma 6.5.2.: 	Assume given a pair	 (A,e) , where 	 A 	 is an additive

category, e : A ---> A an additive endo-functor of A .

Then there exists an additive functor 	 j : (A,e) 	 > (A ,t) 	 into an
additive category A # together with an (additive) auto-equivalence 

t : A# ---> A# such that :
(i) j	 transforms 	 e 	 into 	 t -1 , i.e.: 	 t -l j 	 is isomorphic to

(ii) Any additive functor 	 F : (A,e) 	 > (B, ․ ) 	 into an additive

category B with auto-equivalence s , which transforms e into

s -1 , factors uniquely over j 	 by an additive functor

F # : (A # ,t) ---> (B, ․ ) 	 which transforms 	 t 	 into 	 s , that is :

F = F j 	 and F t is isomorphic to sF # .



The functor j 	 is unique up to "equivalences of categories with auto-

equivalences under 	 (A,e)".

(In other words, - beware of the universe -, there is a left adjoint of

the forgetful functor from (Ad,aut) , the "category of additive cate-

gories with auto-equivalences" to (Ad,end) , the "category of additive

categories with endo-functors".)

Proof: 	The objects of A #	are given by all pairs 	 (X, 	 where X 	 is

an object in 	 A , n 	 an integer.

The morphisms are given by

Hom A#((X,n),(Y,m)) 	 lim 	> Hom
i+m 	 i+n

e 	
X
	Y)

the auto-equivalence 	t	 by 	 t(X,n) 	 (X,n+1) 	 and the "identity" on the

direct limits representing the morphisms.

The functor j 	 sends an object X from A to (X,O) 	 and is given on

morphisms by the natural map of Hom A (X,Y) 	 into the direct limit
lim > Nom A (e X,e Y) .

—
If 	 F : (A,e) ---> (B, ․ ) 	 is now a functor as in (ii), set

F # (X,n) 	 snF(X) 	 .

It is left to the reader to convince himself that these data solve

the "universal mapping problem" claimed - cf. also [BBD;1.1.5.]

Coming back to the category of S-modules, it was stated in (2.2.2.) that

the composition of the natural embedding of mod-S into D
b
(S) with

the projection from D
b
(S) 	 onto D

b
(S) 	factors over the functor L s ,

which is defined on mod-S and transforms the loop-space functor into

the inverse T
-1

of the translation functor on 	 D
b
(S) .

Hence L s : mod-S ---> D b
(S) 	factors over the category (mod-S ,E )

constructed from mod-S by "inverting Q s " in the sense above, - so
that E 	 represents the "suspension functor".

•
The induced functor L # transforms then the "suspension functor" into
the translation functor and Proposition (6.5.1.) is equivalent to :

Theorem 6.5.3.: 	L s : (mod-S ,E s ) ---

of "graded" categories, [Ver;1.1.0.]. 

),T) 	is an equivalence  

In particular, 	 mod-S #	inherits a triangulated structure via this equi-

valence and the reader is asked to describe the distinguished triangles

using - and extending - (4.7.).



7. - Matipticative ztAuctu4e, Duality and Suppo4t

So far, we have dealt with the definition and properties of Tate-cohomo-

logy for a fixed ring 	 S which is strongly Gorenstein.

The main aspect here will be the functorial behaviour of this cohomology

theory, culminating with a general duality theorem and its applications,

which encompass the "classical" such theorem for Tate-cohomology of inte-

gral group rings as well as the analogue of Grothendieck-Serre-duality

for finite morphisms (of commutative rings).

But we start with a short discussion of

7.1. 	 Yoneda- or extension-products 

The very definition of Tate-cohomology as groups of morphisms in the

"graded" category D b (S) 	implies that composition of such morphisms

yields bilinear pairings (the "Yoneda-products") for any objects X , Y

and 	 Z 	 in 	 D b
(S) 	 and all integers 	 i 	 and 	 j :

(7.1.1.) , 	 ExtiS (Z'
	 S
Y) x Ext(X,Z) ---> Ext i+ j(X,Y)

functorial in its arguments and associative in the usual sense.

As the natural transformation 	 c' : Ext(-,-) 	 > Ext'(- ' -) 	 is in-

duced by the projection functor from D
b
(S) 	 onto 	 D b (S) 	by (6.2.5.(3)),

it is necessarily compatible with these products.

Considering the behaviour of these products with respect to duality,

one has as usual - see [SGA 4;XVII.1.1.] - that the following diagram is

•commutative "up to the sign (-1) 13 	, (where	 -* 	 represents 	 RHom 5 (-,S)
as in (6.2.3.), the horizontal arrows are given by the respective prod-

ucts, the vertical isomorphisms by "transposition" as in (6.2.5.), - fol-

lowed on the left hand side by the exchange of factors) :

Extis(Z,Y) 	x	 Exq(X,Z) 	 ---> Ext is + j(X,Y)

(7.1.2.) (-1)ii

Extj op (Z* ' X*) x Ext 1 	(Y*,Z*) ---> Ext i+ jsop (Y*,X*) 	 .s op

`-t9



In other words, for any two given classes 	 f 	 in 	 Ext i (Z,Y)	 g 	 in 	 3"D

E4X,Z) , one has

(fog)* 	 (-1)ii(g*.f*) 	 in 	 Ext il-
S

j(Y*,X*)

Recall furthermore, [ALG X.128], that on the (hyper-)Tor-groups

Tor.(Y,X*) , - cf. (6.2.3.-4.) - , there are natural left actions of

both 	 Ext'(Y,Z) 	 and 	 Ext*(X*,W*) 	 for all objects 	 Z , W 	 in 	 D b (S)

These actions anti-commute, or, equivalently, if we define a right 

action of 	 Ext(W,X) 	 on 	 Tor.(Y,X*) :

T r(Y,X*) x Exq(W,X) ---> Tor i _ j (Y,W*)
by

xof 	 def (-1) i j(f ox)

for all integers 	 i 	 and 	 j , this newly defined action of 	 ExtS(W,X)

on Tor.(Y,X*) 	 becomes compatible with the original left action of

ExtS(Y,Z) .

Putting all these different actions together, we get :

Proposition 7.1.3.: 	Let	 W , X , Y , Z 	 be objects in 	 D b (S) . Then

the morphisms in the exact sequence (6.2.5.(3)) for X 	 and 	 Y 	 are

- right-linear with respect to Ext0,X) and

- left-linear with respect to 	 Ext(Y,Z) .

More precisely, given classes f in Ex0(Y,Z) 	 and g 	 in 	 Exq(W,X) ,

right-multiplication with 	 g (resp. 	 c 3 (g) ) and left-multiplication with

f (resp. 	 c (f) ) yields a homomorphism of exact sequences :

•• > E t k-1 (X' Y) c
k

> Tor
s 

(Y,X*) 	 > Ext s (X,Y)  

o c j (g)c 1 (f) 0

i+j+k-1• ---> Ext s 	 (W,Z) —> Tor S

fo og

-i-j 	 --Z,W*) —> Extr i- j(W,Z)

Taking into account the already observed degeneracy of these exact

sequences, (6.3.4.), one can further analyze the structure of the Norm-

map 	 N(X,Y) , (6.2.5.(1)), :



Example 7.1.4.: 	Let	 x 	 be an element of 	 Ext (X,Y) . If there is 	 sl

a. pair 	 (Z,f) 	 with 	 Z 	 an object in 	 D b (S) , and 	 f 	 an element in

' 	 Ext ls (Y,Z) 	 such that

k+i > 	 , 	 (with notations as in (6.3.3.)),

fox A 0 	 in 	 Ext
k+i

(X,Z)
'

then necessarily

c
k(

x) A 0 	 in 	 Ext s (X,Y)

that is : 	 x 	 is not in the image of 	 11*(N(X,Y)) , as

k
ci (floc (x) 	 c

i+k
(fx) 	 fx

by the first assumption and (6.3.4.(i)).

Hence, in a sense which is left to be made precise by the reader, the

(cohomological) Norm-map 	 Er(N(X,Y)) : Tor S.(Y,X*) 	 > Ext(X,Y) 	 takes

its values only in the subgroup of those classes of Ext(X,Y) 	 which

get annihilated by the Yonedaproduct with any class of sufficiently high

degree. (If one considers in analogy. to the geometric situation the pro-

jection of D
b
(S) 	 onto 	 Db(S) 	as a "localization functor", - a point

of view which is supported by (6.5.3.) - , one may say that Fr(N(X,Y))

takes its values in the "zeroth local cohomology" of sections with sup-

port in Dperf(S)
 , off which one localizes.)

It seems rather suggestive to believe, that these classes constitute

in fact the image of the cohomological Norm-map.

Similarly, its kernel contains all elements which are "eventually de-

composable" in the appropriate (obvious) sense.

To conclude this . subsection, specialize (7.7.1.) to the case where

X 	 Y 	 Z . This yields for any object X 	 in 	 D b (S) 	 a "stabilized

Yoneda-Ext-algebra" 	 Ext.S(X,X) , which is a a-graded ring, canonically

isomorphic to the graded opposite ring of Extop(X*,X*) . 	 -

If X is in fact (isomorphic to) a single S-module M , this algebra

comes further equipped with an ascending filtration by subgroups, - see

(6.5.1.)

(7.1.5.) 	 Fi(M) 	 Im(ExtS( M,Q is M) > Ext*S (M,M)) ' 

and this filtration is "good" in the sense that

_ m) 	 is contained in 	 F r. -1-s (M) 	 for all 	 i,j,r,s 	 androm) 	 1+j
one has equality for sufficiently large 	 i,j .



7.2. 	 Operations of a perfect complex 	5 - 2_

Assume that S and T are rings which are both strongly Gorenstein.

Consider a complex L of S-T-bimodules, perfect as both a complex of

left S-modules or right T-modules.

Then the derived tensor-product 	 - ms
a
 L provides an exact functor

from D
b
(S) 	 into D b (T) 	 which carries perfect complexes into such.

Hence it passes trivially to the respective quotients and induces an

exact functor between the stabilized categories

(7.2.1.) - 	 L : b  
> D b (T)          

It admits a right adjoint iff RHom T (L,T) 	 is still perfect as a com-
plex of right S-modules. In this case, the adjoint is the exact functor

(7.2.2.) 	 RHomT(L,-) : D b (T) 	 > D ( ) 

which is induced from RHom T (L,-) 	 by passing to the quotient-categories.
These functors are then most easily described on APC(-) 

If A is an acyclic complex of finitely generated projective (right)

S-modules - hence an object of APC(S) - , the total complex associated

to A 	 L , considered as a complex of right T-modules, is necessarily
IL

an object of APC(T.) 	and represents naturally A fa s L .

In the same way, one has a natural identification - cf. (6.2.1.( ii)) -

RHom T (L,B) 	 B Et T Hom T (L,T)

for any complex 	 B 	 in APC(T) .

Rewriting this in terms of complete resolutions, it says that there

are functorial isomorphisms

IL
(7.2.3.)
	

CR S (X) 	 S L 	 CRT (X fi Sr L)

CR s (RHom (L,Y)) 	 Hom:r(L,CRT(Y))

for 	 X 	 in 	 D b
(S) , Y 	 in 	 D b (T) .

The reader should observe that the notation 	 "RHom T (L ' -)" 	 is some-



what misleading : There are no cohomology groups naturally attached to

RHom T (L,-) , in particular 	 Exti.(L,-) ,(which groups vanish anyway as
L is perfect over T ), does not represent its cohomology.

(As an example, remark that for S = T = L , the functor RHom 5 (S,-)

is naturally isomorphic - to the identity functor on D
b(

S) .)

Instead, consider the cohomology groups

IL
E' 	 Ext.j.(X Q s L,Y) 	 Ext(X,RHomT(L,Y))

They are obtained as the common abutment of the two spectral sequences

= Ext1-(Tor!j (X,L),Y) ===> E i+i

and

"E' i = Ext is (X,Exq(L,Y)) ===> E i+ i

which depend functorially on 	 X 	 in 	 D
b
(S

) 	
and 	 Y 	 fn 	 D b

(T) .

Furthermore, with respect to the natural transformations c' , these

spectral sequences "stabilize" (and extend) the corresponding ones for

the "ordinary" Ext's .

7.3. 	 Change of rings 

Let f : T 	 > S in the following be a ring homomorphism between

two rings which are both strongly Gorenstein.

IL
7.3.1. 	 Then certainly f* = - g T S transforms perfect complexes over
T 	 into such over S . But, almost by definition, it induces a functor

from D b (T) 	 into 
Db

(S) 	 - and not just D(S) - only if S considered

as a left T-module (by restriction of scalars along 	 f ) is of finite 

flat dimension. In this case, 	 f* passes trivially to the quotients and

the induced exact functor will be denoted f* : D
b
(T) 	 > D b (S) .

7.3.2. 	 The functor 	 f * , which "restricts the scalars", will transform
D b (S) 	 into 	 D

b
(T) 	 iff 	 f * S , the underlying (right) T-module of 	 S ,

is finitely generated over 	 T . As 	 S 	 generates 	 D perf (S) , (1.2.1.),

f * will preserve perfectness iff furthermore f * S is of finite projec-
tive dimension over T as a right module.



If in particular 	 S 	 is perfect, (that is: finitely generated and of 	 Sy

finite projective dimension), on both sides over T - with respect to

' 	 f - , there is a naturally induced pair of adjoint functors 	 (f* , f * )

between 	 D b (T) 	and	 D b (S) .
This is of course also a special case of (7.2.).

7.3.3. 	 The right adjoint 	 f' 	 of 	 f * , obtained as the derived functor

of Nom T (f * S ' -) , transforms modules of finite injective dimension into

(complexes isomorphic to) such modules, but does not necessarily preserve

finite generation, so that in general 	 D
b
(T) 	 is not carried into 	 D

b
(S) .

But, if f T 	 RHom T (f * S,T) 	 is perfect - as a complex of right mod-

ules over S - , one may apply (7.2.) to 	 S considered as a complex of

S-T-bimodules, which yields that f' 	 induces an exact functor

f t : D b (T) 	 > D
b (S) 

so that the pair 	 (f l , f * ) 	 is adjoint again.

7.3.4. 	 Summarizing, in the most favourable case where

- 	 f * S is perfect on both sides over T and

RHom T (f * S,T) 	 is perfect as a complex of right S-modules,

there is a trivially induced triple of adjoint functors 	 (f* , f * , f')

between D b (S) 	and D b (T) 

It is left to the reader to specialize (7.2.) accordingly to obtain

the corresponding "stabilized" change-of-rings spectral sequences.

Even under the foregoing strong hypotheses on f , there is still a

shortcoming: 	 Without further restrictions - like 	 S and T both being

commutative - , we ignore the behaviour of the deduced triple of adjoint

functors with respect to the dualities induced by dualizing modules for

S 	 or 	 T , (4.6.1.).

Hence it seems rather doubtful that the class of "bi-perfect" ring

homomorphisms constitutes already the appropriate class of morphisms to

turn (strongly) Gorenstein rings into a suitable category.

Furthermore, the following suggests that the above class of ring

homomorphisms might be too small :



7.4. 	 An extension of Tate-cohomology 
	 s.r-

To put the analogue of "Grothendieck-Serre-duality" for Tate-cohomo-

logy into its proper general context, it will be convenient first to ex-

tend the definition of the stabilized Ext-groups, allowing arbitrary 

modules as covariant argument.

This also constitutes the "right" generalization of the classical

case, in which the contravariant argument is the fixed augmentation

module, whereas the covariant argument remains unrestricted.

The main reason to treat Tate-cohomology here up to now as an essen-

tially "symmetric" theory was provided by its behaviour with respect to

the "trivial duality" of (6.2.5.(2)) , based on (4.6.1.), which seeming-

ly places contra- and co-variant argument on the same footing.

But, examining (6.2.5.(3)) or (6.4.) a little bit closer, it becomes

evident that in fact the contravariant argument is "special" :

Fixing, say, a maximal Cohen-Macaulay S-module M and considering

(6.4.1.(i)-(iii)) as a definition, one may interpret the family of func-

tors(Ext s (M,-)).to yield a (covariant) cohomoldgical 8-functor on
all S-modules - and not just on the finitely generated ones.

To formulate a more precise statement, we will use - and extend - the

description given in Remark (b) of (6.2.5.) .

Following tVer;II.1.1.] , let us recall that for an arbitrary ring

S and * 	 - or * 	 b ,

D*(Mod-S) 	 K"(Mod-S)/K'°(Mod-S)

denotes the derived category which is obtained from K'
-/b

(Mod-S) ,

the homotopy-category of all bounded-above complexes of "arbitrary"

right S-modules (with bounded cohomology) , by factoring out its thick

subcategory K' 93 (Mod-S) 	 of all acyclic complexes.

It is over such a category that the covariant argument will range.

Assuming again that S 	 is a ring which is strongly Gorenstein, we

have

Definition - Proposition 7.4.1.: 	 For any complexes 	 Y 	 in 	 D(Mod-S)

and X 	 in 	 D b (S) 	 set

RHom(X,Y) 	 Hom(CR(X),Y)

(i) 	 This defines a bi-functor into the (full) derived category of

abelian groups,

RHom(-,-) : D (M d-S) x 	 )°13 ---> D(Ab)



which is exact in both arguments.

ii) 	 The corresponding cohomology groups are still denoted

ExtS(X,Y)=def 01-1.bm S (CR(X),Y))

and they coincide naturally with the Tate-cohomology groups as

defined in (6.1.1.) if 	 Y 	 has in fact bounded and finitely gen-

erated cohomology only.

(iii) 	 For 	 Y 	 in 	 D b (Mod-S) 	 there is a convergent spectral sequence

E2'j = Ext i (M(X),14(Y)) ===> Ext + j(X,Y) 	 ,
--- j

whose 	 E 2 -terms can be calculated using (6.4.1.) .

Proof: 	As stated, the functor RHom(-,-)	 is a priori defined on

K'(Mod-S) x APC(S)" and is obviously exact in each argument.

Given that CR(-) 	 induces an equivalence between D b (S) 	and APC(S) 

by (5.6.) and (4.4.1.(1.)) , it remains only to be seen that as soon as

Y 	 is an acyclic, bounded above complex of (arbitrary right) S-modules,

the complex of groups 	 Hom(CR(X),Y)) 	 is also acyclic.

But this is well-known (and easily established) for any , not neces-

sarily acyclic, complex of projectives in the contravariant argument,

hence holds a fortiori in the special case under consideration.

That this definition indeed extends (6.1.1.), follows from Remark (b)

of (6.2.5.) .

The last assertion - which we will not use - is left as an exercise.

Remark: 	(a) This definition is certainly not symmetric in its arguments

in the sense that even if Y 	 is in 	 D
b
(Mod-S) , one cannot derive the

covariant argument first by replacing it with an injective resolution :

If 	 I 	 is a bounded-below complex of injective modules, 	 X 	 an arbi-

trary acyclic complex (for example a complete resolution), then the com-

plex 	 Hom(X,I) 	 is acyclic ! (In other terms, identifyi .ng 	 D b (Mod-S)

with 	 K
+

'
b
(Mod-S)/K + ' 0 (Mod-S) , the functor 	 RHom(-,-) 	 is not obtain-

able by passage to the quotient from a functor defined on e' b (Mod-S)

in its covariant argument.)

(b) 	 One may still extend the definition of the Yoneda-products to this

situation : The "original" stabilized Ext's act from the right, the

"ordinary" Ext's (on 	 D(Mod-S) ) act from the left. This is obvious.

A first reason to extend the definition of the Tate-cohomology groups

is that they behave (slightly) better with respect to ring homomorphisms :



Proposition 7.4.2.: 	 Let 	 f : T 	 >S beahomomorphism of rings

which are both strongly Gorenstein.

(i) If 	 S 	 is of finite flat dimension as a left T-module, there is

a natural isomorphism of (bi-)functors on r(Mod-S) x D b (T)" ,

RHom*S (f*- ' -) = RHom'(-,f * -)T 

(ii) if 	 S 	 is finitely generated and of finite projective dimension 

as a right T-module, there is a natural isomorphism of (bi-)func-

tors on D(Mod-T) x D b (S)" ,

RHom*T (f * -' -) = RHom'(-,f'-

The proof follows immediately from (7.3.) . The hypotheses just guarantee

that the underlined functors are defined.

7.5. 	 The Duality-Theorem 

Using the now extended definition of the Tate-coho.mology groups, we

can formulate the rather broad version of a

Duality-Theorem 7.5.1.: 	 Assume the following conditions to hold :

S 	 is a ring which is strongly Gorenstein, 	 T 	 is an arbitrary rin

M is a complex in D b (S")

N is a bounded-above complex of S-T-bimodules with only finitely 

many non-zero cohomology modules. (Hence it represents an object

in 	 D
b
(Mod-S

o
p 0 T) .)

W 	 is a complex of right T-modules, quasi-isomorphic to a finite'"'

complex of right injective T-modules.

Then there are two spectral sequences converging to the same limit E'

'E'j = Ext i (Extj" (M,N),W) 	 ===>
2 	

S

and

"q'j = Ext is -1 (M*,Ext.11(N,W)) ===>

(Here again M* 	 is short for RHom sop(M,S") 	 - cf. (6.2.3.

Proof: 	 Let W 	 > I 	 be an injective resolution of W over T

By assumption, I can - and will be - chosen to be a finite complex.

The common abutment of the two spectral sequences will be given by the

cohomology of the total complex associated to the double complex

C''' = Homi.(Homop(CR(M),N),I)



Remark that the terms of the double complex "C''' 	 are given by

"Cl'i 	 Hom 5
(
CR-i+1 (M*), R HomT( k+ j ))

k

As Hom+(N,I) is bounded (above and below) by the assumptions on N

and 	 I , the natural filtration on 	 CR(M*)[1] 	 induces a regular filtra-

tion on 	 "C''' , and the E 2 -terms of the associated convergent spectral
sequence are precisely the groups "E2' i of the theorem as follows from

(7.4.1.(ii)) , taking into account that the components of 	 CR(M*) 	 are

finitely generated projective S-modules.

This finishes the proof of (7.5.1.) .

Let us immediately record the simplest case in which both spectral

sequences of (7.5.1.) are degenerate, (and which generalizes for example

the corresponding well-known statement for integral group rings - see

[C-E;XII.6.5.])

Corollary 7.5.2.: 	Maintaining the assumptions and notations of the

foregoing theorem, assume furthermore that W 	 I is actually already

an injective T-modUle.

Then each of the two spectral sequences in (7.5.1.) collapses, the
j,

edge homomorphisms "E 2 .
0
 ---> E3 and E3 ---> '02 ' i are defined and

are isomorphisms of abelian groups for any integer j

More suggestively, let us denote by D(-) either contravariant func,

for on D(Mod-T) 	 or D(Mod-S 0 P2 T) 	 deduced from H ° m T (- ' I)

Then the composition of the aforementioned edge-homomorphisms yields

an isomorphism of abelian groups for any integer j

(7.5.3.)
	

Ext s 
1
(M*,D(K)) —=—> D(ExtS°iP (M,N))

and these isomorphisms are natural in
	

and N .

Before giving more sophisticated applications of the Duality Theorem,

we want to analyze a little bit closer its proof :



All isomorphisms occurring above in the identification of the total
!CI

&omplexes associated to C"' 	 respectively 	 "C''' 	 are completely nat-

ural - except for the "interchange-isomorphism" which presupposes the

choice of a "commutation-factor" and introduces signs.

These signs appear, if one studies the behaviour of this duality with

respect to Yoneda-products.

In the following discussion, assume 	 N 	 and 	 W 	 in (7.5.1.) to be

fixed and consider the variation of the spectral sequences in M .

If L is another object in D b (S") , the Yoneda-product from the

right with Exq(L*,M*) maps "E2"1 (M) = Ext is -1 (M*,Exq(N,W)) 	 into

	

E 2 	(L) = Ext i+k-1 (L* Exti(N W)) , as well as 	 E*(M) 	 into 	 P -1-k (L),

	

2 	 S 	 ' 	 T 	 '

- consider these groups as the cohomology of the. total complexes asso-

ciated to 	 "C'''(M) 	 or 	 "C'''(L) 	 respectively.

This action is natural in the sense that it commutes with the respec-

tive differentials of the (doubly primed) spectral sequences and is com-

patible with the induced filtrations on the limit terms. In other words,

any given element of Ext(L*,M*) defines in a natural way a morphism

of spectral sequences of bi-degree 	 (k,O) .

Dually, 	 Ext ks op(M,L) 	 acts from the right on 	 ExtSop(L,N) , and ap-

plying 	 Exq(-,W) 	 to it, it furnishes a natural left action of this

group which maps 	 'E l 'i(M) = Ekt i (Ext j  (M,N),W) 	 into 	 'E'i k (L) =
T --- s op

Chasing through the identifications in the proof above and taking

into account (7.1.2.), the connection between these two actions can be

expressed as folloms

Corollary 7.5.2.: 	With the foregoing notations, if a	 is a class

in Ext s op(M,L) , and a* its transpose in Ext s (L*,M*) , there is the

following diagram of morphisms of spectral sequences, commutative in an

obvious sense

= Ext l (Ext j-k (L,N),W) .
S"

t - j -k
S op

Ext i (Exti
o

S

(-1) 3k Ext"-ir (- 0 a,W)

Ext (E

M, ),w) ====> (M) 	 <==== 	 Ext is -1

-.a*

( L,N),W) ===> 	 ) === Exti+k-1(L*,Extj(N,W))



More precisely, its terms are given by 	 Go

c i, j = Hom1-(Hom'1 (CR(M),N),I) = Hom T ( 	 Homsop(CRk(M),Nk-3),I1)
S uPk

Now, as 	 I 	 is supposed to be finite, both spectral sequences asso-

ciated to this double complex are biregular, [EGA III.0.11.3.3.(ii)],

and the 	 'E 2 -te rms of the spectral sequence associated to the first fil-
tration of this double complex are the groups 	 'q' 3 of the theorem as
I 	 is assumed to be an injective resolution of W .

Here we did not need that N has bounded cohomology. This condition

only intervenes in dealing with the second spectral sequence.

For this, remark first that the cohomology of (the total complex as-

sociated to) 	 C''' 	 does not change if one replaces 	 N 	 by a quasi-iso-

morphic complex in 	 K'(Mod-S 0 PQ T) : that Hom(CR(M),-) 	 preserves
such quasi-isomorphisms was explained above, (7.4.1.), and for 	 Hom'(-,I)

it is obvious. Hence we may and will assume that N 	 is indeed a finite

complex of 	 S-T-bimodules. 	 . .
Then, in the foregoing explicit description of C 1 ' 3 	the product may

be replaced by a (finite) direct sum so that the natural morphism of

double complexes

N @ s op Homiop(CR(M),S ° P) 	 > Homop(CR(M),N)

is in fact an isomorphism, compatible with the right T-module structures

on either side.

Composing this with the "interchange-isomorphism" of double complexes'

[ALG X.71] - :

Homop(CR(M),S ° P) Q s N 	 > N @ s op Homop(CR(M),S ° P) 	 ,

and passing to the associated total complexes, one identifies the double

complex 	 C'''	 with the double complex

'C''' = HomT(CR(M)* Q s N,I)

Here, as before, 	 -* denotes the dual - this time with respect to OP .

Now apply finally to 	 'C''' 	 term by term the adjunction-isomorphism

which induces an isomorphism of the total complexes associated

HomT(CR(M)* Q s N,I) = Hom(CR(M)*,HomT(N,I))

and observe that 	 CR(M)* 	 is canonically isomorphic to 	 CR(M*)[1] 	 by

(4.6.1.) 	 .

Putting all this together, it follows that the total complexes associ-

ated to 	 C''' 	 or

"C''' = Hom(CR(M*)[1],HomT(N,I))

are naturally isomorphic.



7.6. 	 To prepare for another application of the Duality Theorem, assume (./

-still with the notations and hypotheses of (7.5.1.) - that N is in

fact a complex of S-bimodules, whose right T-module structure is given

by restricting the scalars on the right with respect to a homomorphism

of rings f : T S

Recall that Hom T (S,-) , considered as the right adjoint of the for
getful functor 	 f * , carries injective T-modules into injective modules
over 	 S . In particular, for a complex 	 W 	 of T-modules as in (7.5.1.),

the complex f'W 	 is quasi-isomorphic to a finite complex of injective

S-modules.

