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1. The algebraic set-up

For the present purpose, we are concerned with a matrix-valued function

M : Z3 → M5,5(C),

that is, a 5× 5 matrix

M =


M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55


as a function of n1, n2, n3. We are interested in the “evolution” of the sub-matrix

M̂ =

(
M44 M45

M54 M55

)

which encapsulates the geometry.



2. A fundamental discrete integrable system

The matrix M is uniquely determined by the fundamental system

M ik
l = M ik −

M ilM lk

M ll
, l ∈ {1,2,3}\{i, k}

and the Cauchy data

M ik(Sik), Sik = {n : nl = 0, l ̸∈ {i, k}}.

In particular, M̂ may only be prescribed at one point.

Theorem. Compatible and multi-dimensionally consistent (for the same reason)!

Proof. (
M ik

l

)
m

=
(
M ik

m

)
l



3. Evolution of minors

Consider multi-indices

A = (a1 · · · as), B = (b1 · · · bs)

with distinct entries.

Minors of M = (M ik)i,k:

MA,B = det(Maαbβ)α,β=1,...,s, M∅,∅ = 1

Theorem.

M
A,B
l =

M lA,lB

M l,l
, l ̸∈ A ∪B

Proof. Laplace expansion.



4. The Jacobi identity

Jacobi’s classical identity for determinants:

MA,BMaāA,b̄bB −MaA,bBM āA,̄bB +M āA,bBMaA,̄bB = 0

Key “observation”:

⟨W,W⟩ = 0,

where

W = (MA,B,MaāA,b̄bB,MaA,bB,M āA,̄bB,M āA,bB,MaA,̄bB)

and the inner product is taken with respect to the block-diagonal metric

diag

[(
0 1
1 0

)
,−

(
0 1
1 0

)
,

(
0 1
1 0

)]
.



5. The Plücker quadric

Now, consider all minors of the matrix M̂ and define

V = (M∅,∅,M45,45,M4,4,M5,5,M5,4,M4,5).

Then, trivially, ⟨V,V⟩ = 0.

Interpretation: Homogeneous coordinates

V : Z3 → C
3,3

of a lattice of points in a four-dimensional quadric Q4 embedded in a five-dimensional
complex projective space P(C3,3).

Identification: Q4 = Plücker quadric and the Plücker correspondence provides a dis-
crete line complex

l : Z3 → {lines in CP3},

that is, a three-parameter family of lines which are combinatorially attached to the
vertices of Z3.



6. Incidence of lines

Lemma 1. “Neighbouring lines” intersect, that is,

⟨Vl,V⟩ = 0.

Proof. Jacobi-type identity.

Lemma 2. “Opposite diagonals” intersect, that is,

⟨V∗,V⋄⟩ = 0.



7. Fundamental line complexes [cf. Doliwa, Santini & Manas (2000)]

Definition. A line complex l : Z3 → {lines in CP3} is termed fundamental if any
neighbouring lines l and ll intersect and the points of intersection enjoy the coplanarity
property or, equivalently, the diagonals admit the concurrency property.

Theorem. Any solution M of the fundamental system encapsulates a fundamental line
complex l via the Plücker correspondence V ↔ l and, in fact, vice versa!



8. A Desargues connection

Theorem. For any given hexagon of six lines, the pla-

narity property gives rise to a unique correspondence be-

tween the “first” and the “eighth” line.

Proof. Desargues’ theorem



9. “Curiosities”

Observation. The 8 lines of an elementary cube of a fundamental line complex together
with the 12 associated diagonals form a spatial version of the classical point-line con-
figuration (154 203):

[Coxeter, Projective Geometry or Baker, Principles of Geometry (frontispiece, vol. 1)]

Claim. The lines and diagonals of a fundamental line complex appear on equal footing
if one embeds them in a five-dimensional (root) lattice of A type, that is,

l : A5 → {lines in CP3}.



10. Reductions and sub-geometries ...

The symmetries of the fundamental system give rise to various admissible reductions:

• M ik ∈ R → real Plücker quadric and line complexes

• M ik = M̄ki: Set

Ṽ = (M∅,∅,M45,45,M4,4,M5,5,ℜ(M4,5),ℑ(M4,5))

Then, the new inner product is taken with respect to

diag

[(
0 1
1 0

)
,−

(
0 1
1 0

)
,

(
2 0
0 2

)]

so that

Ṽ : Z3 → R
4,2

→ 4-dim. Lie quadric → Lie sphere geometry → Neighbouring spheres com-

binatorially attached to vertices have oriented contact.



... Lie circle geometry ...

• M ik = Mki ∈ R: Set

Ṽ = (M∅,∅,M45,45,M4,4,M5,5,M4,5)

Then, the new inner product is taken with respect to

diag

[(
0 1
1 0

)
,−

(
0 1
1 0

)
,2

]

so that

Ṽ : Z3 → R
3,2

→ 3-dim. Lie quadric → Lie circle geometry → Neighbouring circles on the

plane combinatorially attached to vertices have oriented contact.



... dCKP equation

Remark. The minors of the symmetric matrix M may be parametrised in terms of a

single function τ → discrete CKP equation

(ττ123 + τ1τ23 − τ2τ13 − τ3τ12)
2 − 4(τ12τ13 − τ1τ123)(τ2τ3 − ττ23) = 0.

The left-hand-side is known to be Cayley’s 2×2×2 hyperdeterminant.

[Kashaev (1996): Star-triangle moves in the Ising model

Schief (2003): Carnot’s and Pascal’s theorems

Holtz & Sturmfels (2007): Principal minor assignment problem

Kenyon & Pemantle (2014): Dimers and cluster algebras]



11. Correlations

Theorem 1. For any hexagon in CP3 in general position,

there exists a unique correlation

κ : {points in CP3} → {planes in CP3}

which interchanges “opposite” (extended) edges.

Theorem 2. For any hexagon of six lines, the afore-

mentioned unique correspondence between the “first”

and the “eighth” line due to Desargues’ theorem coin-

cides with that generated by the above correlation.

Remark. The correlation “maps” the planarity property to the concurrency property

and vice versa!



12. Apollonius circles

Corollary. For any given “hexagon” of six (black and blue) circles which have oriented

contact, there exists a unique correspondence between the pairs of (red and purple)

Apollonius circles.



13. A canonical eighth circle



14. Summary



15. “Deeper” reductions

In the spirit of Klein’s Erlangen Program, consider the intersection of the Lie quadric

with a hyperplane. Depending on the signature of the hyperplane, this identifies

• points → Möbius geometry

• lines → Laguerre geometry

• “geodesic circles” → “hyperbolic” geometry

It is then consistent to demand that every second Lie circle be of the above type.

This leads to the consideration of interesting “circle theorems” such as (analogues of)

Miquel’s theorem and Clifford’s chain of circle theorems.



16. Miquel-type theorems

Möbius geometry Laguerre geometry

[Yaglom, Complex Numbers in Geometry]



17. Quaternionic projective geometry ...

... of line complexes leads to configurations in four-dimensional Lie sphere geometry.

Not today ...


