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Kähler Geometry
Let N be a smooth compact manifold of real dimension 2dN .

I If J is a smooth bundle-morphism on the real tangent bundle,
J : TN → TN such that J2 = −Id and ∀X ,Y ∈ TN

J(LXY )− LX JY = J(LJX JY − JLJXY ),

then (N, J) is a complex manifold with complex structure J.
I A Riemannian metric g on (N, J) is said to be a Hermitian

Riemannian metric if

∀X ,Y ∈ TN, g(JX , JY ) = g(X ,Y )

I This implies that ω(X ,Y ) := g(JX ,Y ) is a J− invariant
(ω(JX , JY ) = ω(X ,Y )) non-degenerate 2− form on N.

I If dω = 0, then we say that (N, J, g , ω) is a Kähler manifold (or
Kähler structure) with Kähler form ω and Kähler metric g .

I The second cohomology class [ω] is called the Kähler class.
I For fixed J, the subset in H2(N,R) consisting of Kähler classes is

called the Kähler cone.
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Ricci Curvature of Kähler metrics:

Given a Kähler structure (N, J, g , ω), the Riemannian metric g defines
(via the unique Levi-Civita connection ∇)

I the Riemann curvature tensor R : TN ⊗ TN ⊗ TN → TN

I and the trace thereoff, the Ricci tensor r : TN ⊗ TN → C∞(N)

I This gives us the Ricci form, ρ(X ,Y ) = r(JX ,Y ).

I The miracle of Kähler geometry is that c1(N, J) = [ ρ2π ].

I If ρ = λω, where λ is some constant, then we say that (N, J, g , ω) is
Kähler-Einstein (or just KE).

I More generally, if
ρ− λω = LVω,

where V is a holomorphic vector field, then we say that (N, J, g , ω)
is a Kähler-Ricci soliton (or just KRS).

I KRS =⇒ c1(N, J) is positive, negative, or null.
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Scalar Curvature of Kähler metrics:

Given a Kähler structure (N, J, g , ω), the Riemannian metric g defines
(via the unique Levi-Civita connection ∇)

I the scalar curvature, Scal ∈ C∞(N), where Scal is the trace of the
map X 7→ r̃(X ) where ∀X ,Y ∈ TN, g(r̃(X ),Y ) = r(X ,Y ).

I If Scal is a constant function, we say that (N, J, g , ω) is a constant
scalar curvature Kähler metric (or just CSC).

I KE =⇒ CSC (with λ = Scal
2dN

)

I Not all complex manifolds (N, J) admit CSC Kähler structures.

I There are generalizations of CSC, e.g. extremal Kähler metrics as
defined by Calabi (L∇gScalJ = 0) .

I Not all complex manifolds (N, J) admit extremal Kähler structures
either.
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Admissible Kähler manifolds/orbifolds

I Special cases of the more general (admissible) constructions defined
by/organized by Apostolov, Calderbank, Gauduchon, and T-F.

I Credit also goes to Calabi, Koiso, Sakane, Simanca, Pedersen,
Poon, Hwang, Singer, Guan, LeBrun, and others.

I Let ωN be a primitive integral Kähler form of a CSC Kähler metric
on (N, J).

I Let 1l→ N be the trivial complex line bundle.

I Let n ∈ Z \ {0}.
I Let Ln → N be a holomorphic line bundle with c1(Ln) = [nωN ].

I Consider the total space of a projective bundle Sn = P(1l⊕ Ln)→ N.

I Note that the fiber is CP1.

I Sn is called admissible, or an admissible manifold.
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Admissible Kähler classes

I Let D1 = [1l⊕ 0] and D2 = [0⊕ Ln] denote the “zero” and “infinity”
sections of Sn → N.

I Let r be a real number such that 0 < |r | < 1, and such that r n > 0.

I A Kähler class on Sn, Ω, is admissible if (up to scale)

Ω = 2πn[ωN ]
r + 2πPD(D1 + D2).

I In general, the admissible cone is a sub-cone of the Kähler cone.

I In each admissible class we can now construct explicit Kähler
metrics g (called admissible Kähler metrics).

I We can generalize this construction to the log pair (Sn,∆), where ∆
denotes the branch divisor ∆ = (1− 1/m1)D1 + (1− 1/m2)D2.

I If m = gcd(m1,m2), then (Sn,∆) is a fiber bundle over N with fiber
CP1[m1/m,m2/m]/Zm.

I g is smooth on Sn \ (D1 ∪D2) and has orbifold singularities along D1

and D2
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Sasakian Geometry:

Sasakian geometry: odd dimensional version of Kählerian geometry and
special case of contact structure.

A Sasakian structure on a smooth manifold M of dimension 2n + 1 is
defined by a quadruple S = (ξ, η,Φ, g) where

I η is contact 1-form defining a subbundle (contact bundle) in TM
by D = ker η.

I ξ is the Reeb vector field of η [η(ξ) = 1 and ξcdη = 0]

I Φ is an endomorphism field which annihilates ξ and satisfies J = Φ|D
is a complex structure on the contact bundle (dη(J·, J·) = dη(·, ·))

I g := dη ◦ (Φ⊗ 1l) + η ⊗ η is a Riemannian metric

I ξ is a Killing vector field of g which generates a one dimensional
foliation Fξ of M whose transverse structure is Kähler.