Hence, using the adjunction 	 (f * , f') , the spectral sequences in
(7.5.1.) become

(7.6.1.)

'Ei'j 	 Exti,(Ext j  (M,N),f 1 W) 	 ===> E i+i
s op 	 - 	 -

"E i2 'j = EXt is -1 (M*,Exq( ,f I W)) ===> E i+i

(which, equivalently, are the spectral sequences of (7.5.1.) for 	 T = S

and 	 f'W 	 instead of W ).

Now we will be interested in the case where W can be chosen to be a

dualizing module for T ,(and T 	 strongly Gorenstein), such that 	 f'W

is still at least a "dualizing complex" for S - with the purpose that

then for N a MCM S-module on the right, the doubly primed spectral se-

quence above degenerates.

We ignore the general situation in which this can be done, but let us

exhibit the followingA'particular one :

Definition 7.6.2.: 	 In analogy to the commutative case, let us call a

ring homomorphism f : T 	 S a (central) duality morphism of finite 

type iff

(i) S 	 is strongly Gorenstein and T 	 is a commutative Gorenstein ring 

(of finite Krull dimension),

(ii) The morphism f turns 	 S into a central T-algebra, such that

the underlying T-module f * S is finitely generated and of finite 
projective dimension over T , say d = projdim T f * S ,

(iii) 	 f * (-)[-d] 	 detects maximal Cohen-Macaulay S-modules in the sense
that M in mod-S is MCM iff

+d
Ext T (f *M[-d],T) = Ext T 	(f *M,T) = 0 	 for 	 i 	 0



	

Keeping closely to the usual proof in the commutative case, we will 	 62,

establish, as claimed, that for such duality morphisms

f' transforms dualizing T-modules into dualizing S-modules 

in the following more precise sense

	

Proposition 7.6.3.: 	 Assume that 	 f : T 	 > S 	 satisfies (7.6.2.) .

Then the following holds :

(i) The cohomology of f'T is concentrated in degree d and

W
S/T 

=
def H

d
(f1T)

is a dualizing module for S

(ii) In particular, 	 w s/T = f i nd] 	 in 	 D b (S) 	 and 	 f ! T 	 is a perfect

complex of S-modules.

(iii) 	 One has 	 d = dim T - vdim S .

Proof: 	 First, take 	 M = S 	 in condition, (iii), use that S 	 is MCM

and that

Exq(f*S[-d],T) = Ext is +d (S,f I T) = H il-d (f 1 T)

This shows that the cohomology of f'T is indeed concentrated in degree
1 	1d , or, equivalently, that one has w s/T = H d 	 -

(f'T) 	 f'T[d] in D(Mod-S).

Next, observe that f T is'in a natural way (represented by) a com-

plex of S-bimodules (with bounded cohomology) and that forgetting the

hence still existing left S-module structure on RHom 5 (N,f 1
T) 	 for any

given N 	 in D(Mod-S) 	 yields a natural isomorphism of complexes of

T-modules

f*RHoms(N,f'T) = RHom T (f * N,T)

in 	 D(Mod-T) .

(For obvious reasons, we refrain from distinguishing "left" and "right"

forgetful functor.)

This rather pedantic remark shows in particular that w s/T is in a
natural way a S-bimodule and it remains to be seen that it is indeed

(projective on both sides) and invertible. For this, we prove :

(a) 	 The (right) S-module w s/T is finitely generated as already the
T-module

f *w S/T = H
d
(f*fIT) = H

d
(RHom T (f * S,T))

is finitely generated by condition (ii) of (7.6.2.)



(b)
wS/T 	

is of finite projective dimension as a (right) S-module :

For any S-module M , one has by the above already that

Ext is (M,ws/T ) 	 Extis(M,f1T[d]) 	 Ext.l.(f*M[-d],T)

But by condition (iii) of (7.6.2.) , these groups vanish for 	 i 	 0

if(f) 	 M 	 is MCM and (5.1.1.(ii)) applies.

(c) ws/T is MCM over S 

This is essentially the (local) duality theorem for commutative 

Gorenstein rings. Namely, by the foregoing and (4.6.1.), one has

RHomT (f *ws/T [-d],T) 	 RHomT(f*f'T,T)

RHom T (RHom T (f * S,T),T)

f * S[0]

whencewS/T 	
satisfies the condition in (7.6.2.(i i))

Now apply (5.1.1.(iv)) to conclude from (a) - (c) that WS/T is finitely 

generated projective as a right S-module (and by symmetry then also as

a left S-module). This already proves (ii)

To get (i) completely, it remains still to verify that w S/T 	 is an

invertible S-bimodule. But in view of the above and by symmetry again,

this reduces to the condition that the natural ring homomorphism

S 	 Homs( w S/1' wS/T )

associating to an element of S the left multiplication with it, is an

isomorphism of S-bimodules.

It is evidently enough, to prove instead that the underlying T-linear

map is bijective. This is essentially the chain of identifications in

(c) above, read backwards,and taking into account that

RHom T (f,fT,T) = f * RHom s (f'T,f'T)

= f*HOMS(W S /T,WS/T) [ 0]

in D(Mod-T) , w s/T = f'T[d] 	 being projective over

This finishes the proof of (i)

Finally, we show that 	 (i) ==> (iii)

As wS/T is finitely generated projective over S , one has necessarily

injdim sw s/T 	vdim S	
•

As T is assumed to be Gorenstein, one has 	 injdim T T = dim T . Then, if

I denotes an injective resolution of T as a module over itself, the

complex 	 Hom T (S,I) 	 represents 	 f 1 1. 	in	 D b
(Mod-T) .

Choosing 	 I 	 of minimal length, this means in view of (i) that w s/T

H
d
(f 1 T) 	 admits an injective resolution of length at most dim T - d ,



whence

vdim S 	 injdim s ws/T 	dim T - d

On the other hand,

Ext1.(f,(-),T) 	 Extis-d(-,f1T[d]) 	 Extis-d(-,ws/T)

so that necessarily

injdim sws/T 	injdim TT - d = dim T - d

which finishes the proof of the proposition.

Remarks: (a) 	 The notation wS/T for the "relative dualizing module"
follows the general (mis-)usage in the commutative case, w f would be
more accurate.

(b) The proposition implies that f * s/T is a T-module of finite pro-
jective dimension, equal to d . More precisely, choosing a projective

resolution P ---> f *S of f * S over T of (minimal) length d , the
object f * f*T[d] in D(Mod-T) is represented by Homi(P,T)[d] , which

is then a projective resolution of f *w s/T .
This yields the existence of a "projection formula" (see also [K1]):

If N 	 is any complex of T-modules in D(Mod-T) , then
IL 	 i 	 IL

f * f*(N) 	 N fit T f * f'T 	 (N fi T f *w s/T )[-d] 	 in 	 r(Mod-T) ,

and this object is represented by the complex

f f'(N) = Homi-(P,N) 	 N fi T Homi.(P,T)

In particular, if wT is any dualizing module for T , then

W S =def fw T [d]

represents a dualizing module for S , satisfying

f *wS = wT Q T f *w S/T

(c) As for examples of such duality morphisms, tighten up (7.6.2.) by

imposing - in addition to (i) and (ii) - either of the,following :

(iii f ) 	 S 	 is a (central, finite) flat 	 T-algebra with respect to 	 f ,

(in which case f S is in fact finitely generated projective

over T , whence d 	 0 ) ,

or

(iii c ) 	 is also commutative.

It is then well-known, that the conditions (i) and (ii) of (7.6.2.)

together with either (iii f ) or (iii c ) imply the remaining condition.



Having sorted out the above class of "duality morphisms", we need

furthermore to recall the following facts from local duality theory for

commutative Gorenstein rings.

Let 	 (R,m,k) 	 be a commutative local Gorenstein ring of Krull dimen-

sion r , m denoting the unique maximal ideal of R , k 	 R/m the res-

idue class field.

If i : k ---> E denotes an injective envelope of k over R , there

exists an injective resolution of R as a module over itself which is of

(minimal) length r and exhibits E as its last term.

This defines a canonical class y 	 in 	 Ext R (E,R) 	 which has the fol-

lowing property

If A is any R-module of finite length, the (Yoneda-)product (from

the left) with y provides an isomorphism

Yo - : Hom R (A,E) —1—> Exq(A,R)

and for all 	 i A r one has 	 Ext(A,R) 	 0 . In other words, the product

with y yields an isomorphism in D(Mod-S) 	 between'the single R-module .

Hom R (A,E) 	 and the complex 	 RHom R (A,R)[r] .

In particular, as 	 Hom R (k,E) 	 is isomorphic to 	 k 	 itself, it follows

by induction on the length of A that 	 A , Hom R (A,E) 	 and 	 Ext YR. (A,R)

are all R-modules of the same finite length.

Composing the inverse of the isomorphism above with the evaluation-map

ev A : Hom R (A,E) Q R A ---> E

one obtains (equivalently) a non-degenerate R-bilinear pairing

< , > A = evA 0 ([ y .-] -I Q R id A ) : Ext R (A,R) Q R A ---> E 	 ,

(from which y can be recovered as <yx,a> 	 x(a) 	 for all 	 a 	 in A ,

x 	 in 	 Nom R (A,E) ).

The foregoing takes on a slightly simpler form in case that R con-

tains a copy of its residue class field, hence if it is in fact an aug-

mented k-algebra. Then E can be chosen to be - and is always isomor-

phic to - the R-module 	 Hom k (R,k) , so that 	 i : k 	 > E equals the

k-dual of the projection R ---> k

It follows that Hom R (A,E) = Hom k (A,k) • as R-modules and that the

bilinear pairing 	 < , > A takes its values . already in 	 k

These statements extend trivially to the affine case in the following

sense.

Assume given again an arbitrary commutative Gorenstein ring T

finite Krull dimension 	 t .



If S 	 is some finite subset of maxspec(T) , the set of all maximal

-ideals of T , the module 	 T/I(S) 	 is semi-simple, namely by definition

isomorphic to the product of all the residue class fields 	 k(m) = T/m ,

m ranging over all the maximal ideals in S .

An injective envelope of this module, denoted E s , is then the prod-
uct of injective envelopes of the fields - and T-modules - 	 k(m) .

If now A is a T-module of finite length, it is supported at finitely

many maximal primes, and the T-modules Hom T (A,E S ) , obtained from finite
subsets of maxspec(T) which contain these finitely many maximal ideals,

are all isomorphic.

Accordingly, we will denote - ambiguously - any of these modules'by

A' 	 .

The local theory then yields for. any dualizing T-module
	

the ex-

istence of a natural T-linear isomorphism

(7.6.4.) 	 A' —=—> Ext(A,w T )

and the T-mcdules A , A' 	 and Ext T CA,w T 	are all Of the same finite

length.

7.7. 	 Now we can finally formulate the application of the Duality The

orem (7.5.1.) which seems to be most useful.

For this, assume given

f : T ---> S a duality morphism of finite type as in (7.6.2.) , of

"virtual codimension" 	 d = projdim T f * S ,

w T a dualizing T-module, w s = f'w T [d] 	 the associated dualizing
module over S as in Remark (b) above,

M a complex of left S-modules in 	 D b (S") 	 as in (7.5.1.)

N a S-bimodule which is maximal Cohen-Macaulay as either left or

right S-module, considered as a T-module by restriction of scalars

along 	 f .

Then, summarizing the foregoing discussion and substituting these

data into (7.5.1.) , we get

Proposition 7.7.1.:

(1) 	 Under the assumptions just made, the spectral sequence 	 "E l '
j

for M , N and W = w T collapses at the 	 E 2 -level, leaving
single spectral sequence



Ei'i 	 Exti(Ext-
2 	 T 	

S P
(M,N),W T ) 	 ===> Ext is j -d-1 (M*,Hom s (N,w s ))

Applying to the 	 E 2 -terms of this spectral sequence the trivial

duality induced by 	 Hom s op(-,S ° P) - (4.6.1.) and (6.2.5.(2)) -
it becomes

*q'j 	 Ext.1.(Ext-sj(N*,M*),wT) ===> Ext is + j -d-1 (M*,Hom (N,w ))

Proof: 	 (i) Just observe that under the assumptions made,

	

Exq(f * N,w T ) = Ext is (N,f 1 w T ) 	 by definition of 	 (f * , f')

i-
Ext

ds 	(N,w s ) 	 by definition of co s 	and

(7.6.3.), Remark (7.6.(b)),

0 	 for i 	 d , N being MCM as a right S-

. 	 module .

(ii) 	 As 	 N	 is by assumption also MCM as a left S-module, (6.2.5.(3))

applies. (Remark that N finitely generated would be'enough - at the

expense of interpreting 	 N* again as 	 RHom s op(N,S ° P) .)

In view of the local duality theory for commutative rings which we

just recalled, the spectral sequences of the proposition degenerate if

the Tate-cohomology groups involved are of finite length.

For convenience (only), we will replace in the following M by M*

so that M will henceforth represent a complex of right S-modules in

D b (S) .
Furthermore, if N 	 is any S-bimodule., let us denote :

*N 	 Hom op(N,S ° P) 	 , the left S-dual of
and

N* 	 Hom (N,S) 	 , the right S-dual of N

Both these modules are naturally S-bimodules again, but only their under-

lying right module structure will be used in the sequel.

Also, the following terminology will shorten formulations :

Definition 7.7.2.: 	 Let f : T ---> S be a homomorphism of rings

satisfying (7.6.2.) .

(i) 	 Two complexes of S-modules, 	 Y 	 in 	 D(Mod-S) 	 and X 	 in 	 D b (S) ,
are (essentially) stably transversal (with respect to 	 f ), iff

for any integer 	 j , the T-module 	 Exti(X,Y) 	 is of finite length.



The ring homomorphism f will be called stably regular outside 
	 68

S for a subset S of Spec(T) 	 iff for all complexes X and Y

as above, the groups 	 Ext(X,Y) 	 are supported on S .

	

Accordingly, 	 f 	 is stably regular at a prime p 	 in 	 Spec(T )

iff the localizations 	 Ext*S (X,Y) p
	vanish for all	 X 	 and 	 Y .

Definition 7.7.3.: 	 Let 	 S 	 be a ring which is strongly Gorenstein.

Then 	 S has only isolated singularities if there exists a homomorphism

f : T ---> S which satisfies (7.6.2.) and is stably regular outside a

finite set of maximal ideals of T

In this case, 	 E f will represent any injective envelope over T of

T/I(S) , S some finite subset of maxspec(T) 	 off which 	 f is stably

regular.

Remark: 	 The terminology should be justified by the following elementary

observation (cf. also [Aus 2])

If f : T ---> S 	 is a homomorphism as in (7.6.2.), let p be a prime

ideal in T . Then 	 S 	 S Q T T
p 

is a flat S-module (on both sides) and

localization in 	 p defines trivially an exact functor from D(S) 	 into

D(S p ) . It is left as an exercise to establish that with 	 S 	 also 	 S 	 is

strongly Gorenstein and that Tate-cohomology localizes :

	

Ext(X,Y) Q T T p 	ExtS (X,,Y p ) .

P r

In particular, 	 f 	 is stably regular at p 	 if 	 S P
	is a ring of fi-

nite global dimension.

If S is furthermore commutative, also the converse holds : Let q

be a prime in 	 S 	 lying over p in 	 T . If S q is not regular, consider

the cyclic S-module 	 S/q whose localization at q is the residue class

field 	 k(q) 	 of 	 S q . Localizing subsequently in 	 p and 	 q yields maps

Hom s (S/q,S/q) ---> Hom 5 (S/q,S/q)^ T T p 	 > Hom s (k(q),k(q))q 

under which the identity on 	 S/q is mapped onto the identity on 	 k(q) .

As k(q) 	 is not of finite projective dimension, it represents not a

zero-object in 	 mod-S q by (2.1.) . Consequently, the localization of

Hom s (S/q,S/q) 	 in p is not zero and hence f is not stably regular at
this prime of T .

It seems worth-while to resume this as a separate



Lemma 7.7.4.: 	Let S be a commutative Gorenstein ring of finite

16-ull dimension. Then fora prime p in 	 Spec(S) 	 the groups 	 Ext(X,Y) p

' 	 are zero for all (complexes of) S-modules 	 Y 	 (in 	 0(Mod-S) ) and 	 X

(in 	 D b (S) ) 	 if and only if 	 S 	 is a regular local ring.

Coming back to the promised application of the Duality Theorem, let

us recall that 	 t = dim T 	 and 	 s = vdim S = t - d 	 by (7.6.3.(iii))

Then we have

Theorem 7.7.5. (The Duality Theorem for isolated singularities)
Assume again given a homomorphism of rings f 	 T ---> S which satisfies

(7.6.2.), w T and 	 WS dualizing modules over T and S respectively
as in (7.7.1.), 	 M 	 a complex of S-modules in 	 D

b
(S) 	 and 	 N 	 a S-bimod-

ule which is MCM on both sides.

(i) 	 If M and the underlying right S-module of N are stably trans-

versal with respect to f , for any integer j , there exists a

natural isomorphism of T-modules

j 	• Ext - j
IM,N • 	 S

*N,M)' ==—> Exq l-s-1 (M,w s S N*)

(ii) Let 	 L be a second complex in 	 D b (S) , also stably transversal to
the underlying right S-module of N . If then a 	 is a class in

Ext s (M,L) , one has a commutative diagram of T-linear maps

Extj(*N ' L)' 	
YL,N 

	> Ext 3+s-1 	w Q N*)
' S S

)

k+j

Extk-j(*N,M)' 	
M,N 

 > Ext1;+j+s-1(M'w S SQ N*)

where the vertical maps are given by the Yoneda-products with a .

(iii) Assume that 	 f 	 is stably regular outside a finite set of maximal

ideals of T - so that in particular S has only isolated singu
.

larities. Then the inverse of yA ,N yields a non-degenerate
T-bilinear pairing

	

M<
	 N 	 S

	

< 	 >j • Ext j+s-1 (M,wSS N*) Q T Ext - j(*N ' M) ---> E fS 

k
associative in the sense that for any class a in 	 Ext

SS

 (M,L) 	 as
b

above, x in Extj 	"
+s-1,1 "w_ S 0

S v.
)* 	 and y 	 in 	 Ext S ' - J(*N,M)
' 

k
M <x ' a a › N

+j
 = L <x ' a °Y > N



(iv) 	 Restricting (iii) to the special case 	 j	 0 	 and 	 M 	 *N , it

follows for any S-bimodule N , which is MCM on both sides, the

existence of a T-linear trace-map :

N = *N < 	 : Ext ss -1 (*N,w s fi s N*) 	 > E f

such that in general the pairing in (iii) can be obtained by com-

posing this trace with the Yoneda-product :

M<x'N
y>j 	

TN 
(X0y)

for all 	 x 	 in 	 Ext +s-1

	

S 	 (M'wS 5N*) 	
and y 	 in 	 E t - j(*N M) 	 .

The proof consists just of a reformulation of (7.7.1.) in these special
circumstances.

Consider the spectral sequence 	 *q'j ===> E i+ j 	 of (7.7.1.(ii)) for

the arguments M* 	 (instead of M ) , N and w T , w s as stated. Then

*E i2 J
'j 	 Ext.1(Ext-cj(*N'M) w T 	,) 	 as 	 M = M** 	 in 	 D b (S) .

M being stably transversal to *N with respect to f by assump

tion, the local duality theory shows that *E.1,'j 	 0 	 for 	 i 	 t 	 and
tthat 	 Ext s j (*N,M) 1 	is naturally isomorphic to	 *E 2 j .

Consequently, the spectral sequence degenerates at the E 2 -level, the
t 	 t

edge homomorphisms e2 	 •
j 	 *E2'3 	Et+j are defined and yield isomor --

phisms of T-modules

Ext - j
+ 	 e' i 	+ ;

*NA' ---> *E"" 	 > E'
2

Furthermore, 	 N being MCM as.a right S-module, there is a natural

isomorphism - of S-bimodules even - from w s fi s N* into Hom (N,w s ) ,

whose inverse induces an isomorphism of left S-modules

E t+3 	Extt+j- d-1 (M,Hom S (N ' wS 	 S
)) 	 > Ext +s-1 (M ' wSS N*)

in view of s = t - d . Composing these isomorphisms yields the desired

maps 	 y r,4,N 	and proves (i) .

Assertion (ii) then follows from (7.5.2.) by applying the duality

Hom s op(-,S b b) 	 to the contravariant arguments of Ei'' , taking into

account the behaviour of Yoneda-products with respect to this duality,

(7.1.2.)

Given (i) and (ii), (iii) and (iv) are well-known and easily estab-

lished consequences.



Remark: 	 The trace-maps exhibited in (iv) should be of paramount impor- 	 1-1

tance - and hard to come by.

This will be supported by ( 	 ) which indicates furthermore that

an "explicit" determination of these traces may require a "calculus of

residues" as in algebraic geometry.

7.8. 	 Noether Different and Support of Tate-Cohomology 

Before treating concrete examples, we will give another result on the

"universal" support of Tate-cohomology, supplementing in the commutative

case Lemma (7.7.4.). Infoi-mally stated, the result is :

Assume that f : T ---> S is a ring homomorphism from a commutative

ring of finite Krull dimension and of finite global dimension into the

centre of a ring S which is strongly Gorenstein such that f * S , the
underlying T-module of S , is finitely generated projective. Then :

The Noether different of f annihilates all the Tate-cohomology 

groups 	 Ext(-,-) 	 over 	 S .

To make this statement precise, we first need to define the Noether

different in the general non-commutative setting, naturally extending

the, usual notion in the commutative case as introduced by E. Noether and

investigated more closely by R. Berger, [Be]. Such extensions have been.

studied by several authors, see [Fos] for further references.

To begin with, assume given an arbitrary commutative ring A and a

ring homomorphism g : A ---> B , B an associative ring with unit as

usual, such that B becomes a (central) A-algebra with respect to g .

Then, recall that B A = B fi A B
op 	

is the enveloping algebra of g

or, less precisely of B over A .

Deviating from our general convention, we will only deal with left

modules over enveloping algebras.

In particular, 	 B becomes a left B A -module in the usual way by
x : BA^ A B —> B 	 x(b'ilb"filb) = b'bb"

The deduced map

4 : BA 	 > B 	 , 	 11(b'Bb") = X(b'Qb"t31) = b'b"

is then a homomorphism of left 	 A -modules, also called the natural
left augmentation of BA .



The kernel of u 	 is denoted I B/A and accordingly called the (left) R

augmentation ideal of BA .

It represents naturally the two-sided A-linear derivations on 	 B ,

[ALG 111.132], and is generated as a left 	 BA-ideal - or even as a left

B-module - by the images of the universal derivation d B/A : B
---> / B/A

of B over A , given by d B/A (b) = bg1 - lgb .

It follows that the right annihilator 	 ann(I B/A ) B

into the centre Z(B) 	 of B :

An element w in B A 	the left ideal
A 	 B/ A from the

right if and only if d B/A (b).w = 0 	 for all 	 b 	 in 	 B . Hence

0 = 4 (d B/ A (b )w ) 	b .4(w) - 11 (w .b

for all 	 b 	 as required.

Definition 7.8.1
t
.:

)
 The (classical) Noether different 0. 14 (g) 	 of the

A-algebra g : A 	 > B is that ideal of the centre Z(B) 	 of B which

is given by

= u(ann(I B/A ) 21)

For our purposes', it is more convenient to interpret the Noether dif-

ferent in homological terms

Z(B) 	 may be identified with Hom m e(B,B) , the ring of B-bimodule
'A

endomorphisms of B , by associating to such an endomorphism 0 the

element e(1) .
ann(I a , A ) B e 	 can be identified with Hom B e(B,B eA ) 	 by associating to

A 	 A
a B-bimodule homomorphism 0 from B into BA again the element

0(1) . Conversely, an element w 	 in the right annihilator of 	 I B/A

defines the left BA-homomorphism e(b) = (bgl)w = (1gb)w

Z(B) = Hom a e(B,B) 	 acts naturally from the right on 	 Hom il e(B,-)	 by
'A 	 'A

the "Yoneda-product" so that the induced map Hom Be(B01) 	 is natu-

rally 	 Z(B)-linear on the right.

Furthermore, evaluation in the unit of B 	 identifies this map with

the restriction of p to 	 ann(I B/A .),0 	 :
'A

t)This definition is E. Noether's original one in the commutative case, ex-
tended by M. Auslander- 0. Goldman to the non-commutative case. The fol-
lowing homological description seems due to D.G. Higman; see once again
[Be] and [Fos] .

is mapped by 



Horn e(B ' p 	 : Hom pt e(B,B eA ) 	 > Hom B e(B,B)B A 'A A

	

: ann(I B/A ) a e 	 > Z(B)
ann(IB/A)BeA 	

'A

From this description of the Noether different one has immediately

Proposition 7.8.2.: 	 Let g : A ---> B be an A-algebra as above.

Then 41 (g) = Z(B) 	 if and only if B is projective as a left module

over the enveloping algebra BA .

If B is commutative and g * B , the underlying A-module of B , is

projective, then 4(g) = B holds if and only if g : A ---> B is an

êtale A-algebra.

0
Proof: 	 By the above, 40g) 	 Z(B) 	 iff Hom B e(B,u) 	 is surjective.

	

A 	 e .
This happens iff the short exact sequence of left B A -modules

0 ---> I B/A 	 > B
eA  u 

 > B 	 > 0

splits, hence if and only if B 	 is 	 BA-projective as a left module.

The characterization of a (commutative) finite and étale algebra by 	 •

its Noether different then just restates [EGA IV;18.3.1.(ii)]

The significance of Noether differents for stable homological algebra

- hence in particular for Tate-cohomology - is due to the following,

elementary observation which "derives" in a straightforward manner the

treatment of bimodules as given by H. Bass in [Ba;II.2] :

Let X be a bounded above complex of B-bimodules whose underlying

complex of A-bimodules is "symmetric" in the sense that its left and

right module structures over the commutative ring A are the "same".

Then X corresponds bi-uniquely to a complex of left BA-modules

and such complexes represent hence "all" the objects of the derived cat-

egory 	 D(B eA -Mod) 	 as defined in (7.4.).
On the other hand, taking tensor-products with respect to the under-

lying left B-module structure of X and remembering the right B-module

structure of X afterwards, defines an exact functor

IL
h(-,X) = - fi B X : D (Mod-B) ---> 0-(Mod-B)



This functor commutes canonically with translation on 	 D(Mod-B) 	 by 	 'T(4

[ALG X.61;Rem.(2)] and a quasi-isomorphism of complexes of B-bimodules

yields a natural equivalence of functors.

Leaving the pain of defining properly the "category of additive and

exact endo-functors on D(Mod-B)" to the reader, 	 h(-,-) 	 can hence be

interpreted as a functor from D(B eA -Mod) 	 into that category.

Look at the following examples

If X = B , considered as a (complex of) left 	 BA-module(s) ,

h(-,B) 	 is isomorphic to the identity-functor on 	 D(Mod-B) .

If X = B e
A 	 Aconsidered as a (complex of) left B -module(s), the

associativity formula for the (derived) tensor-product
IL 	 IL 	 IL

- B (B @ A B") 	 - @ A B"

shows that

h(-,BA) = g*g * : D(Mod-B) 	 > D(Mod-A) ---> D(Mod-B) 	 ,

as soon as the natural "augmentation" onto the 0 th -homology :

IL 	 1 	 eB @ A B"> 0(B @A B") = B @A B OD = B A

is a quasi-isomorphism, which is equivalent to

1 -H -1 (B gi A 	OP) = Tor'(B,B) = 0 	 for all 	 i 	 0

(Remark that B = B" as A-modules, 	 g(A) 	 being central in 	 B .)

The morphism u of left B A -modules yields a morphism of functors

h(-01) , and if Tor.(B,B) = 0 	 for	 i 	 0 , it becomes identified

with the adjunction co-unit g*g * 6 	 > id .

