
Quantum Schur algebras and their affine and
super counterparts

Jie Du

University of New South Wales
via

University of Virginia

UBath Seminar, October 25, 2016

1 / 23



1. Introduction—the Schur–Weyl Duality
I Wedderburn’s Theorem: A finite dimensional simple algebras

over C is isomorphic to Mn(C).

I Thus, the associated Lie algebra gln and its universal env.
algebra U(gln) act on Cn and hence on the tensor space
Tn,r =(Cn)⊗r .

I By permuting the tensor factors, the symmetric group Sr in r
letter acts on Tn,r . This action commutes with the action of
U(gln), giving Tn,r a bimodule structure.

I This defines two commuting algebra homomorphisms

U(gln)
φ−→ End(Tn,r )

ψ←− CSr .

I The Schur–Weyl duality tells
I im(φ) = EndSr (Tn,r ) = S(n, r), the Schur algebra, and

im(ψ) = EndU(gln)(Tn,r );
I Category equivalence: S(n, r)-mod

∼−→ CSr -mod (n ≥ r)
given by Schur functors.

I The realisation and presentation problems.
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Issai Schur – A pioneer of representation theory

1875–1941

28 students
2467+ descendants

“I feel like I am somehow moving
through outer space. A particular idea
leads me to a nearby star on which I
decide to land. Upon my arrival, I
realize that somebody already lives
there. Am I disappointed? Of course
not. The inhabitant and I are cordially
welcoming each other, and we are happy
about our common discovery.”1

1 From the article A story about father by Hilda Abelin-Schur, in

“Studies in Memory of Issai Schur”, Progress in Math. 210.
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Mathematics Genealogy Project

Ferdinand G. Frobenius∣∣
Issai Schur∣∣

Richard Brauer∣∣
Shih-Hua Tsao
(Xi-hua Cao)/ ∣∣ · · ·

∖
Jiachen Ye, Jianpan Wang, Jie Du, Nanhua Xi
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J.A. Green and his book

1926-2014
23 students

82+ descendants

“The pioneering achievements of
Schur was one of the main
inspirations for Hermann Weyl’s
monumental researches on the
representation theory of semi-simple
Lie groups. ... Weyl publicized the
method of Schur’s 1927 paper, with
its attractive use of the ‘double
centraliser property’, in his influential
book The Classical Groups”.
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2. Quantum Groups

60s to 90s is a golden period for Lie and representation theories.
I Kac–Moody (Lie) algebras
I Lie algebras and algebraic groups

I Resolution of Kazhdan–Lusztig conjecture;
I Lusztig conjecture (large p proof, counterexamples).

I Coxeter groups and Hecke algebras (canonical bases ...).
I Deligne–Lusztig’s work on characters of finite groups of Lie

type (character sheaves ...).
I Representations of (f.d.) algebras.

I Gabriel’s theorem and its generalisation by Donovan–Freislich,
Dlab–Ringel;

I Kac’s generalization to infinite types.
I Quantum groups

Drinfeld’s 1986 ICM address
Drinfeld–Jimbo presentation
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Examples

(1) The Hecke algebra H associated with the symmetric group Sr

is the algebra over Z[q] with generators Ti ,
i ∈ {1, 2, . . . , r − 1}, and relations

TiTj = TjTi for |i− j | > 1, TiTjTi = TjTiTj for |i− j | = 1,

and T 2
i = (q − 1)Ti + q.

(2) The quantum linear group is the quantum enveloping algebra
Uυ(gln) defined over Q(υ) with generators:

Ka,K
−1
a ,Eh,Fh, a, h ∈ [1, n], h 6= n

and relations:
(QG1) KaK−1

a = 1,KaKb = KbKa;
(QG2) KaEh = υea�(eh−eh+1)EhKa,KaFh = υ−ea�(eh−eh+1)FhKa;

(QG3) [Eh,Fk ] = δh,k
KhK−1

h+1−K−1
h Kh+1

υh−υ−1
h

;

(QG4) EhEk = EkEh,FhFk = FkFh, if |k − h| > 1;
(QG5) E2

hEk − (υ + υ−1)EhEkEh + EkE2
h = 0 and

F2
hFk − (υ + υ−1)FhEkFh + FkF2

h = 0, if |k − h| = 1.
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Quantum Schur-Weyl duality

The introduction of quantum groups also lifts the Schur–Weyl
duality to the quantum level.

I Jimbo first introduced the duality at the ordinary level (i.e.,
for a generic q) in 1986;

It took another ten years to establish the duality at the
modular level. (D.–Parshall–Scott 1998)

I Dipper–James q-Schur algebras in 1989 (arising from finite
general linear groups);

I Beilinson, Lusztig and MacPherson discovered in 1990 a new
construction for quantum gln via quantum Schur algebras:
I Use a geometric approach;
I Use the idea of “quantumization”.

