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Two Geometries: 3D and 4D

We will consider two geometries staying behind many integrable
dispersionless PDEs in 3D and 4D.

Wey! structure on M?3 is the pair ([g],D) consisting of a conformal
structure and a linear connection preserving it (we allow any
signature, but prefer Lorentzian g). Then the condition on D writes
via 1-form w

Dg=w®g.

A choice of w is equivalent to a choice of ID.

Indeed, denoting by V the Levi-Civita connection, we have

D=V +p(w), 20(w)(X,Y) = w(X)Y +w(¥Y)X — g(X,Y)wh.

In coordinates D;v/ = V,v9 + 7, v*, where

v, = 3(wkd] + w;bl, — wigy,) (raising is done by g).

Under the change g — kg the form changes so: w = w +dlogk.
We encode Weyl structures as pairs (g,w) mod the above gauge. ‘i
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(3D) Einstein-Weyl equation

For the general linear connection I, its Ricci tensor Ricp needs not

be symmetric. Its skew-symmetric part Ricil® is proportional to dw.

The symmetric part Ric) " leads to Einstein-Weyl equation

Ricy™ = Ay.

Here A is a function on M. The pair ([g],]D) is called an
Einstein-Weyl structure if the above equation is satisfied (these
yields 5 PDEs of the 2nd order on the 5 entries of the conformal
structure and 3 of the covector). Notice that Einstein-Weyl is an
invariant property of conformal (not metric) structure.

In particular, for w = 0 the connection D is Levi-Civita, and the

above is just the Einstein equation. Thus Einstein-Weyl structures

are rich generalizations of the Einstein structures. For instance, in

3D all Einstein manifolds are the spaces of constant curvature. But s,
S x 82 = (R3\ 0)/Z has a flat Einstein-Weyl structure. o
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(4D) Self-duality equation

Given a metric g in 4D, its Weyl curvature W (as (3,1)-tensor) is
an invariant of the conformal structure [g]. The Hodge operator
acts on the space (S?A%T'M)g of Weyl tensors and it is an
involution for Riemannian or neutral signature, whence the split

W = W, + W_ into self-dual and anti-self-dual parts. The
structure [g] is called self-dual, resp. anti-self-dual, if W_ = 0, resp.
W, = 0 (these are 5 PDEs of the 2nd order on the 9 entries of [g]).

Both EW and SD (or ASD) equations are integrable, as well as
some of their reductions, e.g. anti-self dual Einstein (=heavenly)
equations. Many other PDEs can be obtained as (symmetry)
reductions of the two equations, thus allowing to think of them as
master-equations in 3D and 4D respectively.

EW structures in 3D are reductions from 4D of: (1) hypercomplex
manifolds with triholomorphic symmetry; (2) ASD manifolds with
conformal symmetry. Hypercomplex geometry gives rise to ek
integrable systems as well, but will not be discussed. ’
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EW and ODEs

Cartan related EW structures to the geometry of 3rd order ODEs
w.r.t. point transformations

"

y" =F(z,y,9,y").
Denoting p = ', ¢ = y” we have the following (relative) differential
invariants (D = 0, + pdy + q0, + F'0, is the total derivative):
1792 1 1 2 3, 1
W - GD Fq — quDFq — §DFp + 2—7Fq + quFp + Fy
C= (%DFq* glanQ *Fp)quJf %Fqup*Qqu+Fpp+2Wq
(Wiinschmann and Cartan invariants).

Provided W = 0, C' = 0 the solution space S ~ R3(y, p, q) of the
ODE carries EW geometry with the conformal structure

o= 2dyds ~ §5, dydp + (FDF, ~ 357 — F) o’ — i
and the Weyl potential
A %(Fq 7Dqu) dy+%qudp. Zj
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EW and PDEs

It was also known that examples of EW structures can come from
solutions of integrable PDEs.

(1) The metric g = 4dxdt — dy? + 4udt? and the covector
w = —4u,dt form EW structure provided u = u(t, z,y)
satisfies the dKP equation (Dunajski, Mason, Tod)

Wi = (gl = Wy = 0

(2) The metric g = dz? + dy? — e “dt* and the covector
w = wdt — uzpdx — uydy form EW structure provided
u = u(t,x,y) satisfies the Boyer-Finley equation (Ward,
LeBrun)
W I Uy = (@ )z

(3) Calderbank found Einstein-Weyl structures from solutions of
the gauge field equations with the gauge group SDiff(2)
modelled on Riccati spaces in the class of PDEs related ek
to the generalized Nahm equation. i
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Dispersionless PDEs

Consider the quasi-linear system of PDEs
A(u)u, + B(u)u, + C(u)u; =0, (1)

where u = (ug,...,uy)" is an m-component vector and A4, B,C
are [ X m matrices. We assume the system involutive, with the
general solution depending on 2 functions of 1 variable.