In case that B is projective as an A-module, one may forget about

deriving tensor-products and the identification just'states the ob-

vious :

x(b'b") = ( l x @p)(x@ B b'il A b") =(1041)(xbA B 1@ A b")

= c(X)(xb'il A b") = (xb')b"

for all elements 	 x	 in 	 X 	 and 	 b',b" 	 in 	 B

Finally, if z 	 is an element of the centre of B , considered as a

B-bimodule endomorphism of B as above, 	 h(-,z) 	 yields a natural

transformation of the identity-functor on D (Mod-B) - and, general-

izing [Ba;II.2.1.Prop.], one may prove that all such transformations

are obtained this way.



7-57
Consequently, if z is already an element of the Noether different

0
N (g) , obtained as pow for some w : B ---> B

e
A , we may interpret

these data as natural transformations of functors

h(-,z) 	 h(-,B) 	
)h(- w 
' > h( ,BA) 	 b(- ' 1'1) > h(-,B): 

1,= 	121
4,4p(z) : id

D-(Mod-B) 
	 > g*g* 	 6 

> I 'D - (Mod-B)

where 	 p(z) 	 denotes "right multiplication with 	 z " , regarded as a

natural transformation of the identity-functor on D(Mod-B) .

Hence, if :

- 	 B 	 is noetherian and g * B , the underlying A-module, is finitely

generated projective (which ensures in particular Tor(B,B) = 0

for 	 i 	 0 ),

A 	 is a ring of finite global dimension, and

X 	 is a complex in 	 D b (B) , - see (0.2.) for notation -

then :

multiplication with an element 	 z 	 in the Noether different 0. N0 (g)

from the right on X factors through a perfect complex, namely

g*g * X

Specializing to'the case of Gorenstein rings, this yields the result

announced :

Theorem 	 Let f : T 	 > S be a homomorphism of rings where

- 	 S 	 is strongly Gorenstein and 	 isis finitely generated projective,

T 	 is a commutative ring of finite Krull dimension such that all lo-

calizations 	 T
P
 , p 	 a prime in 	 Spec(T) , are regular local rings,

- 	 and, as usual, 	 f(T) 	 is contained in the centre 	 Z(S) 	 of 	 S .

Then the natural action of 	 Z(S), on 	 Ext'(X,Y) 	 annihilates the Noether

different 0.
0
 (f) 	 for all 	 Y 	 in 	 D (Mod-S) 	 and 	 X 	 in 	 D

b
(S)

For the proof, simply remark that the hypotheses on T guarantee that

its global dimension is finite.

Remark: 	 Classically, in the commutative case, one rather studies the

rdhler or Dedekind different, denoted here 	 . 1( (-) 	 or 	 resp. .

The relations for a commutative ring S and a morphism f : T

as in the Theorem are the following :

	> S



(Tor the definitions and properties of A 	 (f)-K/Ds 	 the reader may consult

[Be] or [H-K] and the literature cited there.)

(i) If 	 I s/T 	is finitely generated as a left	 Or -ideal, the Noether

different 41 (f) 	 contains the Kahler different 0 1( (f) , [Be;II.

Satz 4] .

(ii) If 	 I
S/T /(IS/T )

2 	
is finitely generated as a S-module, say by 	 m

elements, then the Kahler different contains the m-th power of the

Noether different, [Be;II.Satz 3] .

(iii) If 	 f 	 is generically unramified in the sense that 	 for 	 K 	 the

-field of fractions of T the 	 fT
	
K

is separable, then Noether and Dedekind different of f coincide,

[Be;III.Satz 7] .

If f is a complete intersection morphism in the sense that in

addition to 	 f being finite and flat all (geometric) fibres are

- necessarily artinian - complete intersection algebras, then all

three differents are the same; E. Kunz, [Ku] .

The properties (i) - (iii) do not depend on 	 S being Gorenstein, the

morphism f being finite and flat - which implies 	 S Cohen-Macaulay -

is enough. (In (iv), the Gorenstein property is implied by the other

assumptions.) A special property of Gorenstein rings is nevertheless :

(v) 	 The Dedekind different is a principal ideal in 	 S , [H-K;7.25] .

Does (v) still hold for the Noether different of a not necessarily com-

mutative but still ,strongly Gorenstein ring 	 S

Another remark concerns the tensor-product used to define the envel-

oping algebra. It should depend on the category of algebras one is work-

ing with and not just on the ring theoretic properties.

For example, treating analytic commutative local algebras over some

field, hence quotients of rings of convergent or formal power series,

the tensor-product should be completed to obtain the "correct" analytic

different.

Similarly, in the graded commutative case, the tensor-product, could

be replaced by the graded tensor-product (with respect to the given com-

mutation factor), see [ ALG 111.47] , to obtain a graded version of the

different.

All this shows that Noether differents are rather a general homologi-

cal tool not necessarily bound to the theory of Gorenstein rings.

We conclude this section with three, fairly well-known examples and

an application to (commutative) complete intersections.



, The notations will be as before, g : A---> B denoting an A-algebra

with enveloping algebra B A

Example 7.8.4.: 	 (Group algebras)

Let A be an arbitrary commutative ring and G a finite group. Set

B = A[G] , the group algebra of G over A , and let g : A ---> A[G]

be the canonical map.

Then g * B is freely generated over A by the elements of 	 and

the ideal 	 I
B/A in B A is generated by the elements

dB/A(h) = hol - 	 , 	 h any element in G . •

It follows that the element

w = E gag -1
g e G

annihilates 	 I B/A from the right:

d B/A( h)w = E hgiig 1 - -1 	
= 0

ge G

and hence, as

) = E 	 1= (G:1)
g E G

the order of G is an element of the Noether different.

(Compare for example [C-E;XII.2.2.-2.5.] .)

Example 7.8.5.: (Simple extensions)

Let A again be arbitrary commutative, 	 x a variable and f(x) 	 a

polynomial with coefficients in 	 A , 	 B = A[x]/(f(x)) 	 the simple exten-

sion defined by 	 f(x)

Then 	 B e 	is isomorphic to	 A[x,y]/(f(x),f(y)) 	 y 	 a second variable,
and p: B A ---> B becomes the substitution " x = y

Accordingly, x - y generates I B/A and one may write

	

f(x) - f(y) = (x - y)g(x,y) 	 for some 	 g(x,y) 	 in 	 A[x,y]

Evaluating this equation in the quotient ring 	 BA , it follows that

the class of the "difference quotient" 	 g(x,y) 	 in 	 B A annihilates the
ideal 	 I

B/A 	 whence

4(g(x,y)) = g(x,x) = f'(x)

shows that the derivative f'(x) 	 belongs to the Noether different of B

over A . (In fact, it generates the Noether different,[Be;II.1.Kor.3]



	

. Example 7.8.6.: 	 (Exterior Algebras)

Let A be a commutative ring, 	 V a free A-module of rank n .

Consider B = A AV , the exterior algebra of V over A and the natural

map g : A ---> B

If v / 	vn	 constitutes an A-basis of V , the ideal 	 I B/A 	in

B eA is generated by the elements

dB / A(v i ) = v.01 -

Then the product

w = (v 1 Q1 + 1Qv 1	.	 (v n 21 + n•

is certainly in the right annihilator ofB/A and its image under u

p(w) = 2 n v 1 ...v n

is easily seen to generate the Noether different of g .

If one takes the graded enveloping algebra of B over
	

instead,

which is 	 B Q A B with the multiplication

(x1fin. )(x2f42) = (-1)degy 1.degx 2 (x
1
x 2 Qy 1 y 2 )

for homogeneous elements x 2 , y l , then one verifies that the corre-

sponding graded Noether different is the zero ideal.

In both examples (7.8.5.&6.), the information obtained is not always

optimum

Take A a field of characteristic two, 	 B = A[x]/(x
2
 ) 	 considered

either as a simple extension or the exterior algebra of a free module of

rank one Then 	 B 	 is strongly Gorenstein and Theorem (7.8.3.) applies

to the canonica$ map g : A ---> B . The various Noether differents men-

tioned above will all be zero but the element x 	 in 	 B annihilates all

Tate-cohomology groups over B as follows from ( 	 ).

Apart from this rather trivial example, it follows already from the

general theory above that Noether differents are not always sufficient

to describe precisely the "universal" support of Tate-cohomology, even

for commutative (Gorenstein) algebras S over a field K which allow

"many" finite flat morphisms from regular rings -T into it :

By (7.8.2.), the Noether different yields the non-êtale locus of such

a finite flat map, hence the union of all such Noether differents will

describe (maximally) the non-smooth locus of S over K whereas the

Tate-cohomology groups are supported only on the non-regular locus of

S 	 by (7.7.4.) 	 (For more examples along these lines, see [BEH] .)



Extending (7.8.5.) or directly using Remark (iv) above, we get the

following result on the Tate-cohomology of complete intersections in the

equi-characteristic case :

Let 	 k 	 be a field, and denote by 	 P = k<x l ,...,x n > 	 either

- 	 the localization of the polynomial ring over k 	 in n 	 variables at

the maximal ideal m p = (x 1 ,...,x n ) 	 or

the ring of formal (or convergent) power series over a (complete non-

trivially valuated) field 	 k 	 in 	 n 	 variables.

Assume given a sequence 	 f = (f 1 ,...,f m ) 	 of elements in the unique

maximal ideal 	 m = (x 1 ,...,x n ) 	 and let J(f) 	 denote the corresponding

Jacobian ideal generated by all maximal minors of the Jacobian matrix of

f with respect to the chosen coordinate-functions 	 (x l ,...,x n ) , whose

entries are hence given by the partial derivatives af
j
/3x

i

With these notations we have :

Corollary 7.8.7.: 	 If 	 f = (f 1 ,...,f m ) 	 constitutes a regular sequence 

in 	 m = (x 1 ,...,x n ) , the quotient ring 	 R 	 P/fP 	 is a complete inter-

section ring , hence Gorenstein, of dimension n - m

The Jacobian ideal 	 J(f) 	 then annihilates all Tate-cohomology groups

over R which become consequently modules over the Jacobian ring of R ,

R 	 R/J(f)R 	 in a natural way.

For the proof it needs only to be remarked that a composition

k<x 	 x, • 	 ,
'1 	 n-m

incl. > p 	proj. > R

yields a finite flat homomorphism of rings if the corresponding minor

det(9f./3x
3 	i

of the Jacobian matrix is not zero. In this case, the associated ("ana-

lytic" !) Kahler different - which equals here the (analytic) Noether

different in accordance with Remark (iv) above - is generated by that

minor, see [Ku; Satze 1 & 2]



8. - FiA4.t Exampte4 

First, let us consider those cases where 	 S 	 is'of small virtual

dimension.

8.1. 	 Quasi-Frobenius Rings 

Let S be an artinian ring which is injective as a right module over

itself. Then it is also injective on the left,[C-R;p.135], hence 	 S 	 is

strongly Gorenstein of virtual dimension zero.

Such rings are also called quasi-Frobenius - which motivated Heller's
definition of a Frobenius category, (4.8.) .

For S quasi-Frobenius, obviously all finitely generated S-modules

are maximal Cohen-Macaulay, whence D b (S) = MCM(S) = mod-S .

Furthermore, complete resolutions are simply obtained by connecting

a projective with an injective resolution of the given module.

Let 	 rad(S) 	 denote the radical of 	 S , 	 soc(S) 	 its socle.

Proposition 8.1.1.: (cf. [C-R;6.28ff], for example)
Let 	 S 	 be a ring which is quasi-Frobenius. Then :

(i) soc(S) 	 is a two-sided ideal of 	 S , canonically isomorphic to

the 	 S-dual of 	 S/rad(S) .

(ii) A finitely generated right S-module M contains a projective (or

injective) direct summand if and only if M.soc(S) 	 0 .

This shows, by (2.1.), that the isomorphism classes of objects in

MCM(S) 	are in bijective correspondence with the isomorphism classes of
finitely generated right 	 S = S/soc(S) -modules.

Furthermore, supplementing (7.7.4.) and (7.8.3.) in this case, it

follows from the proposition :

Corollary 8.1.2.: 	For any two (complexes of) S-modules M and N
(in 	 D b

(S) ) over a quasi-Frobenius ring 	 S , the Tate-cohomology groups

Ext*S (M N) 	 are annihilated by all central elements in the socle of 	 S .

In case of quasi-Frobenius rings, the "canonical octahedron" of a

module, (5.3.1.), degenerates, the functor M becomes the identity and

H may be chosen to associate to a module its injective envelope.



Hence, in case of quasi-Frobenius rings, the theory developed here

reduces essentially to the representation theory of artinian rings which

are self-injective.

Before treating more specific (graded) examples of such rings, where

Tate-cohomology admits a rather concrete geometric interpretation, we

want to mention some more classes of rings which are strongly Gorenstein.

For example

8.2. 	 Integral Representations of Finite Groups 

Let G be a finite group, 	 S =E[G] 	 its integral group ring.

Then S is strongly Gorenstein in the terminology adopted here and its

injective dime'nsion equals one. The natural ring homomorphism from

into 	 S 	 satisfies the conditions (7.6.2.). It follows that a S-module

M - or, equivalently, an integral representation of G - is maximal

Cohen-Macaulay over S if and only if the underlying 7Z-module is MCM

over the integers which means nothing but M being 71-free of finite

rank in view of the structure theory of modules over principal ideal

domains for example.

Hence, one indeed regains the classical theory of complete resolu-

tions as initiated by J. Tate.

The (original) Tate-cohomology of G with values in an integral rep-

resentation M , usually denoted n*(G,M) , is accordingly nothing but •

Exti[c( ZZ,M) , ZZ considered as a trivial G-module.

Classically, most of the results on Tate-cohomology are deduced using

the cocommutative Hopf-algebra structure on E[G]. To point out the con-

nections, let us make the following remarks :

Assume given two integral representations M and N of G , with M

being MCM. Then, using the co-multiplication and inversion on the groOp

ring, Hom E (M,N) becomes in a natural way a (right) E[G]-module again

and one easily gets that

(8.2.1.)
	

G,Hom zz (M,N)) 	 Ext  zz[G]o , N

for all integers 	 i 	 and functorially in both M and N .

Furthermore, the duality theory for Tate-cohomology in this case is

usually developed using the cup-products induced from the Hopf-algebra

structure. But, by the various uniqueness theorems for homological prod-

udts, (or here also simply by [ALG X.201,Exerc. 10(c)]), these products

are known to be the "same" as the Yoneda-products up to a sign (remember

that we deal exclusively with right modules !). It follows then easily



-.for example by invoking the various uniqueness theorems once again  -

that the duality theorems obtained here reduce to the classical state-

ments

An immediate generalization of integral representation theory which

is still covered is obtained by replacing ZZ with any Dedekind ring.

The resulting group ring is again strongly Gorenstein of virtual

dimension one and maximal Cohen-Macaulay modules over it correspond to

lattices.

Finally, as far as group representations are concerned, let us men-

tion the following two cases which display featu'res rather similar to

those described here but which are not covered. May be, these constitute

a good testing ground for a more general theory of - not yet defined -

"Gorenstein categories" :

(8.2.2.) 	 Pro-finite Poincarë Groups 

Considering the results on such groups - see [Ser 2] for example - ,

and in particular the existing duality theory for them, (loc.cit.; app.),

it seems reasonable to expect that large parts of the foregoing theory

can be extended to cover these groups.

Even more promising, consider

(8.2.3.) 	 Groups of finite virtual cohomological dimension 

For these groups, F.T. Farrell introduced a cohomology theory general-

izing naturally the Tate-cohomology for finite groups. If the group is

furthermore a "virtual duality group" - see [Br;VIII & X] for details - ,

all the necessary ingredients like complete resolutions and the duality

theory are available and developed in complete analogy to the classical

case. This indicates that our finiteness assumptions - 	 S noetherian and

MCMs being finitely generated - should be largely redundant.

Coming back to the classical case of finite groups some questions even

for the theory developed here impose themselves. For example, what are

the analogues for strongly Gorenstein rings of more sophisticated results

like the theorem of Tate-Nakayama in class field theory and what are the

geometric interpretations in case of isolated Gorenstein singularities.

For a simple example along these lines, consider the generalization of

"Herbrand quotients" to hypersurface singularities and their suspected

geometric meaning outlined in chapter 	 below.



8.3. 	 Higher dimensional Gorenstein Rings 

Here we give two criteria which enable one to recognize strongly

Gorenstein rings of arbitrarily large virtual dimension.

The first one shows that strongly Gorenstein rings may be obtained

by "deforming" those of small virtual dimension

Proposition 8.3.1.: 	 Assume given a commutative regular local ring

T with residue class field k . If then f : T ---> S is a finite and

flat T-algebra - see (7.6.) - such that the ring 	 S o 	S	 k , the
"geometric fibre" of f , is quasi-Frobenius, then S is strongly Goren-

stein and its virtual dimension equals 	 dim T

Furthermore, 	 f 	 satisfies the conditions (7.6.2.) and consequently

a finitely generated S-module is maximal Cohen-Macaulay if and only if

the underlying T-module is free of finite rank.

The proof, which uses the well-known behaviour of inlective dimension

with respect to quotients by central non-zero-divisors, is left to the

reader.

It follows by the usual arguments that being strongly Gorenstein is

a generic property of finite flat maps

Corollary 	 Let T be a commutative ring of finite Krull di- •

mension all of whose localizations (in maximal ideals) are regular local.

If then f : T ---> S is a finite flat T-algebra, 	 m a maximal ideal

of T such that the corresponding fibre S(m) 	 S 	 T/m is a quasi-

Frobenius ring, then there exists a Zariski-open neighbourhood U of

m in Spec(T) 	 such that S u 	S	 Tu 	 is strongly Gorenstein.
In particular, 	 S 	 itself is strongly Gorenstein if and only if all

geometric fibres over maximal ideals in T are quasi-Frobenius.

A simple example where the foregoing applies is given by group rings

T[G] , with G a finite group, 	 T a commutative ring satisfying the hy-

potheses of the Corollary. Remark that then (7.8.4.) implies the well-

known fact that T[G] 	 is of finite global dimension as soon as 	 (G:1) ,

the order of G , is invertible in 	 T .

Similarly, coming back to the example (7.8.6.), if 	 V 	 is a finitely

generated projective T-module, the exterior algebra AT(V) 	 of V over

T 	 is strongly Gorenstein. If V # 0 	 it is not of finite global dimen-

sion. See also (8. .) for more details on this example.



, The second criterion has been mentioned already in (4.1. Remark)

It is due to J.-E. Roos, [Roo] :

Proposition 8.3.3.: 	 Let S be an arbitrary ring endowed with an

ascending and exhaustive filtration 	 (F i ) i 1 0 by subgroups such that

- F
i
.F

j	
is contained in 	 F

i+j 	
for all 	 i , j 	 and

- the associated graded ring gr(S) 	 is strongly Gorenstein.

Then 	 S 	 itself is strongly Gorenstein and its virtual dimension is

bounded above by the virtual dimension of gr(S) .

Furthermore, if M is any S-module allowing a filtration compatible

with the given filtration on S and such that the associated gr(S)-mod-

ule gr(M) 	 is maximal Cohen-Maca'ulay, then M is already MCM over S .

The proof follows essentially from the existence of a converging spectral

sequence for any two filtered S-modules M and N for which the associ

ated gr(S)-module gr(M) is of finite type, starting with the E 1 -terms

Ext°gr(S) (gr(M),gr(N)) 	 and converging towards 	 Ext(M,N) , (see [Roo] or

[Bjd;Ch.2,§3] for details).

This result applies in particular to primitive quotients of enveloping

algebras of finite dimensional Lie-algebras over a field in view of the

Poincar8-Birkhoff-Witt theorem, cf. [Roo] again.

Unfortunately -,for our purposes 	 -, "most" of these rings seem to'

be already of finite global dimension, for example, this holds for the

enveloping algebras themselves.

The first example of such a ring which is not of finite global dimen-

sion has been given by J.T. Stafford, [Sta;Prop.3.5.] :

U(s1 2 0/(C+1) , where C = H 2 + 2H + 4FE is the Casimir element, is

of virtual dimension one, [Roo;Cor.2], but of infinite global dimension.

This example raises some interesting questions :

As C + 1 = (H + 1)
2 
+ 4FE , the associated graded ring is the homogene-

ous coordinate ring of the quadric z 2 + xy , where z is the class of

H 	 (or H + 1 ) , 	 x the class of 2E and y the class of 2F for

example. Hence the associated graded ring has only an isolated singular-

ity of type A l 	at the origin and it is well-known that this ring is of

finite MCM-representation type. More precisely, see [BEH], for this ring

the category of (ungraded) MCMs modulo projectives is equivalent to the

category of finite dimensional t-vectorspaces.

Furthermore, it is not hard to see that the module of infinite projec-

tive dimension over the given primitive quotient of U(s1 2 C) 	 which was



exhibited by J.T. Stafford in (loc.cit.) has as its associated graded

module over the quadric precisely the unique indecomposable and non-free

MCM over this 	 A 1 -singularity.

Hence, is it true that this module is the unique indecomposable and

non-free MCM over this primitive quotient ?

Furthermore, given the correspondance between simple surface singula

rities over the complex numbers and semi-simple Lie-algebras as estab-

lished by E. Briekorn, - see [Slo] - , and the fact that these are the

only normal two-dimensional Gorenstein singularities which are of finite

representation type, - see [BGS] - , it would be interesting to know :

Are there always primitive quotients of the enveloping algebras of

the corresponding Lie-algebras whose category of MCMs modulo projec-

tives is equivalent to the corresponding category over the associated

simple singularity ?

Given the "explicit" knowledge of MCM for a simple singularity,

see [KnO] , does an affirmative answer to the foregoing question

yield a method to interpret these categories directly in terms of

representations of the corresponding semi-simple Lie-algebra, adding

another facet to the so-called "McKay-correspondance" ?

Apart from this possible connection with simple singularities :

Is it true in general that Trimitive quotients of enveloping alge-

bras of (semi-simple) finite dimensional Lie-algebras over a field

are always of finite MCM-representation type in the sense that only

finitely many distinct isomorphism classes of indecomposable MCMs

exist for such rings ? (This could then be interpreted as saying

that such rings are never "too far" from being of finite global

dimension.)

Much more and natural examples of strongly Gorenstein rings to which

(8.3.3.) applies and which are "almost never" of finite global dimension

are obtained from graded or Super-Lie-algebras.
Before treating these examples, we will shortly comment on the neces-

sary - and rather obvious - modifications of the theory in

8.4. 	 The graded Case 

As already mentioned several times and indicated in (4.8.), most of

the foregoing results on MCMs over rings which are strongly Gorenstein

should hold in a much broader context. A simple extension, for which all



proofs remain literally the same, is furnished by considering graded 

rings and modules.

Hence assume, in addition to the general hypotheses of being noether-

ian and of finite injective dimension on both sides, that 	 S. = @ S 6

is a A-graded ring for some commutative group of degrees 	 (A,+).
6 E A

Then replace the various categories defined so far for ungraded rings

correspondingly by Mod-S. ( mod-
s) , (

D*(S.)
) 

, constructed out

of the category of A-graded S.-modules with degree-preserving S.-linear

maps as morphisms.

Accordingly, one defines graded complete resolutions, graded perfect

complexes and so on, to obtain mutatis mutandis the "same" results for

such graded strongly Gorenstein rings, results we will henceforward take

for granted.

As usual, to compensate for the lack of sufficiently many morphisms,

one introduces shift functors 	 -(6) 	 for all elements 6 of A , which

may depend on the choice of a commutation factor E on AxA , (see [ALG

III.47ff]) .

Given then a graded S.-module M. , the grading of the shifted module

is given by M.(6) 6 	= M 6+6 , 	 and its (right) S.-module structure is mod-

ified according. to

m(6).s = n.e(a,6).s
	

in 	 M.(6 
44.0" 	 6+11+a

for homogeneous elements m in M
6+11 

and s in S 	 .a.
These shift functors do not alter morphisms and preserve obviously

graded perfect complexes, complete resolutions and MCMs

As they also commute with the translation functor on complexes, one

can consequently define A-graded Tate-cohomology groups by

(8.4.1.) 	 ExtDX.,Y.)6 = H i (Hom(CR(X.),Y.(6)))

for all integers i , degrees 6 in A and complexes of graded modules

Y. 	 in 	 D(Mod-S.) , 	 X. 	 in 	 D (S.) 	 as in (7.4.1.)

The Yoneda-products are compatible with the shift functors which may

be expressed equivalently by saying that D*(Mod-S.) 	 ( D b (S.) ) and its

equivalent companions are in fact 	 axA-graded categories.

The "multiplicative" structure of these categories depends on the cho-

sen commutation-factor

The graded endomorphism ring of S. 	 as a graded right module over it-

self, 	 ED Hom 	 (S.,S.(6)) , is not 	 S. 	 again in general.
66A 	 s"



One certainly has 	 Hom s (S.,S.(6)) 	 Ss	 as abelian groups, the iden-

tification obtained as usual by evaluating a homomorphism in the unit of

the ring 	 S. ,(which is tacitely assumed to be an element of 	 S o ).

To an element s in S 6 	corresponds then the homomorphism h s

given by

hs(s') = h s (1).s' 	 (S1,6)ss' 	 for 	 s' 	 in

as 	 h 	 is right S.-linear and in view of the definition of the module

structure on 	 S.(6)

It follows that in terms of this identification, the "Yoneda-product"

on 	 S. , considered as its own endomorphism ring, satisfies

sos' = c(6 1 ,6)ss' 	 for 	 s 	 in 	 s 	 in 	 S
cS 	 •

Consequently, the graded S.-d_ual of a graded S.-module M. , given by

Mt = G Hom
S. 	 '

(M. S.(6)) 	 as a A-graded abelian group, becomes a graded
ScA

left module over this endomorphism ring - or, equivalently, it carries

the structure of a graded right module over the graded c-opposite ring

S" of S. , whose multiplication, say 	 "#" , is determined by

s'#s 
=def 

c(6',6)ss' 	 for 	 s	 in 	 s' 	 in	 S
6'

Hence all statements concerning duality, like in (4.6.), (6.2.) or

chapter 7 , have to be interpreted over this c-opposite ring 6 S
o
p .

The details are left to the reader, as an example we only mention the

extension of (7.1.2.) to the graded case :

For any two classes 	 f 	 in 	 Ext ls (Z.,Y.) 	 in 	 Extj (X.,Z.)

one finds

(8.4.2.) 	 (fog)* = (-1) 61,6-)g* f* 	 in 	 Ext i+ i (Yt,Xt
E S.

cS 	 (S'

If we,take X = Y = Z , and extend the commutation factor e on ti

to the commutation factor c' 	 on 	 ZZxA by

c'((i,6),(j,6')) = ( -1 )^
j
E(S,SI )

for all integers 	 i , j 	 and degrees 	 6 , 6' 	 in ti , the ExA-graded

"stabilized Yoneda-Ext-algebra" 	 Ext(X.,X.). 	 is seen to be isomorphic

to the graded c'-opposite algebra of Extop(Xt,Xt).



After these brief comments on the necessary modifications for graded

rings which are strongly Gorenstein, we can treat the example of

8.5. 	 Graded or Super-Lie-Algebras 

Let 	 (A,+) 	 be a commutative group (of degrees), I 1 : A 	 > 7L12

a group homomorphism, 
A + its kernel, also called the subgroup of even 

degrees, A 	 its complement, consisting of all odd degrees.

Given a commutative ring K , a A-graded super-K-Lie-algebra consists

of a A-graded K-module L. 	 8 LS 	endowed with bilinear pairings
SEA

[ , ] 	 L
6 ' 
—> L

8+6 '

and quadratic maps

q : L6 	 L
26

for all pairs of degrees 	 (6,6')

for all odd degrees S 	 in. 	 5

satisfying the usual axioms (considered first by Milnor-Moore and amended

by G. SjOdin; see [Av] for details - and replace lal 	 there by 	 'deg al

for any homogeneous element a in 	
deg a )*

As always, examples of such Lie-algebras arise from A-graded, associa-

tive K-algebras A. 	 if one defines the Lie-bracket as

[a,b] = ab - (-1) ba 	 for 	 a 	 in 	 A S
	

and 	 b 	 in

and the quadratic maps as

q( a) = 2
	

if a is a homogeneous element of odd degree.