I (Let (gT , ωT ) denote the transverse Kähler metric)

I (dt2 + t2g , d(t2η)) is Kähler on M × R+ with complex structure I :
IY = ΦY + η(Y )t ∂∂t for vector fields Y on M, and I (t ∂∂t ) = −ξ.
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I If ξ is regular, the transverse Kähler structure lives on a smooth
manifold (quotient of regular foliation Fξ).

I If ξ is quasi-regular, the transverse Kähler structure has orbifold
singularities (quotient of quasi-regular foliation Fξ).

I If not regular or quasi-regular we call it irregular... (that’s most of
them)

Transverse Homothety:

I If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with
ga = ag + (a2 − a)η ⊗ η.

I So Sasakian structures come in rays.
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Deforming the Sasaki structure:

In its contact structure isotopy class:

I

η → η + dcφ, φ is basic

I This corresponds to a deformation of the transverse Kähler form

ωT → ωT + ddcφ

in its Kähler class in the regular/quasi-regular case.

I “Up to isotopy” means that the Sasaki structure might have to been
deformed as above.
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In the Sasaki Cone:

I Choose a maximal torus T k , 0 ≤ k ≤ n + 1 in the Sasaki
automorphism group

Aut(S) = {φ ∈ Diff (M) |φ∗η = η, φ∗J = J, φ∗ξ = ξ, φ∗g = g}.

I The unreduced Sasaki cone is

t+ = {ξ′ ∈ tk | η(ξ′) > 0},

where tk denotes the Lie algebra of T k .

I Each element in t+ determines a new Sasaki structure with the same
underlying CR-structure.
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Ricci Curvature of Sasaki metrics

I The Ricci tensor of g behaves as follows:
I r(X , ξ) = 2n η(X ) for any vector field X
I r(X ,Y ) = rT (X ,Y )− 2g(X ,Y ), where X ,Y are sections of D and

rT is the transverse Ricci tensor

I If the transverse Kähler structure is Kähler-Einstein then we say that
the Sasaki metric is η-Einstein.

I S = (ξ, η,Φ, g) is η-Einstein iff its entire ray is η-Einstein
(“η-Einstein ray”)

I If the transverse Kähler-Einstein structure has positive scalar
curvature, then exactly one of the Sasaki structures in the η-Einstein
ray is actually Einstein (Ricci curvature tensor a rescale of the metric
tensor). That metric is called Sasaki-Einstein.

I If S = (ξ, η,Φ, g) is Sasaki-Einstein, then we must have that c1(D)
is a torsion class (e.g. it vanishes).
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I A Sasaki Ricci Soliton (SRS) is a transverse Kähler Ricci soliton,
that is, the equation

ρT − λωT = LVω
T

holds, where V is some transverse holomorphic vector field, and λ is
some constant.

I So if V vanishes, we have an η-Einstein Sasaki structure.

I Our definition allows SRS to come in rays.

I We will say that S = (ξ, η,Φ, g)
is η-Einstein / Einstein / SRS
whenever it is
η-Einstein / Einstein /SRS up to isotopy.
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Scalar Curvature of Sasaki metrics

I The scalar curvature of g behaves as follows

Scal = ScalT − 2n

I S = (ξ, η,Φ, g) has constant scalar curvature (CSC) if and only if
the transverse Kähler structure has constant scalar curvature.

I S = (ξ, η,Φ, g) has CSC iff its entire ray has CSC (“CSC ray”).

I CSC can be generalized to Sasaki Extremal (Boyer, Galicki,
Simanca) such that

I S = (ξ, η,Φ, g) is extremal if and only if the transverse Kähler
structure is extremal

I S = (ξ, η,Φ, g) is extremal iff its entire ray is extremal (“extremal
ray”).

I We will say that S = (ξ, η,Φ, g)
is CSC/extremal whenever it is CSC/extremal up to isotopy.
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The Join Construction
I The join construction of Sasaki manifolds (Boyer, Galicki, Ornea) is

the analogue of Kähler products.
I Given quasi-regular Sasakian manifolds πi : Mi → Zi . Let

L = 1
2l1
ξ1 − 1

2l2
ξ2.

I Form (l1, l2)- join by taking the quotient by the action induced by L:

M1 ×M2

↘ πLyπ12 M1 ?l1,l2 M2

↙ π
Z1 ×Z2

I M1 ?l1,l2 M2 is a S1-orbibundle (generalized Boothby-Wang fibration).
I M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure for all

relatively prime positive integers l1, l2. Fixing l1, l2 fixes the contact
orbifold. It is a smooth manifold iff gcd(µ1l2, µ2l1) = 1, where µi is
the order of the orbifold Zi .
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Join with a weighted 3-sphere

I Take π2 : M2 → Z2 to be the S1-orbibundle

π2 : S3
w → CP[w]

determined by a weighted S1-action on S3 with weights
w = (w1,w2) such that w1 ≥ w2 are relative prime.