Systems of type (}) will be referred to as 3D dispersionless PDEs.
Typically, they arise as dispersionless limits of integrable soliton
equations: The canonical example is the KP equation:

2
Ut — UlUgy + € Ugge — Wy = 0, Wy = Uy,

which assumes the form (1) in the limit ¢ — 0.

Notice that (}) is translation invariant, which is the standard
requirement for dispersionless PDEs (another approach: scaling ek
limit in independent vars).
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Integrability by the method of hydrodynamic reductions

As proposed by Ferapontov and Khusnutdinova, the method of
hydrodynamic reductions consists of seeking N-phase solutions

u=u(R},...,RY).

The phases (Riemann invariants) R%(x,y,t) are required to satisfy
a pair of commuting equations

Rl = (R)R., Rj=\(R)R.,

Compatibility of this system writes (commutativity conditions):
ajui . 8j)\i
pi— b N =\

Definition

A quasiliner system is called integrable if, for any IV, it possesses
infinitely many N-component reductions parametrized by N §

o o (&)
arbitrary functions of 1 variable (N = 3 is sufficient).
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Example of dKP

Let’s rewrite the dKP equation (u; — uty),; = wy, in the first order
(hydrodynamic) form:

Up — Ully = Wy, Uy = Wy.

N-phase solutions are obtained by u = u(R!,..., RY),
w=w(RY,...,RY), where

R = (R)R., Ri=N(R)R..

Then A ‘ ‘
dhw = ptdu, A =u+ (ub)?.
Functions u(R), p*(R) satisfy the Gibbons-Tsarev equations:

! o;u 20;ud;u
Ot = — Y 9.9 = SZUGY
== (W — ph)?

This system is involutive and its solutions depend on N functions "’&
of 1 variable.
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Formal linearization

Given a PDE ‘
F(z' u,ugi, ugigi,...) =0,

its formal linearization ¢ results upon setting u — u + €v, and
keeping terms of the order €. This leads to a linear PDE for v,

lrp(v) = o F(u+ev) =0,
e=0

In coordinates we have:
€F = Fu =+ FuxiDa:i =+ Fuxixj 'Dﬂ"Dﬂ +....
Example: Linearization of the dKP equation,

iy = (@l = Wiy = 0, T2R018 B8 @iy = (W0)gs = Uy = 0
In the latter linear PDE w is the background solution. s
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Types I-IV of PDEs studied:

I. Equations possessing the ‘central quadric ansatz’:
(a(w))ze+(b(w))yy+(c(w))u+2(p(w)) ey +2(q(w) et +2(r(w))y: = 0.
Equivalence group: GL(3) x Diff(R) : R3(x,y,t) x Rl(u) O.

Il. Quasilinear wave equations:

J11Uzz + footyy + fazus + 2 f10Uzy + 2 f13Ust + 2 f23uy: = 0,
fij = fij(uz, uy,ur). Equivalence group: GL(4) : RY(z,y,t,u) ©.
Ill. Hirota-type equations:

F(Uzz, Ugy, Uyy, Uzt , Uyt, utt) =0.

Equivalence group: Sp(6) : T*R3(x, y, t, ug, uy, ur) O.
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Types I-IV of PDEs studied:

I. Equations possessing the ‘central quadric ansatz’:
(a(w))ze+(b(w))yy+(c(w))u+2(p(w)) ey +2(q(w) et +2(r(w))y: = 0.
Equivalence group: GL(3) x Diff(R) : R3(x,y,t) x Rl(u) O.

Il. Quasilinear wave equations:

J11Uzz + footyy + fazus + 2 f10Uzy + 2 f13Ust + 2 f23uy: = 0,
fij = fij(uz, uy,ur). Equivalence group: GL(4) : RY(z,y,t,u) ©.
Ill. Hirota-type equations:

F(Uzz, Ugy, Uyy, Uzt , Uyt, utt) =0.
Equivalence group: Sp(6) : T*R3(x, y, t, ug, uy, ur) O.
IV. Two-component systems of hydrodynamic type:
w = A(u)u, + B(u)u,, u= (uy, u)T. =
Equiv. group GL(3) x Diff(R?) : R3(z,y,t) x R?(uy,u2) O.
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Canonical conformal structure

For the equations of the considered type the linearized equation
lr(v) = g% + flvi+cv =0

is the second order PDE linear in v. The matrix of higher
derivatives represents a symmetric bi-vector g¥/ = g% (u)
(depending on the 2-jet j2u of the solution w) defined up to
multiplication by a function.