The left adjoint to this "forgetful functor" associates then in the

usual way to a A-graded super-K-Lie-algebra L. 	 its universal enveloping 

algebra U.(L) 	 , which is a A-graded, cocommutative K-Hopf-algebra with

respect to the commutation factor c(6,6') = (-I) 161i61i on AxA . It
comes equipped with the natural "inversion" (or "antipodism"; [C-E] ),

which is the isomorphism of A-graded Hopf-algebras from U.(L) onto its

s-opposite (Hopf-)algebra 	 U.(0" induced by the (ordinary) opposite

of the identity on 	 L. . This enables one in particular to consider the

graded dual of a (right) 	 U.(L)-module as a (right) 	 U.(L)-module again.

Finally, denoting by 	 the (ordinary and A 4 -graded) sub-Lie-algebra

of L. 	 spanned by all homogeneous elements of even degree, and by L



the K-submodule spanned by those of odd degree, 	 L' = 	 L 	 is the

underlying 2Z/2 n-graded (or "super"-)K-Lie-algebra of 	 L. , and, ac-

cordingly, 	 U*(L) 	 the associated enveloping "super"-algebra.

If now L. 	 is finitely generated projective as a K-module, the cano-

nical filtration by tensor-degree on U(L) 	 yields as the associated

graded ring (or K-algebra)^ K A'(L) , the ( ExA-graded) tensor-

product of the symmetric (K-)algebra.on 	 L I- with the exterior (K-)alge-

bra on L , by the graded version of the Poincar6-Birkhoff-Witt theorem.

Remark that this associated graded algebra is nothing but the envel-

oping algebra of the underlying abelian Lie-algebra of 	 L. , as usual.

To apply (8.3.3.), we only need the following

Lemma 8.5.1.: 	 Let K be any commutative ring with connected prime

spectrum, 	 V and W finitely generated projective K-modules of rank

v 	 and w 	 respectively. Set 	 S = S.(V) W K A*(W) . Then
(i) 	 For the canonical augmentation module K of S , one has

Ext ls (K,S) = 0 	 for 	 i 	 v ,
and

Exq(k,S) = det( W)^ K det(V')

as K-modules, where V' 	 denotes the K-dual of V , 	 det(.) 	 the

"determinant - or highest non-vanishing exterior power`- of a

finitely generated projective K-module.

If K is furthermore Gorenstein of finite Krull dimension k

then 	 S is strongly Gorenstein of virtual dimension 	 k + v .

It is of finite global dimension if and only if this holds for

and in addition W = 0 .

Proof: 	 (i) 	 follows most easily from the change-of-rings spectral se-

quence

.(W) 	 S
Ext i 	(K,Ext(A'(W),S)) ===> Ext i+ j(K,S)
A 

obtained from the obvious k-algebra homomorphisms S ---> A*(W) 	 > K .

The S-module A*(W) 	 is resolved by the Koszul-komplex over the S-linear

map V O K S ---> S which identifies the generating set V with the sub-
set S 1 (V) O K 1 of S . Consequently, 	 Exq(A*(W),S) = 0 	 for 	 j A v ,
and 	 Exq(A'(W),S) = A*(W) Q 1( (det(V))' . But 	 Ext ili . (w) (K,A*(W•)) = 0 	 for

i A 0 and HomA*(W) (K,A:(W)) = det(W) 	 which shows that the spectral
sequence degenerates to yield (i).



go
For (ii) , observe that 	 S.(V) 	 is (locally) a polynomial ring over 	 K

which is Gorenstein if and only if K has this property. Furthermore,

its Krull dimension is 	 rank V + dim K . Now 	 S 	 itself is a finite

flat 	 S.(V)-algebra with respect to the natural inclusion of 	 S.(V) 	 as

the first factor of 	 S . Hence one may conclude by (8.3.2.) , taking

into account that the formation of exterior powers commutes with any

change of rings and that over a field the.exterior algebra of a finite

dimensional vectorspace is quasi-Frobenius and furthermore of infinite

global dimension as soon as the vectorspace is non-zero.

In view of this Lemma, (8.3.3.) yields

	

Proposition 8.5.2.: 	 Assume given a commutative Gorenstein ring 	 K

of finite Krull dimension 	 k , (A,+) a group of degrees with a "parity

homomorphism" 1.1 : A ---> E/2E as above, 	 L. 	 a A-graded K-super-

Lie-algebra such that the underlying K-modules of L + or L 	 are both

finitely generated projective and have a rank, say 	 or 1 	 respec-

tively. Then

(i) U.(L) 	 as a A-graded ring is strongly Gorenstein of injective

dimension equal to 	 k + 1 + . Its global dimension is bounded below

by the global dimension of K .

(ii) The (total or derived) graded dual of the natural augmentation

module 	 K of S as an object in D
b
( U.(L)") 	 satisfies

d r RHomu(0 (K,U.(0). = d t(L) St K det(L ) 1 [-1 + ]

(iii) 	 If 	 K 	 is regular, hence of finite global dimension, for 	 U.(L)

to be of infinite global dimension, it is necessary that 	 1 	 # 0

and it is sufficient that L - has non-zero intersection with the

centre of 	 L. .

Proof: 	 Applying ( .8.3.3.) to the filtration by tensor-degree on U.(L) ,

the Lemma above yields a priori that U.(L) 	 is strongly Gorenstein of

virtual dimension at most equal to k + 1 + . That one has indeed equal-

ity follows from (ii) which in turn is a consequence of the (indicated)

proof of (8.3.3.) and (8.5.1.(i)) : 	 Taking 	 M = K 	 and 	 N = U.(L) , the

associated graded module of M is K again and that of N is the as-

sociated graded ring of 	 U.(L) . But then (8.5.1.(i)) 	 implies that the

spectral sequence in the proof of (8.3.3.) for these U.(L)-modules degen-

erates, leaving

Ext
1 (L) 

(K,U.(L)) = Ext gr(U.(LU )
( 

'
gr(U.(L))) = det(L)^ K det(L I )'



as the only, possibly non-vanishing cohomology group of K* , which is

precisely the assertion in (ii) . The last statement in (i) follows im-

' 	 mediately from the fact that U.(L) 	 is a supplemented flat K-algebra

Whenever A , B are two K-modules, one has

Ext i'( (A,B) 	 Ext6.(0(A^KU•(L),B) 	 ,

B considered a (right) U.(L)-module via the augmentation.

The first part of (iii) follows from the last statement of (8.5.1.)

as the global dimension of U.(L) 	 is also bounded above by the global

dimension of its associated graded ring, once again using J.-E. Roos'

result as in (8.3.3.); cf. also [Bjo;Ch.2,Thm.3.7.]

The proof of the remaining assertion of (iii) is obtained as follows:

Without loss of generality, one may assume that K is a field and that

there exists a homogeneous element u in L 	 which is non-zero and in

the centre of L. . If then 	 L. 	 dehotes the still A-graded K-super-Lie-

algebra which is the quotient of L. 	 by the ideal K.0 , the universal

enveloping algebra 	 U.(L) 	 is isomorphic to 	 U.(L) Q K A*(Ku) , and the

U.(L)-module 	 U.(L.) 	 is easily seen to be of infinite projective dimen-

sion, a projective resolution being obtained by tensoring a resolution

of K over A*(Ku) 	 with U.(L) 	 over K . In other words, one uses the

well-known relation : 	 ExtA' '(Ku) (K,K) 	(L)

	

Ext' 	 (U.(L),K) 	 (see [C-E;
U. 

XIII.4.4.] for example)

Now let us set by (slight) analogy with the case of integral group re-

presentations

(8.5.3.)
	

(L./K,M.) 	 Exti (L)(K,M.)

for any (complex of) right, graded U.(L)-module(s) M. (in 	 D(Mod-U.(L)))

and any integer i , and call these groups the Tate-cohomology of L. 

with values in 	 M. 

These groups are naturally A-graded K-modules and the Yoneda-product

defines on the total Tate-cohomology H*(L./K,M) 	 the structure of a

right 2ZxA-graded module over the Tate-cohomology ring of L. , HE .

A'(L./K,K) .

Recall furthermore, that H*(L./K,M.) 	 Ext6.(0(K,M.) 	 is the ordi-

nary cohomology of L. with values in M. , and that the homology of L. 
U

with values in 	 M. 	 is given by 	 H.(L./K,M.) 	 Tor..(L) (M.,K)

Finally, set 	 det(V + @ V) 	 det(e) Q K det(V)' , the "super-deter-. 

minant" - or "Berezinian" in "super-terminology", see [Lei] - , for any



E/2 ZZ-graded K-module, where 	 , the submodule of even elements, and
	 92

V 	 , the submodule of odd elements, are both finitely generated projec-

tive. Remark that the "super-determinant" is a projective K-module of

. rank one over K and that its inverse (in the Picard group of K ) is

represented by its K-dual or, as well, as both the "super-determinant"

of the graded module V

- 

G V
+ 

, which is obtained from the original one

by "parity-change", or of the graded K-dual (e)' G (V )' .

Now, combining (8.5.2.(ii)) and (6.2.5.(3)), we get for any object

M. 	 in D(Mod-U.(0) 	 a long exact sequence of A-graded K-modules

(8.5,4.) 	 ...---> H i -1 (L./K,M.) ---> H_ i+1 +(L./K,M.)^ K det(L.) 1

•
> H 	 c1(L./K,M.) 	 > H 1 (L./K,M.)

where N i is the morphism induced by the "Norm-map", 	 c 	 the natural

transformation from ordinary to "stabilized" or Tate-cohomology.

In particular one has - as in (6.3.5.) - for any graded U.(L)-module 

fi i (L./K,M.) = H(L./K,M.)
	

for 	 i > 1 +

and

A i (L./K,M.) = H +_ i (L./K,M.) Q K det(L.) 	 for 	 i <

Just remark that'

U.
Tor

(L)
 (M.,K*) =

-i ( " .
m 	 wu(L) RHomu(L) (K,U.(L)))

km
," .
	 ualL . " ) det(L.) -1 [ - 1

+
 ])

by definition,

by (8.5.2.(ii)),

-i -1 	 —IL 	 -1
H 	 (M. ot.-. .0_) K) 	 K det(L.)u 

()

	

= Tor
U.
	(M.,K) Q	 det(L.) 1

i+1'

as	 det(L.) -1
	is

projective over K

again by definition.

Next, we want to consider the duality theory of chapter 7 in this

situation. To avoid (notational) complications arising from the struc-

ture of K , assume henceforth that K is (commutative) semi-simple -

hence a product of fields.

Then, given any object M. 	 in D(Mod-U.(0) , let M 4 denote the

graded K-dual of M. , converted into a complex of right U.(L)-modules

again by use of the inversion.

Now the graded version of Theorem (7.5.1.) or its Corollary (7.5.2.)



reads :

Proposition 8.5.5.: 	 For any object 	 N. 	 in 	 D b (Mod-U.(L)) 	 there are

natural isomorphisms for any integer i

i+1+-1
(L./K,N.) K det(L.) ---> (H 	 (L./K,N.))'

Proof: 	 Apply (7.5.2.) with 	 T = K , S = 6 U.(L) 	 and 	 W = K 	 to get

isomorphisms

Ext i-1
U.(L)°P(1", HomK(N.,K)) > Hom K (Ext6 i (L) (K,N.),K)

as 	 K 	 is injective as a module over itself. Using then once again the

known structure of K* ,(8.2.5.(ii)), as above, and converting the occur-

ring graded c li.(L) o
p -modules into U.(L)-modules by means of the inversion

exhibits the terms in the form claimed.

Finally, let us examine a little bit closer AL 	 , the Tate-cohomology
ring of a graded super-Lie-algebra 	 L. , over a field.

Proposition 8.5.6.: 	 Let K be a field, 	 L. 	 a A-graded super-Lie-

algebra over K , 1.1 : A 	 > M/2 ZZ a "parity homomorphism" as before.
(i) 	 The axA-graded Tatecohomology ring AL 	 of L. 	 is .e'-commuta-*

tive, where c' 	 is the commutation factor

e' ((i,6),(i,6' )) + 	 16116'1

for pairs 	 (i,6) 	 and 	 (j,6') 	 in Ex 	 .
^0

In particular, 	 H L  = Homu(0 (K,K). 	 is a A-graded, c-commutative

K-algebra.

n'
	

is a self-injective K-algebra. More precisely, there is a

non-degenerate K-bilinear pairing, associative for the Yoneda-

product on HL , and homogeneous for the total A-degree :

^*+1 + -1 	 ^-*
H L.L. 	 K	 L. 

det(L.) -1 

Proof: 	 As seen in (8.4.2.), 	 Ext6 (L) (K,K) = HL 	 is c'-opposite to

Ext' U.(L)"(1"'") 	Using the inversion on U.(L)
	 and the fact that

RHomu.(0 (K,K) 	 and RHomu(L) (K*,K*) 	 are canonically isomorphic, one

( ii



gets an E'-anti-isomorphism of HL 	 onto itself. The point now is, that

this map is in fact the identity, implying the claimed c'-commutativity.

The details are left to the reader. They can easily be filled in, as

there is the so-called "standard-resolution" of K over U.(L) - see

below or [HFJ] - to which the foregoing functors and identifications can

be applied directly.

Here, let us only remark that (i) "stabilizes" the classical result

which states that the (ordinary) cohomology ring HL 	 itself is c'-com-

mutative; see for example [B-R;§0] and the sources cited there.

The proof of (ii) is obvious from (8.5.5.) above :

Just take 	 N. 	 K , - so that N. 	 equals 	 K again - , to obtain iso-

morphisms of K-modules

^i+1 -1 
HLK det ( L.) ---> (

for all 	 i . Such an isomorphism corresponds biuniquely to a non-degen-

erate K-bilinear pairing as claimed. That these pairings are associative

with respect to the (Yoneda-)product on the total Tate-cohomology ring,

follows from (7.5.4.) - as in (7.7.5.(iii)) - in its graded version; cf.

(8.4.2.).

Remarks: 	(a)	 Assume chosen A-homogeneous K-bases lyl'"" y 1 -1 of L
and 	 Ix 1 ,...,x 1 +1 	 of 	 L I- 	respectively. Then the one-dimensional vector.-

space det(L.) 	 is generated formally by the "super volume-element"

x ^x 	 +1 	 2 	 1 
vol(L.) =

In other words, 	 det(L.)
-1
 • is isomorphic as a A-graded K-vectorspace to

K(vol(L.)
-1
 ) = K( E deg x. - E deg y.) , where 	 deg(.) 	 denotes the de-

1

gree in A of a homogeneous element.

(b) 	 The pairing in (ii) above "stabilizes" the usual pairing between or-

dinary cohomology and homology of L. : The following diagram is commuta

tive, the horizontal arrows being isomorphisms of graded K-vectorspaces

^i+1 1- -1
det(L.) —=—> (H

L.

H .(L./K,K) > (H L. 

Y1 ^ Y2 - ' — ^ Y1 -



the left vertical map being the connecting homomorphism of (8.5.4.) for

M. 	 K , tensored with the identity on 	 det(L.)

The main source - in algebra and topology - of such graded super-Lie-

algebras is provided by taking A 	 and - see [Av],[Qu 	 ] or [HJF]

for details - considering either 

- 	 the homotopy-Lie-algebra Tr*(R) 	 of an augmented commutative K-alge-

bra R ---> K

or

the rational homotopy-Lie-algebra Tr * (fX) Et 0 of a simply connected

topological soaCe X with the Samelson product as bracket.

In the first case, the enveloping algebra is by definition 	 ExtOK,K) ,

the usual Yoneda-Ext-algebra of R , and, if R happens to be a graded

"Koszul-algebra", [Ldf], 	 R 	 itself with its grading is the cohomology

ring of its homotopy-Lie-algebra .

In the second case, the enveloping algebra is the rational homology

of the loop-space 0 of X . Here, it would be interesting to know,

what the topological or homotopy-theoretic interpretation of MCMs and

Tate-cohomology might be.

These examples show once again - similar to (8.2.2.8t3..) - a short-

coming of the theory here : Most super-Lie-algebras arising these ways

are not finite dimensional but rather locally finite in the sense that

each graded piece has this property. Given the results of [HJF], where

it is shown that the injective dimension of.the corresponding enveloping

algebra can be bounded above by the L.S.-category of the topological

space, at least those where the L.S.-category is finite should be en-

closed into a more general thedry.

We conclude with the simple

Example 8.5.7.: 	 (Abelian super-Lie-algebras)

	

We return to the notations of (8.5.1.) : 	 L. 	 is the abelian super

Lie-algebra over a field K with a v-dimensional vectorspace V in

even degrees and a w-dimensional vectorspace W in odd degrees , the

enveloping algebra 	 S.(V) Q K A*(W) 	 denoted 	 S. 	 again.

A complete resolution of K over 	 S. is obtained - as in (5.6.) -

by connecting a projective resolution of K with the e S
o
p. -dual of a

projective resolution of 	 K* 	 (det(W) O K det(V 1 ))[-v] , (8.5.2.(ii))

The natural projective resolution of K over S. 	 is well-known :



First, if W 	 0 , 	 K 	 is resolved projectively over 	 S.(V) 	 by the

ordinary Koszul-complex

PS (V)(K)
	 (A*(dV) 	 S•(V

where dV denotes an isomorphic copy of V , with the same A-grading but

placed in complex-degree -1 	 (according to our general convention on

complexes). In other words, 	 dV is a ExA-graded K-vectorspace, concen-

trated in degrees 	 1-11xA . "Extending" the original A-grading on V to

a ExA-grading with V concentrated in degrees 	 101xA , the underlying

2ZxA-graded K-vectorspace of the Koszul-complex becomes a e'-commutative

K-algebra with respect to the commutation factor 	 El 	 given in (8.5.6.).

Then, as is well-known, [ALG X.206;Exerc.(2)], 	 d V 	is the unique K-
algebra-derivation of bi-degree 	 (1,0) 	 extending the K-linear endomor-

phism of dV @ V which maps dV 	 isomorphically onto V and annihilates

V .
As 	 RHomS (V) (K,S.(V)) 	 det(V) 	 [-v] , the algorithm of (5.6.) yields

the natural projective co-resolution

DS.(V) (K) = (det(V) Q K A"(dV 1 ) ti K S.(V)[v], 	 )

where 	 (dV)' , the graded K-dual of. dV , is accordingly concentrated in

degrees 	 {1}xA , and the dffferential 	 is the 	 S.(V)-dual of 	 d V ,
shifted 	 v 	 times and multiplied with the identity on 	 det(V) .

Remark that as 2ZxA-graded vectorspaces one has

det(V)[v] ; det(dV)

and a natural isomorphism ([ALG X.149] for example

A*(dV) ---> det(dV) '(dV')

as usual.

This isomorphism on the generating sets extends naturally to an iso-

morphism of complexes from P s(v) (K) 	 onto Cs(v) (K) 	 and represents

a natural "Norm-map" 	 Ns(v) (K) 	 in this case.

Of course, the deduced complete resolution, (5.6.2.), is contractible

in accordance with the fact that K is of finite projective dimension

over the polynomial ring 	 S.(V) .

These classical properties of the Koszul-complex have a (less known)

"shifted" counterpart, first noted by D.Quillen in this context, see



[411;1.4.3.] for a complete treatment:

Namely, if now V = 0 , so that we start with an abelian super-Lie-

algebra concentrated in odd degrees, the enveloping algebra is 	 A*(W) ,

(which is in particular quasi-Frobenius), and the natural projective res-

olution of K over it is given by the "shifted" Koszul-complex

PV(W) (K) = (r . (dw) 	 A*(W ) , d w )

dW denoting a copy of W concentrated in degrees {-1}xA as above,

r . (dw) 	 the K-algebra of divided powers over dW . Remark that in this
situation, 	 r(w) 	 is (by definition) isomorphic to the graded K-dual of
S.(W') , - even as a graded Hopf-algebra.

Now the ExA-graded K-vectorspace underlying P A . (w) (K) 	 carries also

a natural c'-commutative K-algebra structure with respect to which d w

is the unique K-algebra derivation extending the obvious K-linear map as

before.

As here 	 RHomA*(W)
(K,A*(W)) = det(W)[0] , the algorithm of (5.6.) -

see also (8.1.) - shows that the natural projective co-resolution of

i s

CA . 	 (
(W) ) = S.(64 1 ) Q K det(W) - A*(W) ,

which is also a (mipimal) injectiye resolution of K embedded by the

map 	 K 	 > det(W)
-1
 QK det(W) 	 into det(W) 1 WK A*(W) 	 as its socle.

In this case of course, the "Norm-map" 	 NA . (w) (K) 	 is just the compo-

sition of the 	 A*(W)-linear maps

P	(K) augmentation > K c > det(W)
/CM

incl.> c 	,K,
det(W) 	 .(wp

Having hence clearified the situation in the "pure" case, where the

super-Lie-algebra is concentrated in one parity and abelian, one obtains

in general :

- 	 For an abelian super-Lie-algebra 	 L' = V @ W , the projective (co-)-

resolution is obtained as the tensor-product over K of the corre

sponding objects for V and W alone, considered as subalgebras

of L. . The associated Norm-map N S (K) 	 is the tensor-product of

the corresponding Norm-maps N s(v) (K) 	 and NA . (w) (K)

It follows then easily :



The Tate-cohomology ring of L. = V G W is given by

(i)H L 	0	 iff 	 W = 0 , as precisely in this case 	 S. 	 is of fi-

nite global dimension.

(ii) If W A 0 , the exact sequence (8.5.4.) for 	 M. = K 	 breaks up

into short exact sequences as the corresponding (cohomological)

Norm-map N 1	is zero. Accordingly, as ExA-graded K-vectorspaces,

one has that Tate-cohomology is the direct sum of the ordinary

cohomology and the shifted (by [-v+1]) and twisted (by 	 det(L.) 1 )

ordinary homology of L.

In terms of the explicit descriptions just mentioned, the multiplica-

tive structure is as follows

(iii) If dim KW = 1 , say W = K(6) , the shifted vectorspace 	 dW 	 is

generated by a ExA-homogeneous element of bi-degree 	 (-1,-6)

say t -1 . Then, as a ExA-graded K-algebra, one finds

A.(dvi)[t,t-1]

the algebra of "Laurent-polynomials" in t over the exterior K-

algebra generated by 	 dV' . In this identification, the pairing

of (8.5.6.(ii)) is given by the "super-residue", which associates

to a pair of such polynomials the coefficient of 	 vol(dV 1 ).t -1

in their product.

iv
	

If dimKW 	 , the Tate-cohomology ring is indeed the trivial
algebra-extension of the ordinary cohomology by the (shifted and

twisted) ordinary homology considered as a bimodule. Explicitely :

A*(dV1) Q K (S.(dW') G det(W)G K r - *(dW)[1]) 	 ,

the graded tensor-product of the exterior K-algebra on dV' 	 with

the trivial ring-extension of the symmetric K-algebra 	 S.(dW') 	 by

the indicated bimodule, where 	 S.(dW') 	 acts on its graded K-dual

r . (dw) by "contraction" . or "inner products", as defined for exam-

ple in [ALG III;§11,n ° 6] . The pairing {8.5.6.(ii)) is then again

given by multiplication and then projection onto the super volume-

element chosen. (Remark that det(L.) 1 occurs as the direct sum

mand A v (dV 1 ) Q K det(W) in PL -1 )
The foregoing description of the pairings is in accordance with

(7.7.5.) : 	 Taking 	 T = S.(V) , 	 wT = Q-kir/K = det(V) G I( S.(V) , the
module of (Kahler-)differential forms of maximal degree of T

over K , as dualizing module and f : T ---> S.(V) G I( !CM the

obvious inclusion, then the associated dualizing module of 	 S. is



given by Remark (b) in (7.6.) :

w S 	= f'w T [0] = Hom s(v) (S.(V)9 KA'(W),det(V)9 K S.(V))

= (S.(V) fi K A'(W)) Q K det(W) 1 9 K det(V)

= S. 9
K det(L.)

as a S.-bimodule, taking into account as before the natural iden-

tification of the graded K-dual of A*(W) 	 with 	 A'(W)9 K det(W) -1

Then the trace-map of (7.7.5.(i0) for (the MCM-approximation of)

`1‹ 	 is the linear form

T
K 	 '

Ext
v-1

(*K wS
	 S K*) = det(L.)•  

3V-4 	 \ KN
L.

- observe that *K = K* as complexes of S.-bimodules and that

wS 
9 S. K = det(L.) 	 by the above - , which exhibits the coeffi-

v
cient of det(L.) 	 as a direct summand of HL -1

 •

In "super-geometric" terms, this linear form is nothing but the

integration against the "fundamental cycle" of the underlying pro-

jective super-space of S. , as will become clear below.

This description of 	 S. 	 as a finite flat S.(V)-algebra yields the fol-

lowing representation of MCMs over S.

The polynomial-algebra is concentrated in the even' degrees A + , so

for any A-graded S.-module M. , the underlying S.(V)-module 	 f * M. 	 de-

composes into a direct sum f *M. = + 9 	of A 4- -graded S.(V)-modules.

By (8.3.1.) in its graded.version, the original module 	 M. 	 is MCM over

S.	 iff both summands 	 / 	 are finitely generated free $.(V)-modules.

The missing piece of information to reconstruct M. 	 from these free

modules is the action of the 1-forms in A1 (W) = W as A*(W) 	 is freely

generated as an alternating K-algebra by them.

Hence, a MCM over S. can be represented as a collection

> M - , B i ; 	 i 	 = 	 1,...,

where M i./-  	 are graded free S.(V)-modules of finite rank, 	 A i 	and B i

S.(V)-Iinear maps satisfying the relations

A B 	 = 0, B 	 and 	 A.B j
 + A.B

i =
	 , B + B.A. = 0j 1

for all 	 1 	 i,j S w 	 i 	 j



We finish this section with two more

Remarks: 	(c) The given multiplicative structure of H1 	 implies that
^0
H L. 	 is a local ring if W A 0 . This proves that any MCM-approximation
of K without free summands is indecomposable, (2.1.), as a S.-module

^0
as 	 H 	 is its endomorphism ring in 	 MCM(S.) . Furthermore, it has a

well defined rank if constructed from the natural complete resolution,

cf. (5.5.1.) . One may hence ask as in (5.5.3.) whether this is the min-

imum for a non-free MCM-approximation of a S.-module of finite length.

Also, it should be interesting to understand the representations of

Gl(V)xGl(W) 	 - or rather of the corresponding super-group - which occur

in this indecomposable MCM-approximation of K , as this module deter-

mines essentially the Tate-cohomology by (6.1.2.) , (6.4.1.) .

(d) 	 For an arbitrary K-super-Lie-algebra 	 L. , extending naturally the

Poincare-Birkhoff-Witt theorem, one may obtain a "standard (complete)

resolution" of K over U.(L) 	 by deforming the projective (co-)reso-

lution (and Norm-map) of the underlying abelian super-Lie-algebra, see

for example [HFJ;Prop.1.13.] or [Qu 	 ;App.B,6.7.] for the case of pro-

jective resolutions.

In other words, the underlying graded K-vectorspaces can be chosen

to be the same, multiplication and differential. become deformed.

It follows - that, denoting 	 Li b the underlying abelian algebra, the

Tate-cohomology of L. 	 itself can be obtained as the cohomology of a

differential, ExA-graded algebra 	 (I-P,D) , 	 0 a homogeneous differ-

ential of bi-degree (1,0) , the underlying graded K-vectorspace of FP

being isomorphic to il;ab . In particular, the dimensions of the homoge-
„ 1-

neous components of H I: 	 are bounded above by the corresponding dimen-
sions in the abelian case, which can be easily determined from the ex-

plicit description above.

Although we ignore the meaning of MCMs for an arbitrary super-Lie-

algebra, at least for certain of those, they admit a geometric inter-

pretation. Here, we restrict ourselves again to the case of abelian such

super-Lie-algebras, referring the reader to [BEH] for some more examples

of the same kind.