I S3
w has an extremal Sasakian structure.

I Let M1 = M be a regular CSC Sasaki manifold whose quotient is a
compact CSC Kähler manifold N.

I Assume gcd(l2, l1w1w2) = 1 (equivalent with gcd(l2,wi ) = 1).

I

M × S3
w

↘ πLyπ12 M ?l1,l2 S
3
w =: Ml1,l2,w

↙ π
N × CP[w]
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The w-Sasaki cone

I The Lie algebra aut(Sl1,l2,w) of the automorphism group of the join
satisfies aut(Sl1,l2,w) = aut(S1)⊕ aut(Sw),
mod (Ll1,l2,w = 1

2l1
ξ1 − 1

2l2
ξ2), where S1 is the Sasakian structure on

M, and Sw is the Sasakian structure on S3
w.

I The unreduced Sasaki cone t+l1,l2,w of the join Ml1,l2,w thus has a

2-dimensional subcone t+w is called the w-Sasaki cone.

I t+w is inherited from the Sasaki cone on S3

I Each ray in t+w is determined by a choice of (v1, v2) ∈ R+ × R+.

I The ray is quasi-regular iff v2/v1 ∈ Q.

I t+w has a regular ray (given by (v1, v2) = (1, 1)) iff l2 divides w1 −w2.
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Motivating Questions

I Does t+w have a CSC/η-Einstein ray?

I What about extremal/Sasaki-Ricci solitons?
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Key Proposition (Boyer, T-F)

Let Ml1,l2,w = M ?l1,l2 S3
w be the join as described above.

Let v = (v1, v2) be a weight vector with relatively prime integer
components and let ξv be the corresponding Reeb vector field in the
Sasaki cone t+w .
Then the quotient of Ml1,l2,w by the flow of the Reeb vector field ξv is
(Sn,∆)
with n = l1

(
w1v2−w2v1

s

)
, where s = gcd(l2,w1v2 − w2v1), and ∆ is the

branch divisor

∆ = (1− 1

m1
)D1 + (1− 1

m2
)D2, (1)

with ramification indices mi = vi
l2
s .
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The Kähler class on the (quasi-regular) quotient

I is admissible up to scale.

I We can determine exactly which one it is.

I So we can test it for containing admissible KRS, KE, CSC, or
extremal metrics.

I Hence we can test if the ray of ξv is (admissible and)
η-Einstein/SRS/CSC/extremal (up to isotopy).

I By lifting the admissible construction to the Sasakian level (in a way
so it depends smoothly on (v1, v2)), we can also handle the irregular
rays.
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Theorem A (Boyer, T-F)

I For each vector w = (w1,w2) ∈ Z+ × Z+ with relatively prime
components satisfying w1 > w2 there exists a Reeb vector field ξv in
the 2-dimensional w-Sasaki cone on Ml1,l2,w such that the
corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has
constant scalar curvature.

I Suppose in addition that the scalar curvature of N is non-negative.
Then the w-Sasaki cone is exhausted by extremal Sasaki metrics.
In particular, if the Kähler structure on N admits no Hamiltonian
vector fields, then the entire Sasaki cone of the join Ml1,l2,w can be
represented by extremal Sasaki metrics.

I Suppose in addition that the scalar curvature of N is positive.
Then for sufficiently large l2 there are at least three CSC rays in the
w-Sasaki cone of the join Ml1,l2,w.
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Theorem B (Boyer, T-F)

Suppose N is positive Kähler-Einstein with Fano index IN and

l1 =
IN

gcd(w1 + w2, IN)
, l2 =

w1 + w2

gcd(w1 + w2, IN)
,

(ensures that c1(D) vanishes).

I Then for each vector w = (w1,w2) ∈ Z+ × Z+ with relatively prime
components satisfying w1 > w2 there exists a Reeb vector field ξv in
the 2-dimensional w-Sasaki cone on Ml1,l2,w such that the
corresponding Sasakian structure S = (ξv, ηv,Φ, g) is
Sasaki-Einstein.

I Moreover, this ray is the only admissible CSC ray in the w-Sasaki
cone.

I In addition, for each vector w = (w1,w2) ∈ Z+ × Z+ with relatively
prime components satisfying w1 > w2 every single ray in the
2-dimensional w-Sasaki cone on Ml1,l2,w admits (up to isotopy) a
Sasaki-Ricci soliton.
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Remarks

I The Sasaki-Einstein structures were first found by the physicists
Guantlett, Martelli, Sparks, Waldram.

I Starting from the join construction allows us to study the topology
of the Sasaki manifolds more closely.

I When N = CP1, Ml1,l2,w are S3-bundles over S2. These were treated
by Boyer and Boyer, Pati, as well as by E. Legendre.

I Our set-up, starting from a join construction, allows for cases where
no regular ray in the w-Sasaki cone exists. If, however, the given
w-Sasaki cone does admit a regular ray, then the transverse Kähler
structure is a smooth Kähler Ricci soliton and the existence of an SE
metric in some ray of the Sasaki cone is predicted by the work of
Mabuchi and Nakagawa.
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