Thus, provided this matrix is non-degenerate, its inverse

(9i) = (g”)~1 determines a canonical conformal metric structure

g = gij da’ da’,

depending on a finite jet of the solution (this encodes the symbol of
the equation = dispersion relation). We say that there is a
canonical conformal structure on every solution. =
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A remarkable formula for the Weyl potential

Given a conformal structure g = g;;(u)dz’dz? let us introduce the
covector w = wgdx® by the universal formula

ws = 29s;Dyi (¢°%) + Dy (In det Gij)-
To interpret this formula, note that the covector w is given by the
identity - ‘ ‘
g”vij = VZVZ'U — %wlviv,

where V is the Levi-Civita connection. Equivalently, the contracted

Christoffel symbols T'; = gilgjkfé.k = %gjk(ajgik + Orgij — 0igjk)

equal to
i = —gi;0hg’" — 10;1og | det(g;x)l,
and so (in 3D only!) we relate w; = —2T';.
Due to dispersionless setup, the formula for w is not contact e
invariant, but it is invariant w.r.t. equivalence transformations. :‘”
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Theorem (E. Ferapontov & BK)

A second order PDE is linearizable (by a transformation from the
natural equivalence group) if and only if the conformal structure g
is conformally flat on every solution (has vanishing Cotton tensor).

Theorem (E. Ferapontov & BK)

A second order PDE is integrable by the method of hydrodynamic
reductions if and only if, on every solution, the conformal structure
g satisfies the Einstein-Weyl equations, with the covector

w = wgdx® given by the universal formula.

A,

According to a theorem of E. Cartan, the triple (D, g,w) is EW iff
there exists a two-parameter family of g-null surfaces that are
totally geodesic with respect to ID. For our classes of integrable

PDEs, these totally geodesic null surfaces are provided by the o,
o o o o (DY
corresponding dispersionless Lax pair. %
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Integrability of the equations of types I-1V above is equivalent to
existence of a dispersionless Lax pair

St = f(SJH Uy, uy7 Ut), Sy = g(Sma Uy, uy7 ut)- (b)

This means that the compatibility condition Sy, = S, is equivalent
to the considered PDE. Lax pairs of this form arise in dispersionless
limits of solitonic Lax pairs (Zakharov).

Differentiate (b) by « and set S, = A\, uy = a, uy = b, uy = c:

)\t - fA)\m+faax+fbbm+fccx7 )‘y = gA)‘x+gaax+gbbx+gcC$- (ﬁ)
The vector fields in the extended space R*(x,y,t, \)

0 0 0
X = E - f)\% + (faax +fbbaz + fccm)57

0 0 0

Y = B_y _g)\%"i_(gaaa: + gpby +gcc$)57 f

commute iff the compatibility A, = Ayt of (#) holds.
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Geometric interpretation a la Twistor theory

Consider the cotangent bundle Z6 = T*R3(z,y,t, S;, Sy, St) of the
soluton u = u(t, z,y), equipped with the symplectic form

w=dS; \Ndx + dSy N dy + dS; A dt.

Equations (b) specify a submanifold M* C Z% parametrized by
x,y,t, \. The compatibility of (b)) means this submanifold is
coisotropic and we have:

Ker(Q|y1) = (X, Y).

This distribution is integrable and is tangent to the hypersurface
A= Az,y,t) in M2,

The two-parameter family of integral leaves of the distribution
(X,Y) projects to the space R3(x,y, z) to a 2-parameter family of s
null totally geodesic surfaces of the Weyl connection D. =
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Example 1: dKP. ug — (utg)y — uyy = 0.
The corresponding EW structure is as follows:

g = 4dzdt — dy? + 4udt?, w = —du,dt.
The dispersionless Lax pair is given by vector fields
X =0y — A0y +uz0\, Y =0;— ()\2 + )0z + (UzgA + uy)0y,

Example 2: The system of Ferapontov, Khusnutdinova and Tsarev.
The Euler-Lagrange equation

Ug Uyt + UyUgt + Uslzy = 0.

for the density u,u,u; is integrable by the method of hydrodynamic
reductions. Its EW structure is given by:

g = (updzr + uydy + wpdt)® — 2udz® — 2u§dy2 — 2uZdt?,

Ug Uyt Uy Uty Ut Uy .
w= 4" dy — 4 dy —4 Y dt. s
Uy Ut Ut Uz Ug; Uy P
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Example 3: Integrable system of Pavlov.