We want to show, that over the category of abelian super-Lie-algebras

- or, equivalently, graded K-vectorspaces - , the theory of MCMs and of

coherent sheaves on the associated projective super-spaces are dual to

each other. This extends naturally - and in a straightforward manner -

the theory initiated by 	 A.A. Beilinson, J. Bernstein, S.I. Gelfand and

I.M. Gelfand. It relies on the connection between :
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9. - Maximal Cohen-Macaulay Modute4 and Geometity on Pujective SupeA4pace4 

(The theoity o6 Beitin4on - SeAnztein - Get6and - Get6and)

Fix a field K and the group of degrees 	 = 2Zx ZZ with "parity
homomorphism" 	 1(a,b)I = b mod 2 into a/2 Z1 . The "total degree" of

(a,b) 	 is'given by 	 f(a,b) = a+b

9.1. 	 Linear Superspaces.

Consider the abelian category mod-KxK and interpret it as follows :

Its objects, which are by definition pairs 	 (V,W) 	 of finite dimensional

K-vectorspaces, are thought of as i-graded K-vectorspaces concentrated

in total degree 	 1 , the even subspace V being placed in degree 	 (1,0) ,

the odd subspace W in degree 	 (0,1) . For short, we will also say that

(V,W) 	 endowed with this grading is a linear superspace.

The morphisms 	 F = (F
+ 	

: (V 1 ,W 1 ) 	 > (V 2 ,W 2 ) 	 are accordingly

just pairs of K-linear maps and can be interpreted as A-homogeneous mor-

phisms of A-graded vectorspaces.

In particular, there are the following

A linear form X on the even subspace V will be identified with

the morphism 	 (X,O) : (V,W) 	 > (K,0) 	 and, if 	 X # 0 , its ker-

nel is said to define a (K-rational) geometric point of 	 (V,W)

An element w in the odd subspace W gives rise to a morphism

<w> 	 _(0,K) 	 (V,W) , <w)(0,a) 	 (0,wa) , and its image, if not

zero, will represent a (K-rational) odd point of 	 (V,W)

"Recall" that 	 P(V) = Proj K S.(V) 	 is the scheme of the projective space
of hyperplanes in V , so that "geometric points" of (V,W) 	 correspond

to the points of P(V) , whereas the "odd points" of (V,W) 	 are parame-

trized by 	 P(W*) , 	 (-)* denoting in this chapter the K-dual of a vector--

space.

(iii) 	 A morphism F 	 as above will be called (linearly) perfect iff its

even component F + is surjective, whereas its odd component F

is injective.

Two particular such morphisms are given by i V = (id v ,0) , the
inclusion of the evem subspace V = (V,0) 	 into (V,W) , and by

p w : (V,W) ---'-> (0,W) = W , the projection onto the odd quotient-
space.



U.(V,W) = S.(V) W K V(W) 	 and 	 U.( 4'

: Extending the notion of "super-determinant" for a E/2 E-graded K-
	 4 02

. vectorspace, (8.5.), define for any morphism F as above

det(F) = det(V 2 , ) Q K det(V det(Cok F) 	 det(Ker F) -1

and call it accordingly the "super-determinant" of F

If v = dim
K
V

i 	 and w i
	dimK W

i
 , then,then 	 as graded K-vectorspaces,

det(F) 	 K(v1-v2,w2-w1)

hence, if F 	 is linearly perfect, 	 det(F) 	 is concentrated in negative

degrees. We will also say that

ine(F) 	 ind(F+) = dim Ker(F + ) - dim C k 	 v
1 

- v
2

is the even index of F , whereas

ind( 	 -ind(F ) = w 2 	w 1

represents the odd index of

On the category of linear superspaces just defined, we consider the

following duality functor D , given by

D(V,W) 	 (W*,V*) 	 and 	 D(F + , 	 ) 	 ((F)*,(F )*

It is obviously a contravariant, exact functor satisfying D
2
	 id ,

hence establishes indeed a "duality" . It interchanges "geometric" and

"odd" points and preserves linearly perfect morphisms. One has also

ind+/- (F) 	 ind-/+(D(F))

9.2.	 The enveloping algebras and their modules 

In accordance with the theory of "super-Lie-algebras" mentioned in

the foregoing chapter, we have a functor U. from the category mod-KxK

alias linear superspaces or abelian super-Lie-algebras, into the category

of d-graded K-(Hopf-)algebras with inversion, given by

S.(F )
K

These (Hopf-)algebras are e,commutative (and e-cocommutative) with re-



spect to the commutation factor
	 /f a,

c((a 1 ,b1),(a 2 ,b 2 )) = (- /)b/b2

Accordingly, we will not distinguish left and right 	 U.-modules, but

rather assume that all modules are c-symmetric bimodules, the left and

right structure being obtained from one another by means of the inversion

(or "graded commutativity").

By definition, 	 U.(V,W) 	 is both a supplemented 	 S:(V)-algebra as well

as a supplemented A'(W)-algebra. In particular, 	 S.(V) 	 and A*(W) 	 will

always be considered U.(V,W)-modules with respect to the associated aug-

mentations. Analogously, 	 K just represents the canonical augmentation

module of U.(V,W)

Remark that the algebra homomorphism U.(i v ) : S.(V) 	 > U.(V,W) 	 ex-
hibits 	 U.(V,W) 	 as a finite flat 	 S.(V)-algebra and that it is hence a

duality morphism of finite type as defined in (7.6.2.) 	 Extending this

notion and the result (7.6.3.) to the "graded commutative" case - which

is left to the reader - the term "linearly perfect morphism" is justified

by

Lemma 9.2.1.: 	 Let 	 F 	 (0-,F-) 	 be a pair of K-linear maps as above.

Then the following properties are equivalent :

(i) F 	 is linearly perfect.

(ii) D(F) 	 is linearly perfect.

(iii) U.(F) * (U.(V 2 ,W 2 )) , the underlying "complex" of 	 U.(1/ 1 ,W 1 )-modules
obtained from U.(V 2 ,W 2 ) 	 by restriction of scalars along 	 U.(F) ,

is perfect.

(iv) The complex 	 U.(F) (U.(V 1 ,W1 )) 	 RHomu iv ,w I (U.(V 2 ,W 2 ),U.(V 1 ,W ))
' 1

of U.(V 2 ,W 2 )-modules is perfect.
(v) U.(F) 	 is a duality morphism of finite type (and its virtual codi-

mension equals --ine(F) ).

(vi) U.(D(F)) 	 is a duality morphism of finite type (and its virtual co-

dimension equals 	 -ind7(F) 1.

The proof is obvious.

Remark:. (a) .	 For a linearly perfect morphism F as above, the relative

dualizing module of U.(F) 	 is

.(F)
	

ine(F) U.(F)'(U.( 	 ,W 1 ))) 	 according to (7.6 : 3.)



which yields by a simple computation
	 4Olf

WU.(F) = U.( 2 ,W 2 ) O K det(F)

As in (8.7.5.(v)), we define the canonical module of 	 U.(V,W) 	 to be

.(v,w) = U.(V,W) fa K det(V,W)

so that one has as usual

for 	 W = 0 	 the ordinary canonical module 	 ws.(v) = v
S.(V) i)1( det(V) ,

which may and will be identified with the module St d 	of differential
forms of maximal degree over S.(V) ,

for a linearly perfect morphim F as before,

, W2 )

ine(F) 	 !
(U.(F) ( . (V ,

If the graded vectorspace 	 (V,W) 	 is to be understood, we will set

. = U.(V,W) 	 and 	 UD. = U.(D(V,W)) = U.(W*,V*)

and similarly we mrite simply wIL 	and wUD. 	for the corresponding ca-

nonical modules.

If we need to separate the two degrees- , we will write Ul for the

homogeneous- component 	 S i (V) O K A 3 (W) 	 of bidegree 	 (i,j) . Analogously,

for any graded U.-module N = G N 	 Ni denotes the component of degree

(i,j) 	 . 	 •

The key observation by J. Bernstein, S.T. Gelfand and 	 I.M. Gelfand

in [BGG], slightly generalized, was now that homological algebra over U.

or UD. 	 is essentially the "same" - but by a non-trivial equivalence.

To formulate it precisely, let us (re-)introduce the following module

categories :

Modlf -U. 	 will denote the category of graded U.-modules N which are

locally finite for the total degree, that is, for any integer k

the K--vectorspace

NJ-
- def 	 i

i+j=k

is. finite dimensional. In particular, each component Ni 	 is of fi-

nite: dimension over K



' As 	 U. 	 itself is certainly locally finite for the total degree and 	 4 IT
as it is furthermore "positively graded", namely concentrated in degrees

Nx[0,diy] , it follows that

mod-U. , the category of all finitely generated graded U.-modules,

is a full subcategory of Mod if -U. , whose objects. N 	 satisfy

- for all but finitely many 	 j , 	 0 	 and

- for all but finitely many negative 	 i , 	 Ni = 0 .

In particular, the associated a-graded module SO is essentially

positively graded.

art-U. 	 will denote the full subcategory of mod-U. 	 which consists

of all graded artinian U.-modules 	 N . Equivalently,each component

Ni 	 is finite dimensional over K and there are only finitely many

pairs 	 (i,j) 	 such that Ni 	 0 . The artinian modules constitute a

Serre-subcategory of mod-U. , so that we may form the (abelian) quo-

tient category

Proj-U. 	 mod-U./art-Al. . "Forgetting" the A'(W)-structure, objects

in it can be identified with a-graded, coherent sheaves of modules

on the projective space P(V) , the action of the exterior algebra

being recovered through the 0
P(V)

 -linear maps which represent the

multiplication with the "1-forms" in W

The "typical object" in 	 Proj-U. 	 is hence a finite family 	 (F 3 )

of coherent sheaves of 0 P(V)-modules together with 0
P(V)

 -linear maps

: Fj -1 	W ---> FJ

satisfying 	 0 +1 ( j.(f4w)12 ) 	 0 	 for all local sections 	 f of Fj -1

and any w in W

In still different terms, 	 Proj-U. 	 can be identified as the cate-

gory of coherent sheaves of modules over the topological space P(V) ,

ringed by the 2Z-graded sheaf O p(v) fi K /CM .

We will denote the projection functor from mod-U. 	 to Proj-U.

by 	 a and think of it as "sheafification" as in the classical case

where W 	 0

Passing now to the underlying 	 M/2E-graded structures, we are in the

realm of "super-geometry" :

S.(V) 4 K CA.4* (W). 	 A(W)) 	 is the ( Ex a/2 n-graded) coordinate

ring of the- affine superspace A(V,W) attached. to the linear superspace

(V,W) , the projective space P(V) 	 ringed by the 2Z/22Z-graded sheaf of

K-algebras 	 0 p(v) fi K (A 4*(W) 4. A(W)) 	 representing the underlying projec-
tive super-space P(V,W)



Ext i
mod-P(V,W)

,G')4 	 G 	 ExtProj_U (F,G(1))
.J- 1=1 mod 2

and, as 	 a(U.) . 	P(V,W) , in particular

= G 	 Ext Proj-
1=1 mod 2

.(a(U.),F(1))

underlying ZE/ 2 71-grading  > mod-A(V,W)

Proj-U underlying 72/2 72-grading  > mod-P(V,W)

4 O4Remark: 	 (b) 	 P(V,W) 	 is actually the "algebraic" projective super-space

as the structure sheaf on its underlying reduced scheme, which is the. 

usual projective space 	 P(V) , is given by the (germs of) algebraic -

rather than holomorphic - functionS. Observe that we did not restrict

our field of coefficients 	 For more details in the real or complex case,

see for example [Lei].

	

Denoting O p(vw) 	the just introduced structure sheaf on	 P(V,W) 	 and
mod-P(V,W) 	 the category of coherent sheaves of modules over it, by def-

inition the sheaf cohomology of a coherent E/2 E-graded O p(vw) -module

F is the Z2)(7/2E-graded K-vectorspace which is given in degree 	 (i,1)

by

Hi(F) 	 = Ext i 	(0
	2 	 mod-P(V,W) 	 P(V,WPF- (1))

If now 	 (F 3 ) 4 	is an object in	 Proj-U. 	 as above, set 	 F' = F + 8 F 	 ,

with even component F+ = G F 2j and odd component F = g F2j+1
j 	 j

It represents naturally an object in mod-P(V,W) . For any two objects

F 	 (F 3 ) 	 and G = (G 3 ) 	 in 	 Proj-U. 	 one has then obviously

Hence, passing to the underlying ZZ/2E-grading yields an exact em-

bedding of Proj-U. 	 into mod-P(V,W) 	 and in this sense, the study of

objects in Proj-U. equals the study of special sheaves on projective

super-space, namely of those whose 71/2 7L-grading can be "refined" to a

2E-grading. Similar remarks apply to the corresponding natural functor

from mod-U. 	 into mod-A(V,W) , the category of graded coherent sheaves

of modules on the affine "super-cone" over P(V,W) .

• In all, we have a commutative diagram of abelian categories and exact

functors between them



/t0I.
so that one may be tempted to think of A(V,W) 	 as the even affine cone,

of U. 	 as the "homogeneous coordinate ring" of the "total cone" and of

(P(V), a(U.)) 	 as the "odd projective cone" associated to the projective

super-space defined by (V,W)

Coming back to our original subject, recall that MCM(U.) 	 denotes the

category of graded maximal Cohen-Macaulay modules over U. .

Deriving the abelian categories introduced, we are led to study

9.3. 	 The associated triangulated categories 

To investigate various triangulated categories canonically _attached to

a linear superspace 	 (V,W) , we will need the following criterion observed

by 	 A.A. Beilinson

Lemma and Definition 9.3.1., [Bei;Lemma 1]:

(i) Let C be any triangulated category, 	 (X i ) i	a family of objects

in C . Then there is a smallest full and triangulated subcategory

of C which contains this family of objects. Let us call it the

triangulated span of 	 (X i ) i 	in	 C . If this category is already

equivalent to C with respect to the embedding, we say that (X i ) i

generates C (as a triangulated category).

(ii) Let F : C ---> D be an exact functor between triangulated cate-

gories. Then the restriction of F to the subcategory spanned by

(X i ) i 	is full, faithful or an exact equivalence onto the subcate-

gory of D which is spanned by 	 (F(X i )) i 	if the maps

i ,X j ) : H om c (X i ,X j [k] ) ---> Hom p ( F( X i ),F(X j )[ k] )

are injective, surjective or isomorphisms (of abelian groups) for

all 	 k 	 and any pair 	 (X.,X.
j

) 	 of objects in the family.

Remark: 	 (a), 	 If the triangulated category C carries further gradings,

say defined by shift functors 	 -(6) , a family 	 (X i ) i . of objects in 	 C

will be said to generate (a subcategory of) 	 C up to - shifts, if the fam-

ily 	 (X i (6)) i,6 generates it in the aforementioned sense.

	

As now U. 	 is already bigraded, its derived categories will be triply

graded by the functors -[k](i,j) , with k,i,j 	 any integers.

What now simplifies considerably the homological algebra over U. , is

the fact- that most interesting triangulated categories attached to it can



be generated up to shifts by single modules - considered as complexes
	 lOt

•

	

	 in the usual way. A formal indication, why this makes life easier, is

obtained by just considering the associated Grothendieck groups

Remark:	(b)	 If C 	 is any triangulated category which can be generated
by a family of objects 	 (X i ) i , the associated Grothendieck group 	 K(C)
is generated as an abelian group by the classes of these objects. If now

C carries further gradings, defined by shift functors 	 -(6) , 	 6 	 in
some group A of degrees, then K(C) 	 becomes in a natural way a module

over the integral group ring of A and if the family (Y ) 	 generates
C up to shifts, the classes 	 cl(Y ) 	 generate 	 K(C) 	 as such a module.

Hence, if C can be generated by a single object (up to shifts), its

Grothendieck_ group is a cyclic group (resp. module over the group ring).

In case of U. , some naturally occurring triangulated categories are

the following ones

(9.3.2.)
	 Dart( 

U.) , the full triangulated subcategory of 	 D b (U.) 	 whose

objects are those complexes with artinian cohomology, is equivalent to

D
b(

art-U.).

(i) It can be obtained as the thick hull of the image of the forgetful

funCtor

U.(P ) 	 : Db(A . (W)) ---> D b (

associated to the projection p w : (V,W) .---> (0,W) 	 onto the odd quo-
tient space. (Of course, it is also the thick hull of the image of the

forgetful functor associated to the zero-map 0 : (V,W) 	 > (0,0)

but this map is not linearly perfect, whence we prefer p w !).
(ii) D (art-U.) 	 is generated up to shifts by the single U.-module 	 K

These assertions are obvious.

(iii) For the Grothendieck groups one has hence :

K(D bart (U.)) = K(O b (art-U.)) = K (art-U.) = cl(K). 71[s,s -1 ,X,X 	 ]

with 	 cl(K(i,j)) 	 (-1)3cl(K)s1AJ . (The sign has been introduced just

ta keep track of the "parity of even and odd part. It makes formulas

Took , more natural.)
(iv) From the explicit knowledge of the natural projective resolution of

K over U. , (8.5.T.), we get
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RHom 	 (K,K(i,j)) 	 Si(W*) @ 	 A (V*)[-i-j](j,i)

i,j 	 i,j

as complexes of bigraded K-vectorspaces.

Accordingly, 	 Ext 111(K,K) (i,j) 	0	 for 	 k+i+j $ 0 	 and

Extirj(K,K) ( _ j, _ i) 	Si(W*) E1 K Ai(V*) 	 UDi

The multiplicative structure on the Yoneda-Ext-algebra is precisely

the opposite one of UD. , due to our conventions on shifts, (8.4.),

and our preference for right modules. As A*(V*)" is canonically

isomorphic as a K-algebra to 	 A*(V) , [ALG III.§11.5], and 	 S.(W*)

is commutative, the Yoneda-Ext-algebra of K over 	 U. 	 "i " 	 U.(W*,V)

- but regraded.

(9.3.J:3.) 	 Db
perf 

(U.) 	 denotes, as always, the full triangulated subcate-

gory of graded perfect complexes in D (U.) .

(i) It can be obtained as the thick hull of either the image of the

left adjoint U.(i v )* or the right adjoint U.(i v ) 	 of the forget-

ful functor associated to the inclusion 	 i V 	(V ' 0) 	 > (V,W) 	 of• 
the even subspace. These functors

U.(i v )* , U.(i ) 1 : D b (S.(V)) 	 > D b (

are well defined by (9.2.1.) as 	 i v 	is linearly perfect and their

images span the perfect subcategory as 	 S.(V) 	 is of finite global

dimension, see (1.3.(b)) 	 and remark that

U.(i v ) (-) 	 U(i )*(-) 	
. WU./S.(V) = Igiv) * ( - ) g 	 (det(W)) -1

by Remark (a) in (9.2.).

(ii) According to these choices, there are - at least - two canonical

generators for Dperf( U.) 	imposing themselves, namely either U. =
U.(i V )*(S.(V)) 	 or else 	 wU. = U.(i V ) (wS.(V) 	 .

(iii) 	 For the Grothendieck group, remark that a finitely generated pro-

jective and graded U.-module is necessarily a direct sum of modules

of the form 	 U.(i,j) 	 for various (i,j) . It follows that

K(Dperf 
(U.)) = K0(U.) 	 cl(U.). l[s,s -I ,X,X -I j



of 	 D art (S.(V)) 	 under either functor 	 U.(i V )* 	 or 	 U.(i v ) 	 .

iii)(It follows that this category can be generated up to shifts by

either single module 	 A'(W) =

) 	

U.(puw)*(A'(W)) = U.(i v )*(K) 	 or also
= A'(W) 	 (det(W))-1 = U.(i v )

!
 (K) , as 	 K (resp. 	 A'(W) ) gen-

erate 	 Dart (S.(V)) , (respectively 	 Dperf (A*(W)) ).
(iii) 	 For the Grothendieck group one finds hence

(9.3.4.) 	 D
b 
/p (U.) 	 will denote the full triangulated subcategory of

all perfect complexes with artinian cohomology in 	 D (U.) . Hence it

is the intersection of Db rt (U.) 	 and Dbperf (U.) .

i)(Accordingly, it can be obtained as the thick hull of the image of

D	 (A*(W)) 	 under 	 U.(p w ) * 	or also as the thick hull of the image
perf b

: and that, using the same conventions as in (9.3.2.(iii)) , one has 	 440

cl(w u ) = cl(U.^ K det(V,W)) = cl(U.(-v,w)) = cl(U.).(-1) w s -v X w

(iv) 	 As concerns the graded endomorphism rings of these generators,

one obtains as in (8.4.) :

G RHom u. (U.,U.(i,j)) = 	 RHomu.(wu.,w
i,j

whence the corresponding Ext-algebra is isomorphic to U
o
.p , again

conveniently regraded. By the same argument as in (9.3.2.(iv)), 	 Ubb

is isomorphic as a graded K-algebra to 	 U.(V,W*) .

, j ) ) 	 u•P[o ] 	 ,

K(D  /p (U.)) = cl(A'(W)). 7Z[s,s-I
	 1
,X,X 	 ]

a

and, filtering A'(W) 	 by the powers of its natural augmentation ideal,

it follows that the image of the generator 	 cl(A'(W)) 	 in 	 K(D art (U.))

is given by

Cl(A . (W)) = C1(@ A (W)) = 	 K(0,-j)4(1))

= cl(K).(1-X 1 ) W

As A'(W) 	 over U. 	 can be resolved by an appropriate Koszul complex,
one obtains for the class of A'(W) 	 in 	 K(D perf (U.)) = K o (U.)

cl(Ae(W)) = Z (-1) cl(U. 	 Ai(V))

= E (-1)ici (u.(- mc i) 	 cl(U.).(1 -s-1)v
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As 	 cl(wA . (w) ) 	 cl(A•(W)(0,w)) 	 cl(A'(W)).(-X)w , the above for-

mulas, if rewritten exclusively using dualizing modules, become :

cl(wA . (w) ) 	 cl(K).(X-1)w 	 cl(wu. ).(1-s) 	 .

(iv) 	 Using once again the resolution of A'(W) 	 over
	

by a Koszul

complex, one obtains

RHom u (A•(W),A*(W)(i,j)) 	 RHoms (V) ( ,A*(W)(i,j))

1,3

@ A'(W) Q K A i (V)*[-i](i 3 O)

so that the Yoneda-Ext-algebra of A'(W) 	 over U. 	 is easily seen

to be isomorphic to A'(W) O K (A*(V)*)" 	 A'(W) 	 A•(V*) 	 - with
the same change in grading as in the other cases considered.

Of course, the result for wA . (w)	is the same.

(9.3.5) 	 Now let us consider 	 D (U.) 	 itself.

(i) It can be generated up to shifts by either single module 	 S.(V)

or wS.(V) . For this, remark that any finitely generated graded U.-
module admits a finite filtration by submodules such that the associ-

ated subquotients are annihilated by W = S 0 (V)^ K A 1 (W) in U. .

Hence these subquotients are naturally S.(V)-modules and, as the

polynomial ring 	 S.(V) 	 is.of finite global dimension, they admit

finite resolutions by graded free 	 S.(V)-modules. This shows that

S.(V) 	 as a U.-module generates 	 mod-U. , hence also 	 D
b

( mod-U.) .

As wS (V)	is a faithfully projective 	 S.(V)-module, it generates
as well.

(ii) The Grothendieck group of D (U.) 	 equals 	 KO(U.) 	 - using the

notation of [Qu 	 . It is freely generated over 	 7/[s,s -1 ,X,X -1 ]

by the class of 	 S.(V) .

To see this, recall first that by Remark (b) above, this class

necessarily generates the Grothendieck group. That there is no non-

trivial relation follows from the obvious fact that U.(i v ) * , the
forgetful functor associated to 	 i v , "preserves" the class of S.(V)
which is known to generate freely KO(S.(V)) 	 by [Qu 1;Thm. 6]

(iii) 	 Using, the natural projective resolution of K over A'(W) 	 , ex-

hibited in (8.5.7.), one obtains

RHom U (S.( ),S.(V)( ,j)) = @ RHom 	 K,S.(V)(i,j))
. 	 .04

i,j
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g S.(V) g K ri(w)*[--mo,i 	 g S.(V) g K 	w*)[-n(o,i)

Hence the Ext-algebra of 	 S.(V) - or also w s(v) - over 	 U. 	 is
given by 	 S.(V) Q K S.(W*) = S.(V 8 W*) - regraded as always.

To state our main theorem below, it is useful to consider still another

generator of D
b
(U.) , namely the "true" dualizing complex of 	 S.(V)

which is given by 	 K v 	w s.(v) [v]. Its graded endomorphism ring in the

derived category 	 D
b
(U.) 	 is still the same as that of 	 S.(V) , and its

class in the Grothendieck group 	 KO(U.) = K(D
b
(U.)) 	 is apparently

cl(K v ) = cl(S.(V)[ ](-v,0)) = cl(S.(V)).(-

!
Remark that K v 	O v (K) , 	 O v : (0,0) ---> (V,0) 	 the zero map considered
also as the structure morphism from the affine space A(V) 	 to the point

Spec(K) , O v the usual functor from the duality theory for smooth mor-
phisms, 	 Ha;III .

) -v

To finish consideration of D (U.) 	 for the moment, observe still how

the classes of U. , A'(W) 	 and 	 K 	 are expressed in 	 6(U.) - using the

same . arguments as in (9.3.4.(iii))

cl(U.) = cl(S.(V)).(1-X -1 ) w

cl(K) 	 = cl(S.(V)).(1-s 
-1)v
	and

cl(A'(W)) = cl(S.(U)).(1-X - ) w (1-

Now let us name, respectively identify the quotient categories of

Db(U.) which are obtained by factoring out the various thick subcatego-

ries introduced.

(9.3.6.) 	 Db(U. )/D art ( U.) 	 is naturally equivalent to 	 D b (Proj-U.) .
Hence this derived category of Proj-U. can be generated - up to

shifts - by the single object 	 a(S.(V)) , the sheafification of the

U..-module 	 S.(V) 	 It follows that the Grothendieck group of Proj-U.

iT given by

(Proj-U.) 	 K(D (Proj-U.)) = K 	 .))/K(Dbart • ) ) 	 ,



whence Ku(Proj-U.) = cl(a(S(V))). E[s,s -1 ,X, 413

Remark: 	(c) Passing to the projective superspace 	 P(V,W) , one may de-

duce that its Grothendieck group is obtained from the above by adding

the relation 	 X 2 	 1 . Remark also that the sheaf on 	 P(V,W) 	 which is

the image of a(S.(V)) 	 is just the structure sheaf of the underlying

reduced space P(VW)red , which in turn is nothing but ordinary projec-'
tive space 	 P(V) . Hence, the structure sheaf of the underlying reduced

space generates the Grothendieck group, but not the structure sheaf it-

self, which is the image of 	 a(U.) . More precisely, one has in that

group 	 K u (P(V,W)) :

	

cl(O p(v,w) ) 	 cl(Op(v)).(1-X-1)w

= cl(O p(v) ).2 w (1-X) 	 mod (X 2 -1)

This shows a significant difference between "ordinary" and "super" pro-

jective geometry. This explains, for example, the phenomenon observed

by O.V. Ogievetskii and 	 IA.Penkov, [0-P], that,extending naturally

the theory of Serre duality to projective supermanifolds, the top coho-

mology group 	 H (wp(vw) ) 	 of the dualizing sheaf wfl,urkvw) 	- which is, 

just the sheaf obtained from w u. - carries a natural trace, but is not
one-dimensional. In fact, the "natural" domain of definition for the

trace is the group

Ext
P(VW)

(v) 	(Op(v),wp(v w) ) 	 Hv(P(V 	
P(V) ) = K

, 

Rephrasing the above, the, image of U. 	 in 	 Proj-U. - or mod-P(V,W

generates only the "perfect" coherent sheaves

6
(9.3.7.)
	 Dperf(PrcliIL) 	 def

n b	Therfk .
(
H .)/D a/p (U.) 	 can be identified -

- 	 =
up to an exact equivalence - with the full l ,triangulated subcategory
of D (Proj-U.) 	 which is generated up to shifts by 	 a(U.) , the

structure sheaf of the ringed space associated to Proj-U. . It is

also the thick hull of the image of either induced functor

	

i* 	 (P(V)) 	 D (Proj-U.) 	 ,
V '

represents hence those objects in D (Proj-U.) 	 which are obtainable

from the underlying (ordinary) projective space P(V) 	 by "lifting".



Atcordingly, we set

(9.3.8.) 	 Prim-U. = D
b
(Proj-U.)

/
D
perf

(Proj-U.) , and call it the cate-

gory of (classes of) primitive objects over 	 Proj-U. , in analogy to

the theory of primitive cycles for projective schemes.

This quotient category is still generated up to shifts by the class

of a(S.(V)) . To abbreviate notations, let a denote the class of

this object in the Grothendieck group, to get

	K(Prim-U.) = a. E[s,s -1 ,X,X -1 ]/(1-s -1 	
, 1-X

-1 w

= a. E[h,g]/h v ,g w

where we have set h = 1-s - 1 , which is the class of a hyperplane

in the underlying (reduced or "even") space P(V) 	 of "geometric K-

rational points", (9.1.(i)), whereas g = 1-X -1 represents the class

of a: "line" in the odd quotient space W. 7 a corresponding module of

class g is given by S.(V) Q K A*(W)/(14') , W' a hyperplane in W

which can be identified with the class of a hyperplane in 	 P(W*) , the

projective space of "odd K-rational points", (9.1.(ii)).

Remark that this Grothendieck group is a finitely generated free

abelian group of rank vw

Remark: 	(d)	 Passing once again to the projective superspace 	 P(V,W) , we

can as well form the category of primitive objects whose Grothendieck

group, obtained from the above by adding the relation g(g+2) = 0 , is

the direct sum of a free group of rank v and a "large" 2-torsion group.

Observe that Prim-U. 	can be obtained directly from D
b (U.) - up to a

natural equivalence - by factoring out the thick hull of both objects

U. 	 and K . Hence, we may also think of Prim-U. 	as representing the

primitive classes (of complexes) of modules over U. . Going the other

way round, we could factor out first the perfect complexes, i.e. the hull

of U. , to obtain - up to an exact equivalence - by Theorem (4.4.1.) :

MCM(U.) , the category of graded maximal Cohen-Macaulay mod-

uTes over U. , or, equivalently, APC(U.) , the homotopy category of

graded complete resolutions over U.

	

Remark that S.(V), the generator of D (U.) 	 is already a MCM over
U. 	 (8.3.1.) or (8.5.7.), so that it generates 	 MCM(U.) 	as a trian-

gulated category up to shifts - there is no need to pass to the MCM-

approximation first.



The natural complete resolution of 	 S.(V) 	 over 	 U. , described in

(8.5.7), generates then - up to shifts - the triangulated category

APC(U.) .

It follows that the Grothendieck group of MCM's over U. 	 modulo

projectiveS is

-1
K(MCM(U.)) 	 K(APC(U.)) 	a.	 [s,s - ,X,X 	 ]/(1 - x - 1 ) w

a. E[s,s -1 ,g1/g w

where a and g are defined as before, (remark that the module re-

presenting 	 g 	 is also already MCM, so that g 	 keeps its original

meaning).

(9.3.10.) 	 MCMart(U.) 	will denote the thick hull in 	 MCM -(U.) 	of the

MCM-approximation of K . It is equivalent to both the fUll subcate-

gory of MCM-approximations of .artinian U.-modules as well as the

quotient category Db
art (U.)/Da/p

 (U.)

As forming subsequent quotients of triangulated categories is - up to

exact equivalences - independent of the order, it follows

Proposition 9.3.11.: 	The quotient categories of primitive classes

of complexes of coherent sheaves on Proj-U. , 	 Prim-U. , and of MCM's

modulo MCM-approximations of artinian modules, MCM(U.)/MCM
art (IL) '

are equivalent as triangulated categories.

To resume the situation, we have the following commutative diagram

of triangulated categories and exact functors, whose rows and columns

in plein arrows are exact sequences of triangulated categories.

A dotted arrow A ---> B indicates that B is the thick hull of A

-under a suitable exact functor



Db
ar (U
	 ---> MCM art (U.) —> 0

D 	 > MCM(U.) 	 > 0

(Proj -U.) ---> Prim- 	---> 0

1
0 0

D
b 
erf( *(W)) 	 > D(/CM) ---> MCM(A'(W)) —> 0

D
b 
rt 	 a

(S.(V)) 	 ----> 	 D
b >U.)p

I
> 	 D b

V))  	
perf

>

D
b
(P(V)) ---> 	 D

b 
erf(Proj

p
-U.) ---> D

0
	

0

(9.3.12.)

Now we come to the main result of this chapter

9.4. 	 The Bernstein-Gelfand-Gelfand-correspondence 

To abbreviate' the formulation of the theorem, recall that the base

field K can b6-interpretbd as U.(0) , the enveloping algebra of the

zero-space 0 = (0,0)

Passing to the cohomology of an object in D (U.(0)) 	 identifies this

latter category with the category of triply a-graded K-vectorspaces of.

finite total dimension

This category is obviously generated up to shifts by the single object

K , and its Grothendieck group is 	 a[s,s
-1
 ,X,X

-1
] , the class of the

j
graded vectorspace ,,K[k](i,j) 	 being represented by (-1)k+j s i X

	 in view

of our general convention in (9.3.3.(iii)).

Denote by y the functor which regrades a triply graded vectorspace

according to

y(K[k](i,j)) = K[k+i+j](-j,-i) 	 .

This functor is exact - as 	 y(-[k]) 	 y(-[k](0,0)) = -[k](0,0) = -[k] -

with respect to the triangulated structure and involutive. The induced

automorphism of the Grothendieck group sends s into 	 X -1 and X into

s

For any given linear superspace 	 (V,W) , we will denote 	 in analogy

to (9.3.5.(iii)) - by



.o
(V,W) :

b
(U.(0)) 	 > D b (U.(V,W))
	 44Th

the unique exact functor which commutes with the shifts 	 ,j) 	 and

satisfies

-0 (V,w) (K) 	 V [v]

where K V 	is considered a complex of U.(V,W)-modules as usual.

Beilinson's criterion (9.3.1.) , applied to 	D b (U . (V,W)) 	 can then be
expressed as follows

Assume that F is any exact functor from D b (U.(V,W)) 	 into another
triangulated category. Then it is essentially uniquely determined by its

composition with 	 0 (v,w)

If now 	 D(V,W) 	 (W*,V*) 	 is the 'dual" linear superspace to 	 (V,W) ,

one has from 	 (9.3.5.(iii))

k+i+j

	

(K , 	 ) 	 Ext 	 (K 	 , 	 )Ext
U.(V,W) 	 K V (1,j) 	 U.(D(V,W)) 	 W*

K
 W*

for all integers 	 k,i,j . (Namely, the indicated vectorspace is zero, ex-

cept for 	 k+j 	 0 , in which case it equals 5.(V)^ K S k (W*) .)

In other words, the identity on 	 S.(V G W*) 	 furnishes a natural iden-

tification of triply graded rings

(9.4.1.)
	

Ext6 (v,w) ( 	 ,K ) 
•,.
	 = i(Extil . (D(v,w)) (Kw* ,Kw* ) (.,

This is the key to :

Theorem 9.4.2.: 	 Let (V,W) 	 be a linear superspace over K .Then

there-exists.a (covariant) exact functor

b 	 D (ti (v L1)1
(v,w) 	 %-.■.,-// 	 0 ( •(D(V,W)))

together with a natural isomorphism of functors on
	 b( U•(0))

b
(V,W)

°*0
 ( ,W)

which induces the isomorphism (9.4.1.) of triply graded rings if evalu-

ated on the shifts and translates of K .

The functor b(y W) 	is essentially unique, necessarily an exact eq .ui-
valence and admits bD(v W) 	as its inverse.



     

son s  S I " V,W) II 	 •    

criterion :   

.0
D(V,W) 

y(K[k](i,j)) 	 '0
D(V,W

)(K[k+i+j]( - j, - i))

by definition of y ,

[k+i+j]( - j, - i)

	by definition of	
1 D(V,W) '

whereas

b (V,W)° •0 (V,W) (K[k](i, j ))
	

( v,w ) ( K v [k ]( ,j ) ) 	 ,

by definition of 	 '0(V W) . Hence b (vw) 	is determined on the generating
family yi,j) 	 by the theorem, whence the uniqueness.

As its image is precisely a generating family of D b (U.(D(V,W)) 	 and

as by hypothesis the induced maps on the morphism groups are isomorphisms,

it follows also that 	 b
(V W)
	 is an exact equivalence. Replacing 	 (V,W)

by its "dual" 	 D(V,W) 	 (W*,V ) , the same criterion shows that 	 b u(v,w)
is an inverse of 	

b (V,W)*

The non-trivial part is the existence. Modifying slightly the sketch of

proof in [BG0], a functor b as claimed can be obtained in the following

way, (where we suppress once again 	 (V,W) 	 from the notations)

First, let 	 N: 	 N 	 be any 	 U.-module which is locally finite for

the total degree. Associate to it a double complex over UD. :

Its term in (complex-)bidegree 	 (j,i) 	 is given by 	 Ni Q K UD.(j,i) ,
and its differentials

and

'dj • N j
• 	 i

—>
1

UD.(j+1,

"d4 : N 	 0 	 UD.(j,i) 	 N4
K 	 1+1

are given by those UD.-linear maps in

Hom U . (N40 UD.(j,i), j 114 K UD.(j 1,i)) 	 Hom (
and

i
j+1 KW*)

UD.( ,i I)

Hom 	 (N40 UD.(' ') Nj 	 0 UD•( 	 ' 1)) = H 	 (N 	 V*)j,i+ 	 - om K
UD. 	 K 	 ' i+1 K 	 ' 	 1 	 i+1 K

respectively, which correspond by adjunction to the action of the "odd

1-formsw in W and tne action of the "even 1-forms " in V respectively

on the U.-module N:

The verification that 	 (Nj2 K UD.(j ' 1) ' ' ," ) 	 constitutes indeed



Af
double complex is immediate. Also, a U.-linear morphism of modules yields

obviously a morphism of the corresponding double complexes.

As 	 N: 	 is by assumption locally finite for the total degree, (which

was not needed yet), the associated total complex, denoted d(N) , con-

sists of finitely generated, graded free UD.-modules, such that the term

in complex-degree k can be generated by homogeneous elements of degree

(-j,-i) 	 with 	 j+i 	 k 	 In other words, this complex is linear for the

total degree. (Conversely, one sees immediately, that such a linear com-

plex determines a unique U.-module, locally finite for the total degree,

of which it is the image under d . As furthermore two homomorphisms of

linear complexes can only be homotopic if they are equal, it follows that

d establishes in fact an equivalence of categories between Mod if -U. ,

(9.2.), and the homotopy category of linear complexes over 	 UD. .)

Now d can be extended to a functor on finite complexes over U. 	 by

applying it to every term and the differentials - resulting in a double

complex whose "rows" are linear complexes - and then passing to the asso-

ciated total complex again.

This extension is compatible with translation and carries homotopies

into homotopies. As d transforms evidently short exact sequences of

U.-modules into short exact sequences of complexes over UD. , it maps

necessarily finite acyclic complexes over U. 	 into acyclic complexes

over UD. 	 and passes hence trivially to the corresponding derived cate-

gories, so that we end up with an exact functor - again denoted d -

from D b (Mod
lf

 -U.) 	 into 	 D(Mod-UD.) .

Now let us consider d(S.(V)) . By construction, this complex is iso-

morphiC (as a complex of graded K-vectorspaces) to

	

S.(V. ) 	 .(V*)( )[ - i] 	 .(W*) 	 ,6 )i

which is nothing but the usual Koszul complex 	 (S.(V) @ KA'(V*), 	 - up

to a sign in the differential - tensored with 	 S.(W*) 	 over K

This shows

(1) 	 The inclusion of the UD.-submodule 	 1	 det(V*) 	 S.(W*) 	 in

complex-degree zero - which is isomorphic to 	 S.(W*)[0](0,-v) 	 as

a "complex" - into 	 d(S.(V)) 	 is a quasi-isomorphism of complexes.

By inspection, it is also clear that

(11) 	 d(-[k](i,j)) 	 d(-)[k+i+j](-j,-i) 	 for all integers 	 k,i,j 	 and

(iii) The induced morphisms of vectcrspaces from

Nom b
D (M d 	 -U.

S . ),S.(V)[k](i,j)) 	 Extu 	 S.( ),S.(V))
j )



into

- 	 k+.Ext k+i+j (d(S.(V)),CS.(V)))(_j , _i) 	 ExtUDi+j(S (W*),S•(W*))(_j,-i)UD.

can be identified, by (9.3.5.0ii)), (9.4.1:), as the natural iso-

morphism 	 S i (V) Q K S k (W*) = S k (W*) Q K S i (V) 	 for 	 k+j 	 0 , (and

as the isomorphism of zero-objects if k+j 	 0 ).

= W V [v] = S.(V)[v](-v,0) 	 in 	 D b (U.) , "renormalizing"

b(-) 	 d(- Q K (d et W)
-1

) 	 d(-(0,w)) = d( - )[w]( - w, 0 )

will then yield an exact functor from
	 b

(Modif-
	

into D(Mod-UD.)

which satisfies

b(K v ) = b(S.(V)[v](-v,0)) 	 d(S.(V)[v](-v,w))

= d(S•(V))[w](-w,v) 	 by (ii) .

Into this complex

= ww* [w] 	 S.(W*)[ ](- ,0)

embeds quasi-isomorphically by (i), so that there is in fact a natural

isomorphism in D(Mod-UD.) 	 from Kw* into b(K v ) .

From (ii) and (iii) it follows that the induced morphism on the graded

endomorphism ring of 	 coincides with the identification of (9.4.1.),

so that the restriction of b to D
b
(U.) 	 satisfies the requirements of

the Theorem.

qed

Remark: 	 (a) The functors b or d do not embed D
b
(Mod lf -U.) 	 into

D(Mod-UD.) : As can be easily deduced either from the following or the

explicit construction, both functors "vanish" precisely on those com-

plexes which are 	 Ext6 	
l. 	 )

(K,-), 	 \--acyclic.

Hence, the point of the Theorem is essentially Nakayama's Lemma :

It is equivalent - as U. 	 is strongly Gorenstein - to the statement

that.rm complex X 	 in D b (U.) - which is not acyclic - can satisfy

Ext
	

K,X)
	

. 0 	 for all integers 	 k,i,j .

Namely, 	 Ext U (K,X)
	

Ext 	 (RHom 	 X,U.),RHom u (K,U.)) 	
'



as 	 U. 	 is strongly Gorenstein,
	 /1z4

cf. (4.6.), and graded commutative,

Ext
k 

(RHom 	 (X,U.),det(V,W) -1 [-v])
U. 	 U 	 ( ,j)

by (8.5.1.(i))

k-

	

Ext
v
 (RHom 	 (X,U.),K)

U. 	 U. 	 (i+v,j-w)

as 	 det(V,W) 	 K(-v,w) 	 by definition,

and this last vectorspace is canonically isomorphic to the K-dual of

U.
Tor k-v (K,RHom X,U.))

(-i-v,w-j)

As with 	 X 	 also 	 RHom U (X ' U.)‘ is a non-acyclic object in 	 D b (U.) , the

Lemma of Nakayama applies.

To identify more precisely the image of mod-U. 	 under b or d , we

make the

Definition 9.4.3.: 	 Let 	 C be any complex of finitely generated, gra-

ded free modules over U. 	 (or UD. ) . Then

(i) C 	 is almost linear (for the total degree), if there exists an

integer 1 such that C
-k 

can be generated by homogeneous ele-

ments of bidegree 	 (i,j) 	 with 	 k-1 	 i+j 	 k+1 	 for all 	 k

In this case, we say that the deviation (from linearity) of

is (uniformly) bounded by 	 1 .

(ii) C 	 is a (generalized) monad if it is an almost linear complex

which is bounded below and of bounded cohomology. The homotopy

category of all monads over U. 	 will be denoted Mon(U.) , its

full subcategory of linear monads by Mon
0
 (11.) 

Remark that, by definition, a (generalized) monad is just a special

projective co-resolutiOn,' (5.6.), whence (generalized) monads could as

well be called almost linear projective co-resolutions.

It is clear, that being almost linear or a monad are properties of a

complex which are stable under translation and which are preserved by

forming mapping cones. Hence, almost linear complexes or monads form each

a full: triangulated subcategory of the homotopy category-of "all" com-

plexes,

Using the terms just defined, the proof of the Theorem above yields



Corollary 9.4.4.: 	With the notations as before, one has :

(1) 	 There exists an exact equivalence from D
b
(U.) 	 to 	 Mon(U.) 	which

associates to any object in 	 D
b
(U.) 	 an almost linear projective

co-resolution.

The functor b establishes an exact equivalence from D b
(U.) 	 to

Mon(UD.) . It maps 	 mod-U. 	 isomorphically onto the abelian cate-

gory Mon
0
 (UD.) 	of linear monads over UD. .

(iii) 	 There exists a t-structure, [BBD;1.3.], on 	 D b (U.) 	 whose heart

is given by all such complexes which admit a linear projective co-

resolution.

The proof of (ii) follows immediately from the proof of (9.4.2.). Namely,

it has been observed there, that d (or b ) transforms any U.-module,

which As locally finite for the total degree, into a linear complex. But

if such a module is finitely generated - over 	 U. , the corresponding lin-.

ear Complex is necessarily bounded below, (9.2.). That the cohomology of

this complex is bounded (and also once again that the complex itself is

bounded below) is then a formal consequence of the fact that this is true

for the complexes associated to a generating family, say S.(V) 	 up to

shifts, as established directly during the proof of (9.4.2.). This shows

that d (or 	 b ) , if restricted to D b (U.) 	 or mod-U. , take the images

claimed. As on the other hand 	 Mon(UD.) 	is - by (6.2.1.(i)(b)) - a full

subcategory of D(Mod-UD.) , which lies by definition "inside" 	 D
b
(UD.) ,

the Theorem implies that Mon(UD.) 	is already equivalent to D b (U.)

under either functor d or b.
(i) 	 is now obtained from (ii ,) by exchanging the roles of U. 	 and 	 UD.
Given a complex X 	 in Db(U.) , represent its image under b by some
finite complex in 	 D b (UD.) 	 and apply b 1 . Making these chOices "coher-

ently" - without asking a logician - yields the exact equivalence.

The t-structure claimed in (iii) is obtained from the natural one on

D
b

( - UD.) 	 by applying 	 b -1

Remark: 	(b) As	 U. 	 is graded and strongly Gorenstein, it follows from

(5.6.) a priori that any object in D (U.) admits a graded projective

co-resolution. The additional information provided here is that such a

projective co-resolution can be chosen to be almost linear !

Conversely, although the proof of (9.4.2.) did not use explicitely

the fact that- U. 	 is strongly Gorenstein, one of the significant pro-

perties of such rings, namely the existence of projective co-resolutions

- and then also automatically of complete resolutions, see (3.1.) and

(5.6.), - follows from the (proof of the) Theorem.



k+i+j

8 (-)(i,j) 	
ExtuD. 	 (K,b(-)) ( _ j, _ i+v)

Ext k+i+ j(b(-),K) ( _ j, _ i _ v)UD.

cohomological

functors

on D Ext U. - ,U.) 
( ,j)

41.3
Now we can compile a dictionnary between data over U.(V,W) 	 and the

corresponding data over U.(D(V,W)) 	 under the equivalence 	 b (VW) 	 for
any linear superspace 	 (V,W) . The entries in the following list have to

be read "up to isomorphism or natural equivalence" whatever applies

(9.4.5.

data over 	 U. 	 U.(V,W) 	 data over 	 UD. = U.(W*,V*)

complexes 	 K V 	 W*

and 	 U. 	 det(V ) . K(0,-v)

modules 	 det(W) = K(0,-w) 	 UD.

A"(W) 	 iC(V*)

gradings on D b( ) 	 [k](i,j)

and the map on

K 1 (-)
0	 cl(S.(V)).siXj

[k+i+j](-j,-i)

cl(S.(W*)) (-1) v+w s -w-j -v-i

subcategories
Db erf 

(U.) 	D art
( UD.)

p 

D b 	 (U.) 	 Db 	 (UD.)D art ( U ' )

D
b /p 	 Da/p
(U.) (UD.)
a 

quotient-
	

MCM(U.) 
	

D
b
(Proj-UD.)

categories of
	

D
b
(Proj-U.)
	

MCM(UD.) 

D
b
(-)
	

Prim(U.) 
	

Prim(UD.) 

The proof is left to the reader. It follows immediately from the explicit

	

description of 	 b and (9.3.).

	

Remark that 	 b "reflects" the diagram (9.3.12.) at the diagonal.
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Without even knowing 	 b explicitely, one may deduce the above dic-

tionary just from Beilinson's criterion and the following, easily estab-.
lished

Lemma 9.4.6.: 	Let	 F = 	 (V,W) ---> (V',W') 	 be a linearly

perfect morphism of linear superspaces over K . Then

(i) F 	 admits a unique factorization 	 F = f o D(g) , such that the even

components of both f and g are identities.

(ii) -If 	 F + 	is an isomorphism,	 U.(F) * (K v ,) 	 is isomorphic to 	 K v .

(iii) 	 If 	 F 	 is an isomorphism, then 	 U.(F) I ( v ) 	 is isomorphic to

K
V

,

For the proof of (i) just observe that necessarily 	 f = (id v ,,F) 	 and

g = (id w* ,(F
+
)*) . The remaining assertions are once again easy exercises

on Koszul complexes.

Corollary 9.4.7.: 	Let F	 be a linearly perfect morphism as above,

F = f 0 0(g) 	 its decomposition as in (9.4.6.(i)). Then the following dia-

gram of functors commutes - up to a natural isomorphism of functors

U.(F) *

	 > D b( .(V,W)) 	b(V ' W) 	> Db(U . (D(V , W)))

U.(D(g)) * I 	 b 	 I U.(g)*

D b (U.(V 1 ,W)) 	 (V',W) 	Db(u.(D(v,,w))

U.(f)* 	

A

U.(D(f))

	  D b (U.(V ,W')) b(V1 ' Wl) > D b (U.(D(U,W)))

Proof:• The commutativity of the upper square follows from the commutati-

vity of the lower one by adjunction.

For the lower square just use Beilinson's criterion, (9.4.2.) 	 and

(9.4.6.(ii),(iii)).

Now take for example F = p w : (V,W) ---> (0,W) , the projection onto

the odd quotient of (V,W) . Then the Corollary implies immediately that

b(VW) induces an exact equivalence between Dart(U.) and
 Dperf

 (UD.) .

Similar arguments establish the other entries of (9.4.5.)

For further use, let us also record the following which cannot be ob-

tained directly from the Theorem (9.4.2.) but rather from the explicit

construction of d in its proof :



Let 	 F : (V,W) ---> (V 1 ,141 1 ) 	 be an arbitrary morphism of linear super-

spaces. Then the forgetful functor - or "extension of scalars" - associ-

ated to U.(F) 	 is the identity on the underlying graded K-vectorspaces,

hence preserves trivially the property of being locally finite for the

total degree. As it is also exact, it passes "as such" to the derived

categories, yielding an exact functor 	 U.(F) * 	from	 D
b(

Mod if-U.(V 1 ,W 1 ))

into
b
(Mod

lf
 -U.(V,W))

On the other hand, tensor-product with 	 U.(D(V,W)) 	 over 	 U.(D(V',W'))

- or the "change-of-rings" along 	 U.(D(F)) - transforms almost linear

complexes over 	 U.(D(1/ 1 ,144 1 )) 	 into such complexes over 	 U.(D(V,W)) 	 and

preserves homotopies. It induces consequently an exact functor U.(D(F))*

from the homotopy category of almost linear complexes over 	 U.(D(V',W'))

with its natural triangulated structure, (9.4.3.), into the corresponding

category over 	 U.(D(V,W))

Now the explicit construction ofV W) 	shows that one has a natural

equality of functors

(9.4.8.)
	

d (v,w) .U.(F) * 	U.(D(F))*, (V',W')

and this implies (9.4.7.) in case that F 	 is linearly perfect.

Similarly, passing to the graded K-dual of a (complex of) graded mod-

ule(s) is exact and transforms modules which are locally finite for the

total degree into such, hence induces a functor - denoted 	 (-) 	 as in

(8.5.5.) - from 	 D
b
(Mod

lf
 -U.(V,W)) 	 into 	 (Modlf -U.(V,W))" .

Using then the appropriate sign convention for the dual of a complex

- as explained for example in 	 [SGA XVII;1.1.5.1.] 	 , it follows that

there is a natural equality of functors

(9.4.9.)
op
(V,W) (- ) 	

(D(V,W))
Nom'U
	 (d(V,W) (-),U.(D(V,W)))

.  

from D
b(

Mod
lf
-U(V,W)) 	 into the.-opposite of the homotopy category of

almost linear complexeS over U.(D(V,W))

Finally, if M and N are two graded U.(V,W)-modules such that

their tensor-product over K is locally finite for the total degree,

one has the following equality, natural in both arguments

Now we come back to our main theme and apply the correspondence to
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9.5. 	 Maximal Cohen-Macaulay modules and coherent sheaves 

First, let us state explicitely the meaning of the functor b for

maximal Cohen-Macaulay modules over a ring of the form S.(V)^ K :

Proposition 9.5.1.: 	The functor	 b 	 induces an exact equivalence b

tween the categories 	 MCM(U.(V,W)) = D b (U.(V,W))/D erf (U.(V,W)) 	 and

D
b
(Proj-U.(D(V,W))) = D

b
(U.(D(V,W)))/D art (U.(D(V,W))) 	 with their re-

spective natural triangulated structure. In particular :

MCM(U.(V,W)) 	comes equipped with a t-structure whose heart is

equivalent to the abelian category 	 Proj-U.(W*,V*) . The associ-

ated cohomological functor, see [BBD;Thm.1.3.6.], is given by

H° : MCM(U.(V,W)) 	 > 	 ,V*Y

• 	 .

	

H°(M) = a( @ Ext + J 	 (K M) 	 )
U.(V,W) 	 ' 

where the direct sum on the right is considered a (right) graded

module over 	 U.(W*,V*) = Ext6 (vw) (K,K) (.,.) 	with respect to
the Yoneda-product, cf. (9.3.2.).

Under this equivalence, Tate-cohomology over U.(V,W) 	 becomes

transformed into coherent sheaf cohomology over _Proj-U.(W*,V*) .

More precisely, for any graded maximal Cohen-Macaulay U.(V,W)-

module M , (or any complex in 	 D
b
(U,(V,W)) ), we have

H
(V,W)M
	 (det W)

-1
	=d f

Exti (V, ) (K,M @ K (det W) -1 )---U. 

= Ext ProS-U.(W*,V*) (a(U (W*,V*)),a.b(M))

=def H1(Proj-U.(W*,V*),a0b(M))

(iii) 	 The duality for Tate-cohomology over 	 U.(V,W) - see (7.7.5.) and

(8.5.5.&6.) -.translates into Grothendieck-Serre duality for the

cohomology of (complexes of) coherent sheaves of modules on the

ringed space 	 Proj-U.(W*,V*) - formulated in [0-P] for the analo-

gous 2/2E-graded case.

The proof consists just in a reformulation of (part of) the dictionary

(9.4.5.)- 	 and we restrict ourselves to explain (iii) . (The fixed linear

superspace (V,W) 	 is again droOped from the notation.)
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From Remark (a) in (9.2.) recall that the canonical module of UD.

over K is given by w-UD .11D. Q K det(W*,V*) 	 UD.(-w,v) . The table
(9.4.5.) shows then that one has an isomorphism in 	 D b (UD.)

wUD. ---> b((det W)[v-w](-v,w)) 	 b((det V)[v-w]) 	 .

Let w = a(wUD.) 	 denote the sheafification of the dualizing module.

Not surprisingly, it will serve as the dualizing sheaf on 	 Proj-UD. 	 and

the induced sheaf on the "underlying" projective superspace 	 P(W*,V*) ,

see (9.2.) and Remark (c,) after (9.3.6.), is just the ."Berezinian sheaf",

[Lei],[0-P].