Ugy 1 9
Ut = Yot + 677(Um)u t

Integrability condition: Chazy equation 0™ + 211" = 3(n')>.

Conformal structure is:

2
g = dugrdrdy — <—n'uit + 32> dy? + 2sdydt — dt?,

3
1 U,
where s = —qu?, — 2.
Covector w equals: 3 Ugt
2 2 41 —1
{(3 UggT) + 4u$yutm )uttx + ( utzn + ut:rn :ryutaz 3 Ugy Uy n)umﬂﬂ

1,3 / 2.3 .1 1 -3 —1
+(§ UgpN 1)+ 5 U — 3 UgyT) Ntz + (uxyum -3 n)umy — 2y, utwy} dy
-3 2 1./ —2 -1
- [(uaryum + §n)utmm + §7I Uty Ugpgr — ut7xuma:y - 2um uttm] dt. .

J

=
s
e

This structure is EW iff 1) solves the Chazy equation.
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Explicit form of EW system

According to a theorem of Hitchin, the system of EW equations is
integrable. We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK)

Any Lorentzian EinsteinWeyl structure is locally of the form

g = —(dy — vdt)? + 4(dx — (u — v,)dt)dt,
W= —Vgady + (dtg — 205y + VU )dE,

where the functions u,v on M? satisfy

P(u) = —u?, P(t) =0; P =0,0— 02+ (u—1vy)02 + v,0,0,.

The above coupled system of second-order PDEs, known as the
Manakov-Santini system, has the Lax pair

L1 =0y — (A +v3)0r — ug0y,
Ly =0 — (A2 + vph — w4+ v,)0 — (ugA + uy)0h.
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Integrability in 4D and self-duality

In 4D PDEs of Monge-Ampére type are linearizable iff the
corresponding conformal structure is flat on every solution.

Integrable equations of Monge-Ampére type in 4D have the
following normal forms (Doubrov-Ferapontov):

Ut — Ugg — Uyy — Uz> = 0 (linear wave equation)

Uz + Uy + Uggllyy — uz, = 0 (second heavenly equation)
Upz = UgyUpr — UgtlUy; (Modified heavenly equation)

Uz Uyt — Ugtlly. = 1 (first heavenly equation)

Uzg + Uyy + Ugp2 Uyt — UzpUy, = 0 (Husain equation)

UpyUzt — PUzztyr + (B — 1)ugiuy. = 0 (general heavenly).

e © ¢ ¢ ¢ ¢

Their conformal structures are self-dual on every solution.

Criterion: A 2nd order dispersionless PDE in 4D is integrable iff
the corresponding conformal structure is SD/ASD on every solution. I
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Explicit form of SD/ASD equations

According to a theorem of Penrose, the system of (A)SD equations
is integrable. We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK)
Any ASD conformal structure of signature (2,2) has local form

g =dxdw+ dydz + uydw2 — (ug + vy) dzdw + vydz?,
where the functions u,v on M* satisfy

9Q(u) — 9,Q(v) =0,
(Ow — uyOz + vy0y)Q(v) + (05 + uz0z — v,0,)Q(u) =0,
Q = 8500 + 8,8, — uyB2 + (ug + v,)0:8, — v 8.

The above coupled system of third-order PDEs has the Lax pair
L1 = 0y — uyOp + (A 4+ vy) 0y + Q(u)0, =
Ly = 8. + (A + uz)0y — 020, — Q(v)0h.
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Application: integrable symmetric deformation - example

Theorem (BK & O.Morozov)

Every integrable Monge-Ampére equations of Hirota type in 4D has
4 copies of Lie algebra SDiff(2) in its symmetry algebra, realizing
all 5 Petrov types: N, D, Ill, Il, I and O (for linear equations).

Let us split off one of the copies of SDiff(2) and investigate
invariant equations with respect to the smaller symmetry.

Theorem (BK & O.Morozov)

Integrable deformations of the above equations are the following:

N deformation rigid

D UptlUy, — UgUyr = 0,Q(2,t) ur — 0rQ(2,t) u, + b(2, 1),
00 iy = Wttt =5 Wl = QG Wi )

I UpyUst — UgoUyr = Q(E, Ut) Ust, o

I UgyUzt — Ugz Uyt = Q(f, ut) (uzyuzt - uxtuyz)- =
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