If now F is any complex in D b (Proj-UD.) 	 M any MCM over U.
(or, as well, any complex in 	 D b (U.) ), such that 	 F 	 is isomorphic to
the sheafification of b(M) , we get from (ii) above isomorphisms : 

Ext
w-1 	

(F w) 	 Ext
	 (Mdet V)Proj-UD. 	 '

0
H (Proj-UD.,F) 	 M 0 K (det W) -I

)

and

Recall, (7.7.5.(iii)&{iv)) and (8.5.5.&6.), that the duality for Tate-

cohomology over U. is obtained by combining the Yoneda-product with the

trace T K , see also (8.5.7.(v)), which hence yields in view of the just

exhibited isomorphisms of cohomology groups the diagram

v1 	 0 	 ^v _ 1  T K Ext 	 (M det V) x
U, 	 ' 	 (M 0 K (det W) -1 ) 	 -°- 	 > det(V,W) 0 K H 	 > K            

w-1
Ext 	 . 	 ( 01) x

Proj-UD.          (Proj-UD., ) 	 -°- > H w-   Proj UD.,w) 	 > K

in which the upper row describes the duality for Tate-cohomology over U.

whereas the lower row is the expected form of Grothendieck-Serre duality

on Proj-UD. 	 Expliciting the trace on H w-l (Proj-UD.,w) 	 in terms of

"super differential forms, it becomes then justified - as mentioned - to

interpret T K as "the integration of differential forms over the funda-
mental cycle of Proj-UD.'".

Remark: 	(a)	 If 1,4* : (W*,0) ---> (W*,V*) 	 denotes as usual the inclu-
sion of the even subspace of (W*,V*) , (9.1.(iii)), and - abusively, as

in (9.3.7.) 	 (iw* )* the "inverse image functor" associated to the mor

phism of ringed spaces from Proj-U.(V*,V*) 	 to Proj-U.(W*,0) 	 induced

by 	 , then one has obviously that a(U.(W*,V*)) , the structure sheaf



of 	 Proj-U.(W*,V*) , is the inverse image 	 (i 1,4 )*(0 p(w*) ) 	 of the usual 	
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structure sheaf on the projective space 	 P(W*) .

Hence, there is an equality of cohomological functors

(Proj-U.(W*,V*),-) 	 Hi(P(W*),(iw*)*(-))

so that indeed Tate-cohomology over U.(V,W) 	 "is" nothing but coherent

sheaf cohomology on 	 P(W*) , the projective space of all "odd points" of

the linear superspace 	 (V,W) , (9.1.(ii)).

Given the natural duality between "geometric" and "odd" points, this

indicates once again in which sense Tate-cohomology "complements" sheaf-

cohomology on linear super-spaces.

As a further (?) "application", remark that sheaf-cohomology together

with Tate-cohomology just detect those complexes over U.(V,W) which are

at the same time perfect and of artinian cohomology. Now, considering the

"geometric" points only, hence forgetting the structure over the exterior

algebra, the "Lemme d'acyclicite implies that any perfect representative

of such a complex must have at , least dim K V many non-zero terms. Dually,

that is considering the "odd points" or applying the same argument to the

image under b , the (total) length of the cohomology of such a complex

is bounded below by dim KW . This kind of argument can be found for exam-

ple in the work of G. Carlsson, [Car], where this dictionary is used -

although not in the same language - to bound the cohomology of spaces a

mitting free actions of elementary abelian 2-groups.

Coming back to the interpretation of Tate-cohomology as cohomology on

projective space, it should be an interesting exercise to translate the

fundamental theorems on this cohomology - like Serre's Theorems A and

B or the Theorem of Riemann-Roch - into statements about the Tate-coho-

mology of - modules over rings of the form S.(V) A'(W)

Here, we will instead restrict ourselves to just emphasize the conse-

quences of the existence of a (natural) t-structure on MCM(U.(V,W)) 	for

any linear superspace (V,W)

To begin with this allows one to define higher algebraic K-groups for

MCM's over 11.(V,W). and these groups may serve as "stabilized" K-groups

for 	 U.(V,W) 	 as,ked for in (4.9.).



Definition and Proposition 9.5.2.: 	Let	 D 	 be any t-category with

. 	 heart C . Then define the higher algebraic K-groups 	 K i (D) 	 to be the

K-groups 	 K i (C) 	 as defined by D. Quillen, [Qu 1].

For any linear superspace 	 (V,W) 	 set 	 K i (U.(V,W)) 	 Ki(MCM(U.(V,W))) ,

the category of maximaLCohen-Macaulay modules over U.(V,W) modulo pro-

jectives endowed with the t-structure from (9.5.1.(i)).

Then one has

(i) Ki(U.(V,W)) 	 Ki(U.(V,W)) 	 KOK) ta 	 a[s,s -1 ,x,x -1 ]

(ii) There are short exact sequences of abelian groups

(1-x -1w
0 ---> K.(U.(V,W)) 	 > C(U. V,W)) > K.(U•(V,W)) 	 0 

and , consequently,

(iii) 	 K l (U.(V,W)) 	 KOK) it 	 1 ,g]/(g
w

 ) 	 , where 	 g 	 represents

the class of 	 (1-X-1 ) 	 as in (9..3.8.) . This K-group is naturally

isomorphic to K i (P(W*))[X,X 1 ] 	 the isomorphism induced by the

functor 	 b (V,W) •

Proof: 	In view of the Bernstein-Gelfand-Gelfand-correspondence and the

dictionary deduced from it, the assertions above just come down to the

calculation of higher K-groups of projective space as done by D. Quillen

in [ -Qu 1;Prop.4.3 -.]. For the last statement in (iii), remark that the
"direct image" functor (i 	 ) 	 is t-exact with respect to the naturalW * *

t-structures on 	 D (Proj-U.(W*,V*)) 	 and 	 D b (Proj-U.(W*,0)) 	 and that it

admits 	 (i w* )*, as an exact left adjoint. Combining now the foregoing

with [BBD;1.3.17.(iii)] and [Qu 1;§3] , it follows the existence of natu-

ral isomorphisms of abelian groups

K•(b) 	 K4((i
K.(U.(V,W)) 	 > K.(Proj U.(W*,V*)) 	 > K i (Proj-U.(W*,0))

and
	

K.(R(W )) 	 zz 2Z[X,X 1 ] 	 > K. Proj-U.(W ,0))

Remark: 	(b) Analogously, one may define in a natural way higher K-groups

for the category 	 Prim- U.(V,W) 	of primitive objects, (9.3.8.), and show
that these groups are canonically isomorphic to the corresponding groups

for P(V)xP(W*) , the scheme of all "points" of the linear superspace
(V,W)

(c) Above, we have reduced the (definition and) calculation of K-groups

for MCM's to the one for projective spaces by-means of the Bernstein-

Gelfand-Gelfand-correspondence b 	 . In fact,'analyzing D. Quillen's re-



sult, or, even more instructively,'its extension by R.G.Swan, [Sw], to 	
/10

encompass the case of non-singular quadrics, one observes that this cor-

respondence is used there - implicitely - and that the determination of

the K-groups of the projective scheme in question is deduced from the ex-

plicjt knowledge of "all" 	 MCM's 	 over the Yoneda-Ext-algebra of the res

idue class field of the associated homogeneous coordinate ring.

(In case of projective space 	 P(V) , this Ext-algebra is 	 A*(V*) , see

(9.3.2.(iv)), and the category 	 MCM(A*(V*)) 	is isomorphic to	 mod-A'(V ) 

by (8.1.). For a non-singular quadric, the Ext-algebra is the homogenized

Clifford-algebra of the associated quadratic form, and a module over it

is MCM iff it is finitely generated and the homogenizing parameter is a

non-zero-divisor on it. For more details along these lines, see also the

appendix to [BEH].)

Next, we will investigate a little bit closer the t-structure on the

category of maximal Cohen-Macaulay U.(V,W)-modules modulo projectives by

using only local information at the "odd points" of 	 (V,W) .

This will result in a generalization of the "monadic" description of

vector bundles on usual projective space as given in [BGG] to yield a

representation of coherent sheaves of modules in terms of monads satis-

fying certain "perversity-conditions". Finally, we will give a "normal

form" for such a monad, making precise the statement that "any coherent

sheaf of modules on projective space is entirely determined - up to iso-

morphism - by a finite number of cohomology groups". •
To begin with, we have to recall some elementary facts on the natural

t-structure on 	 D (Proj-U.(V,W)) - or just on 	 D
b
(P(V))

As was done already in case of i v , for any morphism of linear super-

spaces 	 F : (V,W) ---> (V',W') - with 	 F 4. 	surjective - we will denote by

F.* : D b (Proj-U.(V',W)) ---> D b (Proj-U.(V,W)) 	 the "direct image functor"

associated to the morphism Proj(F) 	 of ringed spaces. 	 F* or F i 	will

denote its left or right adjoint - if either exists.

We introduce further the following

Notations 9.5.3.: 	Let	 (V,W) 	 be a linear superspace over 	 K , 	 x 	 a

non-zero linear form on V , corresponding to a geometric point <X> of

(V,W) 	 in 	 P(V) . Let K(<X>) 	 denote the residue class field at that

point of POO

Then we set for any complex 	 C in D (Proj-U.(V,W)) :

O piv ,
TO<X>;C) = H 	 (X* 0 0 v ) * (C)) = Tor i 	'((i )*( ),K(<X>))
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S.(C) = tp'E Proj-S.(V) : Tor."' ((iv)*(C),K(P)) 	 0 	 .

13 1

(Here it is to be understood that we hale summed up over the still exist-

ing "exterior degrees" for 	 (i v ) * (C) , so that the "correct" definition

of 	 T.(<x>;C) 	 should read 	 (a Fl -i (x*.(i v ) * (C(0,i)))

The functors 	 T (<X>;-) 	 are easily described in terms of the equiva-

lence 	 b : Let M be a maximal Cohen-Macaulay module over U.(W*,V*) ,

z 	 K —> V* the odd point of (W*,V*) which corresponds to X by

duality. Then (9.4.7.) shows that one has

G H - (X* 0 (i v ) * (b(M)(0,j))) = @ r ii-j (z * .U.(p v* )*(M(-j,0)))

where p v* 	0(i v ) : (W*,V*) ---> (0,V*) 	 is the projection onto the odd

quotient space of D(V,W) .

The right hand side can be evaluated explicitely. If K<z> denotes

the sub-algebra of A*(V*) 	 generated by the image of z, the cohomology

group in question is just

J
H-i+j(HomK<z> (CRK<z> (K) ' z * RHom (W*,V* A' ( V ),m(—j,0)))

which looks worse than it is :

a complete resolution of K over K<z> is given by the "periodic"

complex

> K<z>(0,k)
z

> K<z>(0,k+1)   

(where 	 z 	 is also identified with 	 z(1) ),

A*(V*) 	 is resolved over 	 U.(W*,V* - ) 	 by the Koszul complex

(	 (W ) Q K S•(W*)
	

A'(V*)[k](-k,0)

where
	

represents the ordinary Koszul differential associated

to W*

As, a simple example, which appears already in [BGG], assume W 	 0

in which case one may forget about i v and the Koszul complex above -
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sto that M 	 @ Mi 	 is just a finite direct sum (indexed by 	 i ) of gra-

ded 	 A'(V*)-mo.dules. Identifying 	 z - or rather 	 z(1) - with a 1-form in

A'(V*) , multiplication with it turns M 	 into a complex of vectorspaces

> 	 z > 0+1 z >

whose cohomology is the desired object.

The behaviour of the homological functors 	 T i (<->;-) 	 is well-known :

Lemma 9.5.4.: 	Let V be a K-vectorspace of dimension	 v , 	 x 	 any

point in 	 P(V) 	 and F a coherent sheaf of 0p(V)-modules. Denote F x

the localization of F at x . Then the following assertions are equi-

valent for any non-negative i

(i ) 	 T.(x;F) 	 0 	 (ii) 	 projdim, 	 F 	
i1 	 'P(V),

(iii) 	 depth ° 	F	 v-1-i
P(V),x

	 (iv) 	 HJx} (F x ) 	 0 	 for some 	 j 	 v-1-iI 

(v)
(Fx' 

w
P(V) x )
	 0

,
j.0 	 vP(V),x 	

v-1-i 	 v-1-
(vi) x 	 is in the support of 	 @ Ext 	 (F,wptv)

j=0 	 °P(V)

Proof: 	(i)	 (ii) 	 is the existence of a minimal projective resolu-

tion of F 	 over the local ring 0-,
rkV),x

(ii) <..> (iii) 	 is the theorem of Auslander-Buchsbaum-Serre : 	 0 
P(V),x

is a. regular local ring of dimension 	 v-1 	 and hence

projdim 	 F + depth, 	 F 	 v-1
P(V),x 	 vP(V),x x

(iii) <=.> (iv) 	 is the characterization of depth by local cohomology.

(iv) 	 (v) 	 is Grothendieck-Serre-duality : The K-dual of Hi 	 (F )
txl 	 x

v-1-j
is isomorphic to 	 Ext f, 	 (F ,w pfv),x )

v P(V),x 	 x

. (v) <==> (vi) 	 is the fact that localization and forming Ext's 	 commute.

_Corollary 9.5.5.: 	With notations as before,

(i) Si(F) 	 contains 	 S ii.1 (F) 	 and 	 S 0 (F) 	 equals the support of 	 F .

(ii) Any 	 S(F) 	 is a closed subset of 	 P(V) .

(tii) 	 The codimension of 	 S(F) 	 in 	 P(V) 	 is at least 	 i

S v j (F) = 0 .-
(v) 	 If dim F 	 r , then 	 S v _ i _ r (F) 	 S0(F) = Supp(F) .
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In other words, if we consider the function 	 c F (i) = codim p(v) S i (F) ,

it has the following properties

(i') 	 It is non-decreasing and its "initial value" 	 c 0 (F) 	 equals the

codimension of the support of F , by (i).

(iii) 	 It stays above or on the diagonal by (iii).

(iii' 	 It hits the diagonal at least once, namely for 	 v-l-dimF ,

by (v).

These properties are enough to prove

	

Proposition 9.5.6.: 	 Let 	 C 	 be a complex in 	 D 11/ (Proj-U.(V,W)) .

Then 	 C 	 is quasi-isomorphic to 0(C) , that is, there is no other coho-

mology than possibly in degree zero or, equivalently, 	 C 	 belongs to the

heart of the natural t-structure on 	 D (Proj-U.(V,W)) , if and only if

(i) Si(C) 	 0 	 for 	 i < 0 	 and

(ii) codimp(v)Si(C) 	 i 	 for. 	 i 	 0 .

Proof: 	 It follows from the foregoing that the two conditions are neces-

sary. To prove that they are sufficient, we show that with

	

i(C) 	 min(i : H i (C) A 0 ) 	 and 	 m(C) 	 max(i : H i (C) # 0

r = dim H
i(C)

(C)

one has

(a) 	 S 	 • (C) 	 0 	 and 	 (b)
-m(C) 	

codimP(V)S 	 (C)

	

v-l-r-i(C)
	 v-1-r

which evidently will suffice.

(a) and (b) both follow from an examination of the spectral sequences

	

q' j (x;C) 	 i(x;Hj(C)) ...> T . .(x;C) ,

x any point in 	 P(V)

By definition of m(C) , for any 	 x 	 in 	 P(V) 	 the terms 	 E -i 'i(x;C)

vanish if either

	

j-i 	 m(C)+1 	 or

	

j-i 	 m(C) 	 , but 	 i 	 0 , or

	

j - -i 	 m(C)-1 	 and 	 i # 0,1 .

Hence, 	 T.m(o)(x;C) 	 E2
0,m(C) (x;C)
	 To(x;H m(C) (C)) 	 which proves (a )

To establish (b), remark first that by (9.5.5.(v)) 	 one has

v-l-r(H1(C)
 (C)) 	 Supp(H

which by assumption is of dimension r . As on the other hand for any

k 	 0 	 one obtains from 	 (9.5.5.(iii)) that



codim P(V) S v-l-r+k+1 (Hi(C)+k(C))
	

v-1-r+k+1 > v-1-r

the above spectral sequences imply that S 	 (C)
i(C) 	 v -1-r-i(C)

r-dimensional components of 	 Supp(H 	 (C)) - whence 	 (b

contains all

To simplify our next statement, we translate as above the notions

T i (< >;-) 	 and 	 S i (-) 	 into Tate-cohomOlogy :

	

Definition 9.5.7.: 	 Let w : K ---> W be a non-zero odd point of a

linear superspace 	 (V,W) . Then we set

w
G A i+j (w*.U•(P0 1 ( 4 ( - i3O)))
J

for any object 	 M 	 in 	 D (U.(V,W)) .

The schematic support of this family of functors H 1 (-) 	 in 	 P(W*)

will then be denoted -S_ i (M) 	 Suppp(w*)Vi(Mr.
More precisely, it contains all those homogeneous primes q in

Proj-S.(W*) , for which there exists a finite field extension 	 L of K ,

a L-valued odd point w t. : L 	 > W^ K L , such that the corresponding

point in 	 P(W*Q K L) 	 lies over q and such that fiwn(M 
K
 L) 	 0

L

Just by construction, one has

w 	
_O<D( )>;ab(M)) 	 and 	 _i(M) 	 S_i(ab(M)) 	 .

Hence we get the following description of the t-structure on MCM's :

Theorem 9.5.8.: 	 Let 	 (V,W) 	 be a linear superspace over 	 K , 	 M 	 any

complex of modules in 	 Db ( U.(V,W)) . Then the following are equivalent :

(i) The image of M 	 in
b
(U.(V,W)) 	 is in the heart of the natural

t-structure.

(ii) M admits an essentially linear projective co-resolution.

(iii) 	 ab(M) 	 has only cohomology in (complex-)degree zero.
(iv). 	 S i (M) 	 0 	 for 	 i < 0 	 and 	 codim p(w )i (M) 	 i 	 for 	 i 	 0

Proof: 	 (i) <==> (iii) 	 is the definition, (9.5.1.(i)).

(iii) 	 as by the properties of the correspondence b , to say

that the sheafification of b(M) has only cohomology in (complex-)degree

zero just means that up to a perfect complex M lies in the pre-image of

mod—U.(D(V,W)) . But that signifies, by (9.4.4.),. that M admits a pro-

jective co-resolution which becomes linear after a finite number of terms_



(iii) <==> (iv) 	 just translates the characterization of the natural

t-structure on 	 D (Proj-U.(W*,V*)) , which was obtained in (9.5.6.),

by means of b

To complete further our dictionary, let us point out the significance

of the existence of MCM-approximations over U.(V,W) 	 for the study of

complexes of coherent sheaves of modules over Proj-U.(D(V,W)) .

Recall that, given a compleX' X 	 in 	 D b (U.(V,W)) , a MCM-approxima-

tion 	 M(X) 	 is by definition, (5.6.), a maximal Cohen-Macaulay 	 U.(V,W)-

module which, considered as a complex, is quasi-isomorphic to X 	 up to

a perfect complex.

Now a complex 	 C 	 in 	 D b (U.(V,W)) 	 is isomorphic to a single MCM if

and only if it satisfies

(i) 	 Ext
k

(V W) (U.(V,W),C(i,j)) = 0 	 except for 	 k = 0 , i.e. 	 the co-
U., 

homology of C is concentrated in (complex-)degree zero, and

Ext k
(V W) (C(i,j),U.(V,W)) = 0 except for 	 k = 0 , which means

U., 
that the only cohomology module, whith may exist by (i), is MCM.

Applying our dictionary, this translates into the following conditions

for 	 b(C)

(i') b(C) 	 admits a linear projective co-resolution, or, equivalently,

is isomorphic to .a linear monad in 	 D(U.(W*,V*)) , by (9.4.4.(ii)),

and
k+i+j

(ii') Extu(w*v*) (b(C)(-j,-i),det(V*)) = 0 	 for any 	 k A 0 . , or, equi-

valently

b(C)^ K (det V ) -1	admits a linear projective resolution.

Remember furthermore, that MCM-approximations are unique up to projec-

tive summands, hence over U.(V,W) 	 up to direct sums of graded free mod-

ules of the form 	 U.(V,W)(i,j)

This says that we may add to b(C) complexes of the form

	

b(U.(V,W)(i,j)) 	 (det V*)[i+j](- 	 ) = K[i j](- j ,-i-v)

or, connecting (i') and (ii') to a single complete resolution of 	 b(C)

the resulting acyclic complex of finitely generated graded free modules

determined by C is modified by direct summands which constitute shifted

complete. resolutions of K itself. Remark that "the" complete resolution

of K was determined explicitely in (8.5.7.).

Hence, translating the existence of MCM-approximations yields



Proposition 9.5.9.: 	 Let 	 Y 	 be any complex in 	 D
b
(Proj-U.(W*, *))
	 /13

Then there exist

(i) 	 A complex of graded U.(W*,V*)-modules 	 C(Y) , 'bounded below and

with bounded cohomology, whose term in (complex-)degree k 	 is

a finite direct sum of modujes of the form U.(W*,V*)(i,j) 	 with

i+j = k

A complex of graded U.(W*,V*)-modules 	 P(Y) , bounded above and

with bounded cohomology, whose term in (complex-)degree k 	 is

a finite direct sum of modules of the form U.(W*,V*)(i,j) 	 with

i+j = k-v

(iii) 	 A morphism of complexes 	 N(Y) : P(Y) ---> C(Y) 	 which induces an

isomorphism in cohomology and such that the sheafification of the

image of, N(Y) 	 is a (necessarily finite) complex isomorphic to

Y 	 in 	 D
b
(Proj-U.(W*,V*))

The morphism N(Y) 	 is unique up to isomorphism if one imposes

the "minimality-condition" that the mapping-cone of N(Y) 	 does

not contain a shifted complete resolution of K as a direct sum-

mand.

One may hence call the morphism N(Y) : P(Y) ---> C(Y) 	 the minimal 

monadic representation of the given complex of sheaves Y .

The proof is immediate from the foregoing : 	 If Y' 	 denotes any repre-

sentative of 	 Y 	 in	 D b (U.(W*,V*)) 	 set 	 X' = b (w*v*) (Y') , M(r) its
unique MCM-approximation over U.(V,'W) 	 which does not contain any free

summand. Then 	 C(Y) 	 is the linear monad associated to 	 b
(V W) 

(M(U)) ,
by (i') above, 	 P(Y) 	 its minimal projective resolution, which has the

required properties in view of (ii') above. 	 N(Y) 	 is then the natural

map, whose image, is by construction quasi-isomorphic to 	 b
(V W) 

(M(X'))
and differs from Y' 	 b

(V W) (X')
	 only by a complex which has artinian

cohomology, hence its sheafification is isomorphic to Y again.

Starting, with another lifting 	 Y" 	 of Y , it differs from 	 Y' 	 only

by a complex with artinian cohomology, hence the corresponding objects

X' 	 and X" differ only by a perfect complex, whence they have the same

minimal MCM-approximation. This shows the uniqueness of the construction.

Remark: 	 (d). 	 If dim V A 1 , the (isomorphism class of the) complex 	 Y

(in D (Proj-U..(W*,V*)) ) can be recovered from the (isomorphism class

of the) mapping cone over N(Y) (in the category of complexes) : By con-

struction, we can then distinguish the linear subcomplex C(Y) 	 and the

corresponding quotient complex P(Y)[1] 	 just from the occurring degrees.



Let us emphasize that we deal indeed with isomorphism classes of com-
	 134.

plexes - and not with homotopy classes. The reader is asked to supple-

ment (9.5.9.) by convincing himself that in fact the homotopy classes

of the occurring complete resolutions are in bijection with the isomor-

phism classes of objects in the (equivalent) categories of primitive

objects 	 Prim-U.(V,W) 	 or 	 Prim-U.(W*,V*) .

As an example of the foregoing - and to justify the title of this

chapter - let us mention the

9.6. 	 Applications to projective geometry 

(9.6.1.) 	 Considering the last result first, assume 	 V 	 0 	 in (9.5.9.).

Then 	 U.(Wt,V*) = S.(W*) , the polynomial ring over W* . For any object

Y in 	 D b (P(W*)) , by construction both 	 P(Y) 	 and 	 C(Y) 	 are linear com-

plexes, which are furthermore finite as 	 S.(W*) 	 is of finite global di-

mension. It follows that N(Y) 	 is necessarily an isomorphism and the

minimality condition just ensures that neither P(Y) 	 nor C(Y) 	 contain

a shifted Koszul complex as a direct summand. In particular, the mapping

cone over such a morphism N(Y) is certainly contractible - in accordance

with the fact that the category of primitive objects over a polynomial

ring is trivial.

To put it differently, if we consider in general a linear superspace

(V,W) in which either the even or odd summand is zero, the diagram in

(9.3.12.) degenerates, leaving essentially, a unique row or column, and

the "minimal monadic representation" of (9.5.9.) is already completely

determined by either P(Y) or C(Y)

Now let us summarize the various descriptions of complexes of coherent

sheaves over a projective space P(W*) which are contained in the above

and which all already appeared in the literature, at least in some dis-

guise

(9.6.2.) 	 Assume given a finite dimensional vectorspace W over some

field K , Then the derived category D b (P(W*)) 	 of complexes of sheaves

of modules on the projective space P(W*) whose non-zero cohomology

sheaves, are finite in number and coherent, is naturally equivalent to

any of the following categories

bb
(i) 	 D (S -_(W*))/D art (S.(W*)) , which is (equivalent to) Serre's clas-

sical description.



(iii) 	 Mon 0 (S.(W*))/(Koszul-complexes) 	 , that is, the full subcategory

of the category in (i) which is generated by all finite com-

plexes of graded free 	 S.(W*)-modules, linear in the sense

that the module in (complex-)degree k 	 is of the form

A k Q K S.(W*)(k) 	 with 	 A k 	 a finite dimensional K-vector-

space.

Remark that direct sums of appropriately shifted Koszul complexes are

the only such linear complexes with artinian cohomology. As morphisms

between liftear complexes are homotopic iff they are equal, it is clear

a priori that the morphism groups in this category consist precisely of

all morphisms of such complexes modulo those which factor over a direct

sum of Koszul complexes. The point of the Bernstein-Gelfand-Gelfand-cor-

respondence, if considered from this point of view, is hence that any

complex in 	 D (P(W*)) 	 is quasi-isomorphic to (the sheafification of)

such a linear complex. For single sheaves, this is precisely the main

ingredient established and used by D. Quillen in his calculation of the

higher K-groups for projective bundles, [Qu 1.;§8], see also Remark (c)

in (9.5.).

Dismantling such a linear complex as to keep only the generating sets

in each (complex-)degree - and tensoring with det(W) - we get the incar-

nation of Db (P(W)) as provided by the Bernstein-Gelfand-Gelfand-corre-

spondence

(iii) 	 mod-A'(W) = MCM(A'(W)) 	, the category of all finitely generated

(= maximal Cohen-Macaulay) graded modules over the exterior

algebra generated by W in degree one, modulo all finitely

generated projective (= free = injective) modules over this

local.quasi-Frobenius algebra.

APC(A'(W)) 	, the homotopy category of all acyclic complexet of

finitely generated, graded free A'(Wlmodules.

e(W))/Dperf (A:(W)) 	 , the stabilized derived category of the

exterior algebra over W

The equivalence of the descriptions in (i)-(iii) and (v) is the orig-

inal result in [BGG]. The equivalence with (iv) has then been remarked

by A.A. Beilinson, as. S.I. Gelfand informed me - see also [Gel].



10. - ApOication4 to SingutaAitiu and Hypen4m6ace4 

In the following R will always denote a commutative (noetherian)

ring of finite Krull dimension, 	 r = dim R . For simplicity (only), 	 R

will also always be assumed to have connected prime spectrum.

10.1. 	 Local Tate-cohomology 

Let 	 (R,m,k) 	 be a local commutative Gorenstein ring with maximal

ideal 	 m 	 and residue class field 	 k = R/m . Then, by analogy with (8.2.)

and (8.5.), for any integer 	 i , we call

q(M) = Exqz (k,M)

the i-th local Tate-cohomology of R with values in M , which may be

any (complex of) R-module(s) 	 (in 	 D(Mod-R) , (7.4.1.)).

As in general, N(M) 	 will be a graded module over the local Tate-

cohomology ring of R , HR = 	 , with respect to Yoneda-product.

As 	 R 	 is local, any finitely generated R-module M admits - up to

isomorphism - a unique decomposition M 	 M' @ Rm where M' 	 does not'

contain any free summand, (see [Sw 1;Thm.2.6.]).

If now M is already a MCM over R , the groups HR(M) 	 yield nothing

new :

Lemma 10.1.1.: 	 Let 	 M 	 be a MCM over a local Gorenstein ring (R,m,k),

M = M' 9 R m the •decomposition in which M' 	 contains no free summand.

Then one gets

(i) H R (M) = Ext R (k ' M) 	 for any 	 i > r = dim R ,

(ii) HR(M) = Exq(k,M 1 ) = Ext rRs (k,M)/k m

(iii) HR -1 (M) =) 	 M' O R k , and

(iv) q(M) = Tor li!_ i _ i (M,k) 	 for any 	 i < r-1 .

The proof follows immediately from (6.2.5.(3)) - or also directly from

the construction of a complete resolution for M 	 as in (4.5.1.) -, once

it is observed that RHom R (k ' R) = k[-r] for any local Gorenstein ring and
that 	 Ext i

(k,M) = 0 	 for any 	 i < r and all MCM over R .



Usually, it is a rather difficult problem to determine (the dimension /14°

of) the k-vectorspaces occurring in this Lemma. Sometimes, to know that
^0

théy are necessarily modules over H R will yield restrictions, for ex-
^0

ample if there are no "small" simple modules over the ring H R .
^0

The size of H R 	 is essentially known from (5.5.2.) . More generally,
we get, as in (8.5.6.), the following information on the local Tate-coho-

. mology ring of R

Proposition 10.1.2.: 	Let	 (R,m,k) 	 be a local Gorenstein ring. Then

The 2Z-graded k-algebra Ilk carries a natural involution, with
respect to which it becomes isomorphic to its graded opposite

k-algebra.

ii) 	 There exists a non-degenerate k-bilinear pairing, associative for

the (Yoneda-)product on Ilk

H.4-r-1 	
—> k

in particular, 	 A li 	 is a self-injective k-algebra.
^0

(iii) 	 The k-algebra 	 H R = Hom R (M(k),M(k)) 	 is naturally isomorphic to
its own opposite algebra. Its dimension over k is given by

^
(a) H = 0 	 if and only if R 	 is regular,

^
(b) dim H a 2 dim R	 if R 	 is not regular, and in this case

^0 	 dim R
(c) 	 dim H R = 2 	 if and only if either dim R S 1 or R 	 is

an (abstract) hypersurface ring. In these
^0

cases, 	 H R is a quasi-Frobenius algebra, if

dim R is odd.

Proof: 	(i), (ii) and the first assertion in 	 follow from the gen-
^0

eral theory developed in chapter 7 . Also (iii,a) is obvious, as 	 H R = 0
iff k 	 is of finite projective dimension over R iff R 	 is regular.

The given bounds on the dimension encode well-known results on the ranks

of the. free modules in a minimal free resolution of k over R . More

precisely, one has in general

Lemma 10.1.3.: 	Let	 (R,m,k) 	 be -a local Gorenstein ring, 	 M 	 any MCM

over R and x = (x 	
'd
x ) 	 a regular sequence in m . If the classes

of the elements x.
1 	are linearly independent over K in m/m 2 , then

there is an isomorphism of graded k-vectorspaces, natural in M :

E tk(k,M) ---> 11*(( /x) ) 2 	 Ext'' 	 (k,M/xM
R/xR ---R/xR 



The proof of the Lemma extends the correspOnding one for the ordinary

Ext's . The ring homomorphism R ---> R/xR is perfect as x is a reg-

ular sequence, and the -resolution of R/xR 	 is given by a Koszul complex.

Now apply the spectral sequence 	 "El'j 	 from (7.2.3.) and remark that it

degenerates completely at the E 2 -level iff the classes of the x i 	are
linearly independent modulo m 	 .

To conclude the proof of the Proposition, one may assume - after even-

tually extending the residue class field - that there is a maximal reg-

ular sequence of elements whose classes in m/m
2 

are linearly independ-

ent, so that 	 R/xR 	 is a zero-dimensional Gorenstein ring. Then (10.1.1.)

shows that 	 ExtRixR(k'k) 	 Tor i
R/IR
 (k,k)	 for any 	 i > 0 . Hence

r
^0 R/xH R . 	 Ext R0 (k,k) 	 k 	 (e AJ(( /x 2

)*)R/xR Tor i _TR k,k))
j=1

which implies (b) . It also follows that the equality in (c) holds iff

all the k-vectorspaces Tor R/2(-R (k,k) are one-dimensional for j < r ,

which happens if ancronly if either r is at most 1 or the dimension

of m/m
2 

is precisely dim R + 1 .

The last assertion-in (iii) is clear (from (ii)) if 	 dim R 	 1 . In

case of a hypersurface, it follows from the explicit knowledge of the

ordinary Yoneda-Extalgebra of k over R .

Namely, one has explicitely

Example 10.1.4.: 	 (i) 	 If 	 (R,m,k) 	 is a one-dimensional local ring

which is Gorenstein, then 1 is one of the following k-algebras :

(a) 	 k x k 	 (b) a quadratic field extension 	 k.(a) 	 of 	 k , or

(c) 	 the local k-algebra 	 k[x]/x 2

Case (a) occurs for example for a non-singular quadric, (b) for a regu-

lar but singular quadric - see [BEH] - and (c) is the generic.case which

occurs if the multiplicity of R 	 is at least 	 3 .

(ii) 	 If 	 (R,m,k) 	 is an (abstract) hypersurface ring, the natural map

of vectorspaces S 2 (m/m 2) ---> m 2 /m
3
 has at most a one-dimensional ker-

nel. Let Q : r 2 ((m/m 2
 )*) ---> k be the quadratic form determined by

this kernel (which may hence be zero L.).
^0Then H R = 	 , the even Clifford-algebra of this quadratic form -

	

. 	 .
and the involution on HR , is the .main involution of the Clifford-alge-

bra ,. If 	 0 , 	 C+ (Q) - - e((m/m2 )*) , of course.

If Q A 0 , we get restrictions as mentioned above : The dimension of
a simple module over C + (Q) 	 is of the form 2 1 , where 1 ,depends on

Q - and the field k 	 It follows then that for any module M over R

4



the dimension of any Tate-cohomology group has to be divisible by 	 21 .
1 	

4L1.

It follows then - for example - that an indecomposable MCM over R has

to have a rank which is divisible by 	 2
1-1

- see again [BEN] for details.

We conclude this section by restating the Duality Theorem (7.7.5.)

in the commutative context :

Proposition 10.1.5.: 	Let	 (R,m,k) 	 be a local Gorenstein ring, 	 M 	 a

maximal Cohen-Macaulay R-module which is locally free on the punctured

spectrum Spec(R) - {m} . If then 	 E denotes an injective envelope of

the R-module 	 Ext
dim R

(k,R) , there exists a natural R-linear trace 

T M : Extrz im R-1 (M,M) ---> E 	 ,

such that for any complex Ni in. D
b
(R) , the pairings obtained from

composing the Yoneda-product with this trace are R-bilinear and non-

degenerate

Ext/il-1+dim R(N,m)
ExtiV(M,N) ° 	 > Ext dim R-1 M,M

R
TM > E .

In particular, the two modules which are paired into E have the

same (finite) length, and the stable Yoneda-Ext-algebra 	 ExtR(M,M) 	 is

self-injective.

For the proof take R 	 WS	S	 T 	 wT and M 	 *N 	 N* in (7.7.5.)
and remark that M locally free off the maximal ideal implies that it

is stably transversal to any complex N .

Remark: 	(a) . If R 	 is regular for any prime different from m , any

maximal Cohen-Macaulay R-module is free off the maximal ideal.

(b) Of course, Ex4 im R (k,R) 	 k as a R-module, so that the module E

is just an injective envelope of the residue class field. In particular,

as explained in (7.7.), if R contains a copy of k , one obtains the

trace above as the R-linear extension of a k-linear trace into k .

The reason why we introduced E as an envelope of ExtRim 
R
 (k,R) -

and not just of k - is furnished by the graded case :

If R , instead of being local, is non-negatively graded and if the

irrelevant ideal generated by all elements of positive degree is maximal,

then the assertion above still holds for graded MCMs and the graded Tate-

cohomology. But in this case, as before in (8.5.), we have to keep track
dim R

of the grading of Ext R 	(k,R)	 to obtain a homogeneous pairing.
Let us give an explicit.



4(43
1 	 Example 10.1.6.: 	Let	 S. = k[x 0 ,...,x n.i.d ] 	 be a polynomial ring over

k , R. = S./f a homogeneous complete intersection of dimension n+1 ,

defined by the regular sequencef l , ...,f d of homogeneous polynomials

with deg(f i ) = a i . Then the canonical module of R. over k is given
n

by w R 	= R.(-n-d-1 + E a i ) 	 - and satisfies hence 	 Ext R 1
 (k,w R. ) = k(0) .

It follows that for any graded MCM R-module M which is locally free

off the irrelevant ideal and for any complex N of graded R.-modules in

D
b
(R.) , there are perfect pairings

Ext lin (N,M(-a-d-1 + E a 1 )) x Ext iTz i (M,N) 	 > k

homogeneous for the total degree.

In partitular, taking M = N , the "centre of symmetry" is in degree

[ 2
n
]( 

-n-d-1+ E a
i) 	 for the self-dual algebra Ext' (MA.
2R

Finally, we come to the example which motivated our study here :

10.2. 	 Maximal Cohen-Macaulay modules on hypersurfaces 

Considering the classical case of integral group representations, the

theory of hypersurfaces as compared to general (commutative) Gorenstein

rings should'show similar particular features as the cohomological theo-

ry of cyclic groups if compared to that of arbitrary finite groups.

After all, integral group rings of cyclic groups are "hypersurfaces"

relative to the regular ring -1[t] , and the key fact - namely that com-

plete resolutions can be chosen to be periodic of period two - holds for

general hypersurfaces by [Eis].

As an instance of this analogy, we will introduce in the next section

Herbrand-differences for any two modules over a hypersurface with only
isolated singularities.

But first, we recall some essential facts and study the structure of

the Tate-cohomology over general hypersurfaces.

	

. To fix the notations, 	 P will henceforth denote a regular domain,

f a non-zero element in P', p : P ---> R = P/fP the projection onto

the hypersurface ring R defined by f . We denote - Ker(p) = fP by I

and, e,henc I/1
2
 is the conormal module of 13 - - or of R over P It

is a- free R-module of rank one.

If P = k[x] is a polynomial ring, f a homogeneous element of degree
2

d , then 	 I/I '= R(-d) 	 as a graded free R-module.



As before, 	 p * : D
b
(R) 	 > D (P) 	 denotes the forgetful functor, 	 p* /Nki

its left, 	 p 	 its right adjoint. As 	 P 	 is regular, the thick hull of

p* 	 is precisely D perf (R) , the category of perfect complexes over R .

The structure theorem for modules over hypersurface rings, due to D.

Eisenbud, can be expressed as follows :

Theorem 10.2.1.: 	With notations as just introduced, there is a dis-

tinguished triangle of endo-functors on D
b
(R) 	 - or even on 	 D(Mod-R) :

-

R 
I/I

2
[1] ---> p*p * 	> id 	 s > - 	 I/I [2] ,

where n 	 is the co-unit of the adjunction 	 (p*,p * ) .

(Remark that there is no need to derive the tensor-product with 	 1/1
2

as this module is already free over R .)

From the abstract point of view, this triangle just expresses that R

is a P-module of projective dimension one, resolved by the Koszul complex

0 —> I —> P —> 0 .

Namely, if X 	 is any complex of R-modules, 	 p * X 	 is still the same

complex but regarded as consisting of P-nodules, and p*p * X is repre-

sented by the total complex associated to X @ la (0 —> I —> P —> 0) .

Now the obvious "spectral sequence" associated to this double complex

shows that the projection onto

= (X O R R) p R=XQ I, H 0 (0 —> I —> P —> 0

- which represents 7(X) - is surjective and that its kernel is quasi-

isomorphic to 	 X O p Ill] = X fa R P® P I[1] = X^ R I/1 2 [1].

But this is precisely the statement of the theorem.

The difficult part, examined in [Eis], is to give 	 s explicitely for a

complex X .

Here we will only show how this theorem implies immediately that reso-

lutions over R become eventually periodic of period two

If X is any bounded above complex of projective R-modules with fi-

nitely generated and bounded cohomology, p*p *X is perfect. Hence there

exists a finite free complex representing it But this means that s be-

comes a quasi-isomorphism after truncating those finitely many degrees in

which this representative of p*P *X is concentrated.

If P is local, X a minimal complex of finitely generated free R-



/14.5"
modules, then X 	 is determined up to isomorphisms of complexes in its

isomorphism class in 	 D(Mod-R) - and similarly in case that 	 P 	 is non-

negatively graded with a local regular ring in degree zero.

In these cases, 	 X 
@ R I/1

2
 2 	 will also be minimal and hence 	 s(X)

an isomorphism of complexes - except at a finite number of terms. This

proves that X 	 - up to the twist with the free module 1/1 2 
- can be

chosen to be eventually periodic of period two. Remark that if X 	 is

the resolution of a single R-module M , it can be chosen to be periodic

after at most projdim p p *M many steps.

Remark: 	(a) The complex	 1/I 2
 1 	 is the natural representative of the

relative cotangent complex ILR/p of R over P , so that s can be

thought of as a natural transformation from the identity on D(Mod-R)

into the functor - OR I
R/P 

1 . But, following Illusie's treatment of

Atiyah-classes,111;11/.2.3.,therelativeAtiyah-classa.

	

t Ri 	pro-p

vides also such a transformation, and indeed one sees easily from the ex-

plicit construction of s 	 in 	 Eis that they are the same.

Now we will show that (10.2.1.) determines completely the natural

transformation c' : ExtR(-,-) ---> ExtR(-,-) 	from the ordinary to the
stabilized Ext-groups, (6.2.5.(3)).

As p*p * maps D b (R) 	 into 
Dperf

 (R) , the class of the transforma-

tion s becomes an isomorphism of functors in the stabilized category

D b (R) 

If e denotes a (homogeneous) generator of (I/I
2
)* , the normal

module of R over P - which is still free of rank one -, we may "nor-

malize" 	 s to the morphism of functors s' = (1 R R e) o s : id ---> T
2 

.

Then (10.2.1.) yields homomorphisms of graded rings- deg s' = 2 :

(10.2.2.) ZZ s' 	 HomDb(R)(id,Ti) ---> Hom p b (R) (id,T i ) 	 ,    

which, mnen evaluated in a complex - X , become the ring hoMorpnisms

ZZ s 	 ---> Ext*
R
( 'X) 

c (X,X) 
 > Ext•(X,X)

sending 	 s' 	 into the class of s'(X) .

Ta say that s' 	 is a natural transformation of functors, amounts to

the fact that the image of 	 is central and that the induced right or
left actions on ExtR(X,Y) for any two complexes X , Y in D(Mod-R)

by the Yoneda-product with s'(X) 	 and s'(Y) 	 resp. are the same, so

that any of the graded Ext-groups becomes a symmetric Z s' -bimodule.

As. C-0 , 	 is invertible and c•
	

is, an isomorphism in large degrees :



Theorem 10.2.3.: 	 For any two (complexes of) R-modules 	 M 	 and
	

/1 Ef G

(in 	 D b
(R) ), one has

	

ExtR(M,N) 	 ExtR(M,N) 	 a[s , ] acsi,s.

and the natural transformation 	 c'(M,N) 	 is the inclusion of the first

factor. Its kernel is hence precisely the 	 s'-torsion in 	 ExtR(M,N) .

Remark: 	 (b) As 	 s' 	 is of degree 	 2 , 	 ExtR(M,N) 	 is in fact already

completely determined by the homogeneous localizations

	

ExtR(M,N.) 	 (6) ExT(M,N))/(s 1 -1)

2j
which equals any Ext R (M,N) , and

	

Ext R (M,N) 	 (6) Exq i+1 (M,N))/(s'-1

2i
which equals any 	 ExtR -+1 (M,N), whence we will call these groups also

the "even" and "odd" Tate-cohomology respectively.

In other words, 	 D
b
(R) 	 i -s in fact a E/2 a-graded category.

Now assume (for simplicity) that P contains a field k 	 and that

f

	

	 has only isolated singularities (non-regular points will suffice).

Then ExtR(M,N) will be a finitely generated E/2 a-graded module

over kEs'] - as deg s' 	 2 - and can hence be decomposed into the even

and odd submodule, 	 E + and E 	 respectively. Furthermore, the s'-tor-

sion of either E
+/-

can be characterized in'the usual way, say by means

of the Jordan-blocs of the action of s' .

Remain the free 	 k[s']-modules 	 E+/ /torsion , which are classified
by their ranks. The difference of these ranks behaves like a "stable"

Euler-Poincare-characteristic and seems hence to be a very reasonable in-

variant - in particular if compared to the case of cyclic groups - whence

we give it a name :

10.3. 	 The Herbrand-difference 

Definition 10.3.1.:. 	 Let 	 (R,m,k) 	 be a local hypersurface ring with

the only prime at which R is not regular.

For any two (complexes of) R-modules M , N set

h(M,N) 	 length(Exe(M,N)) - length(Ext - (M
'
 N))



and call this number the Herbrand-difference of 	 (M,N) 	 over R .

Remarks: 	 (a) If 	 R 	 is not local, but 	 f 	 still has only isolated non-

regular points, one may define these differences at any non-regular point

(and sum up) to get local (and global) Herbrand-differences.

This applies in particular for homogeneous hypersurfaces, which are

only non-regular at the origin. In this case, it is to be understood that

we sum up over all the graded components of the corresponding 	 Ext's .

(b) 	 The name is apparently motivated by the Herbrand-quotient for cyclic

groups, [Ser 1;VIII,§5], defined as

h(M) 	 10(G,M)1/1 	 G,M)1 	 ,

the quotient of the orders of the Tate-cohomology groups for a given re-

presentation M • of the cyclic group G . Comparing with our definition,

h CE,M)
h(M
	

IZ p

where h 	 is the local Herbrand-difference at the prime P

(Of course only those primes are non-regular - and hence contribute -

which divide the order of G .)

(10.3.2.) 	 Due 	 to

M 	 and 	 any 	 short

an 	 exact 	 hexagon

the 	 periodicity 	 of Tate-cohomology,

exact sequence 	 0 —> N 1 —> N 2

) —> Ext +
R
(M

'
	) --> Ext

R

for 	 any 	 R-module

	

—> N
3
 —> 0 	 there is

(M, 	 )

1 )

E t
R

Ext - (M,N --< 	 Ext-(M,N < 	 Ext-(M,N--
3 )
	 )

and similarly for exact sequences in the first argument.

It follows :

(i) h(-,-) 	 is additive on short exact sequences in each argument,

and also on distinguished triangles in 	 D
b
(R) .

This implies that k induces a E-valued, bilinear pairing on the

Grathendleck group 1(6.(R) 	 of all finitely generated R-modules. This

pairing will be denoted by the same symbol.

(ii) h(U,-) 	 h(-,U) 	 0 	 for all finitely generated R-modules 	 U 	 of

finite projective dimension (or 	 U 	 in 	
Dpert

,(R) ).



his is clear from the definition of Tate-cohomology and shows that h

• 	 as a pairing on 	 KO(R) 	 contains 	 K 0 (R) , the Grothendieck group of all

finitely generated projective R-modules, in its radical.

Hence it induces a pairing on 	 K 0 (R)	 K6(R)/K0(R) , (4.9.), still

to be denoted h .

Next we want to apply the Duality Theorem in connection with the pe-

riodicity. Let us first state this as a separate

Corollary 10.3.3.: 	Let	 (R,m,k) 	 be a hypersurface ring with 	 m 	 as

its only non-regular prime. Then

(i) If 	 dim R 	 is even , 	 Ext 1R- (M,N) 	 and 	 Ext f-z (N,M) 	 are dual to each

other. In particular, they have the same length.

(ii) If dim R 	 is odd , 	 Exq(M,N) 	 is dual to 	 Exq(N,M) 	and the same

holds for the odd Tate-cohomology groups.

In particular,

(iii) 	 For any complex 	 M 	 in 	 D b (R) , the 2Z/22Z-graded stable Ext-al-

gebra 	 Extili(M,M) @ Extii(M,M) 	 is quasi-Frobenius and carries a graded

involution. If 	 dim R 	 is odd , already 	 Ext iR- (M,M) 	 is a quasi-Fro-

benius subalgebra.

This is obvious from (10.1.5.).

the graded case, we can still do a little bit better :

Corollary 10.3.4.: 	Let R be homogeneous, quotient of a polynomial

ring in an even number of variables by a polynomial of odd degree d -

and with the origin as only non-regular point.

Then for any graded (complex 'of) R-module(s) 	 M (in
	

the

length of Ext R
/
 (MA is even .

Just substitute the given data in (10.1.6.) to obtain that the sym-

metry is centered at half an integer.

Applying all this to the Herbrand-differences, we get

i) 	 h(M,N) 	 1)dim R-l h(N,M ) 	 for all (complexes of) R-modules

R 	 and 	 N 	 (.in 	D b (R)) .

In particular, the pairing given by ft is

alternating if dim R is even 

symmetric 	if dim R is odd	 and, if R is defined by a polyno-



the quadratic form Q h (X) = h(X,X) 	 is even.

Before we go on to deduce further properties of h , let us make the

Remark: 	 (a) The specialization of the Duality Theorem to hypersurfaces

shows that for any complex (or just MCM) on a hypersurface the stable

El2 Z1-graded endomorphism ring shares the characteristic properties of
the Clifford-algebra of a quadratic form - and it is a Clifford-algebra

in case of the (MCM-approximation of the) residue class field as men-

tioned in (10.1.4.(ii)) . A satisfactory explanation is missing - except

when the hypersurface itself is a regular quadric.

Coming back to Herbrand-differences, let us translate the existence

of the "trivial" duality, (4.6.) :

(iv) Let M , N 	 be two maximal Cohen-Macaulay R-modules (or complexes

in 	 D
b
(R) ) and set 	 (-)* = Hom R (-,R) , (resp. = RHom(-,R) ) .

Then one has obviously

h(M,N) = h(N*,M*)

(v) Let 	 L be a perfect complex of R-modules, 	 1 	 its Euler-Poincaré

characteristic. Then it follows by induction on the number of non-

zero components of L that
IL

h(-@ R L,-) = 1.h(-,-) 	 .

vi
	

If A 	 is (a syzygy module of) some artinian R-module, then

h(A,-) = h(-,A) = 0 .

This follows for artinian modules themselves from the fact that

their classes in 	 K6(R) 	 are torsion- as for any local Cohen-

Macaulay ring - , but 	 h(A,-) 	 is an additive function into the

torsion-free group of integers. For syzygy-modules, the statement

follows from (ii).

Finally let us mention a different description of h 	 in case that R

is normal :

(vii) 	 Let N 	 and M be two MCMs over a normal hypersurface ring. Then

h(M,N) = h m (N EI R M*) - h m0 (N @ R M*) 	 ,

where 	 h m (-) 	 denotes the length of the local cohomology module

H i (-) 	 .
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The proof is obtained from the exact sequence in (6.4.1.(iii)) , as
under the assumptions made Hom R (M,N) 	 is reflexive, whence

H im (Hom R (M,N)) = 0 	 for 	 i = 0,1

and hence

H -riri (N R R M*) = Exq -1 (M,N) 	for	 i = 0,1 .

To summarize the properties of the Herbrand-difference, let us intro-

duce - aside 	 K ( ' ) (R) - also the Grothendieck group 	 K(art-R) 	 of all

artinian R-modules. Then summing up over all the non-regular points we

get :

Theorem 10.3.5.: 	Let R	 be a hypersurface ring which has only iso-

lated non-singular points and set c = (-1)
dim R-1

Then the Herbrand-difference h induces an c-symmetric pairing on

K(R) 
 = def KO(R)/KO(R) + K(art-R) .

This pairing is c-invariant under the duality induced by RHom R (-,R)

and K O (R)-bilinear with respect to the natural 	 K O (R)-module structure

on 	 K 1
0
(R) .

Formulating it separately in the graded case, we get

Theorem 10.3.6.: 	Let R be a homogeneous hypersurface ring defined
by a polynomial of degree 	 d 	 in 	 k[x 0 ,...,x n ] . Let 	 X 	 be the underly-

ing projective hypersurface in 	 P n 	and assume that it is regular.

Then the Herbrand-difference induces a bi-linear pairing on

K°(X) = def KOM /K O (Pn)

which is symmetric if dim X = n-1 	 is even and the associated quadratic

form is even if furthermore the degree d is odd. In case that dim X

is odd, the pairing is alternating.

This Theorem suggests that the Herbrand-difference should serve as

the (?) intersection form on the (co-)primitive cycles of the projective

hypersurface X .

Let us consider some examples :
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Example 10.3.7.: 	 Let 	 X 	 be a non-singular quadric. Then it is known,

by [KnO], see also [BEN], that there is precisely one non-free and in-

decomposable graded MCM - up to shifts and isomorphisms - if dim X 	 is

odd . In this case, 	 K(R) = 7Z/27Z 	 and hence 	 h 	 is trivial.

If dim X is even, there are precisely two such MCMs and the group

K
0
 (R) 	 is free of rank one, generated by either one of them. For any of

these generating modules 	 M , one has 	 h(M,M) = 1 .

Example 10.3.8.: 	 Let R 	 be a simple analytic hypersurface singularity

which is even-dimensional. Then 	 K
0
 (R) 	 is finite and hence h 	 trivial

again.

In case of odd dimension - and characteristic different from 2 - one

is reduced to the curve case by H. KnOrrer's periodicity result, [KnO] .

But for a reduced plane curve singularity, the Grothendieck group

C
0
(R) 	 is generated - at least up to torsion - by the structure sheaves

of the irreducible branches and it is left as an exercise to calculate

the pairing induced by h on these modules.

Finally we consider:

10.4. 	 The 	 27 	 lines on a cubic - once again 

Let P = kEx,y,u,v3 and let f be a homogeneous polynomial of degree

three such that the underlying surface X 	 is 	 smooth.

(10.4.1.) 	 A line on 	 X 	 is apparently given by two linear forms 	
11 '

1
2 

such that f can be written as

f = 1
1
q
1 

+ 1
2
q
2

for two quadratic polynomials q l , q 2 	in	 P .

Set 	 A = P/(1 1 ,1 2 ) 	 and 	 L = Proj A , and denote by 	 A' = P/(11,12)

and 	 L' = Proj A' 	 a (module of a) second line.

(10.4.2.) 	 Denote 	 (-.-) 	 the intersection form on 	 Pic(X) . Then it is

well-known that 	 Pic(X) 	 looks as follows :

6

	

Pic(X) = 	 8 ZZ.1.

with
	 i =0

	= 1 	 ,	 ( li* 	 =
	

1 	 for 	 i > 0 	 and 	 (l i .l i ) = 0 	 for

j . Recall also that in this representation the class of the duali-

zing sheaf is 	 w = (-3,1,...,1) . It generates the image of 	 Pic(P 3 ) in



Pic(X) . 	 As 	 X 	 is two-dimensional, 	 K O (X) 	 a @ Pic(X) 	 and hence the
group on which the Herbrand-difference will be defined is

K O ( X) 	 KO(X)/KO(P 3 ) 	 Pic(X)/Im(Pic(P
3
) —> Pic(X)) 	 Pic(X)/E.w .

As the classes 	 1 1 ,...,1 6 	correspond to lines, the classes of lines
will generate 	 K 0 (X) 	 as, an abelian group and it will be enough to deter-
mine the pairing 	 h on pairs of the form (A,A') , and to compare it

with the values 	 (L.L') 	 L(') the class of the corresponding line.

(10.4.3.) 	 Now we have the following table :

position of
	

skew
	

transversal 	 identical

the lines

(L.L')
	

0 	 1 	 - 1

Ext 1-R 	'(A A')
	

k
	

0 	 P/(11,12,q1,q2)

Ext - (A ' A')
	

0
	

length 2 	 0

h(A,A') 	 1 	 -2 	 4

This table can be readily verified by means of direct calculation.

It follows :

Proposition 10.4.5.: 	The Herbrand-difference of the homogeneous coor-

dinate ring of a smooth cubic satisfies :

h(A,A') 	 (4)(3L + w)(3L' + w) 	 ,

whence 	 (K o (X)/K o (P 3 ) @ a IR , h 	 1) 	 is isometric as a Euclidean space
to the orthogonal complement of w 	 in 	 (Pic(X) @ zz IR , -( . ) ) .

Of course, there should exist a more conceptual proof for this.
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