A.A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for

the quantum deformation of GLn, Duke Math.J. 61 (1990), 655-677.
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Quantumization

I Let P ⊆ Z be an infinite collection of prime powers q = pd .

I For every q ∈P, suppose A(q) is an algebra over Z with a
basis {bx(q)}x∈X , where X is independent of q ∈P.

I For x , y ∈ X and q ∈P, structure constants cx ,y ,z(q) ∈ Z for
A(q) are defined by bx(q)by (q) =

∑
z∈X cx ,y ,z(q)bz(q).

I Now assume that there exist φx ,y ,z in the polynomial ring over
integers R := Z[q] which, upon specialization to any q ∈P,
satisfy φx ,y ,z(q) = cx ,y ,z(q).

I A multiplication can be defined on the free R-module A with
basis {bx}x∈X by setting, for x , y ∈ X , bxby =

∑
z∈X φx ,y ,zbz

and then extending it to all of A by linearity.

I The R-algebra A is called the quantumization of the family
{A(q)}q∈P of algebras.

Examples

Quantum Schur algebras and Ringel–Hall algebras
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Theorem (BLM, 1990)
The quantum group Uυ(gln) has a basis

{A(j) | A ∈ Mn(N)±, j ∈ Zn}

with the following multiplication rules:

(1) Ka · A(j) = υro(A)�eaA(j + ea), A(j)Ka = υco(A)�ea ; A(j + ea);

(2) Eh · A(j) = υf (h+1)+jh+1 [[ah,h+1 + 1]](A + Eh,h+1)(j)

+ υf (h)−jh−1 (A− Eh+1,h)(j + αh)− (A− Eh+1,h)(j + βh)

1− υ−2

+
∑

k<h,ah+1,k≥1

υf (k)[[ah,k + 1]](A + Eh,k − Eh+1,k)(j + αh)

+
∑

k>h+1,ah+1,k≥1

υf (k)[[ah,k + 1]](A + Eh,k − Eh+1,k)(j);

(3) Fh · A(j) = · · · .

Application: quantum Schur–Weyl duality at the integral level
and hence, at the root-of-unity level.
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Interactions between Lie theory and reps of algebras

In late 80s, Cline–Parshall–Scott discovered a new class of f.d.
algebra, the quasi-hereditary algebras, and the highest weight
categories. (E.g., Schur algebras.)

C.M. Ringel

“... it seems surprising that this class
of algebras (which is defined purely
in ring theoretical terms) has not
been studied before by
mathematicians devoted to ring
theory. Even when Scott started to
propagate quasi-hereditary algebras,
it took him some while to find some
ring theory resonance.”

Almost at the same time, Ringel himself introduced the notion of
Ringel–Hall algebras and proved that they are isomorphic to the
±-part of the corresponding quantum groups.
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A 3-in-1 Book

Finite dimensional algebras and quantum groups

Bangming Deng, Jie Du, Brian Parshall and Jianpan Wang
Mathematical Surveys and Monographs, Volume 150

The American Mathematical Society, 2008 (759+ pages)
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Other types

1. J. Du, B. Parshall, and L. Scott, Stratifying endomorphism algebras
associated to Hecke algebras, J. Algebra 203 (1998), 169–210.
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memory of Robert Steinberg).
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3. The affine case
Soon after BLM’s work, Ginzburg and Vasserot extended to
geometric approach to the affine case.
I V. Ginzburg and E. Vasserot, Langlands reciprocity for affine

quantum groups of type An, Internat. Math. Res. Notices
1993, 67–85.

However, this paper made a wrong statement which was pointed
out by Lusztig.
I G. Lusztig, Aperiodicity in quantum affine gln, Asian J. Math.

3 (1999), 147–177.

He wrote in the introduction:
“The analogous geometrically defined algebras
in the affine case are still receiving
homomorphisms from quantum affine gln with
parameter q, but this time the
homomorphisms are not surjective, contrary to
what is asserted in [GV, Sec.9].”
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Lusztig used the aperiodicity of quantum affine sln to show
that it is impossible to map the quantum loop algebra of sln onto
the affine quantum Schur algebras.

However, Vasserot did give a detailed proof for the surjective
map from the quantum loop algebra of gln onto the affine
quantum Schur algebras, but didn’t point out the wrong statement
in their previous paper.

I E. Vasserot, Affine quantum groups and equivariant K -theory,
Transf. Groups 3 (1998), 269–299.

We would like to algebraically understand these works and to
develop an algebraic approach like the non-affine case. In this
approach, we may use these surjective maps to extend the BLM
construction to the affine case.

Supported by ARC, we started the project in mid 2006. Since
the aperiodicity has a natural interpretation in representations of
cyclic quivers. We aim at the double Ringel–Hall algebra
construction of cyclic quivers. Preliminary computations were done
in 2007-8 and significant progress was made in 2009 and 2010.
This resulted in a second research monograph:
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A double Hall algebra approach to affine quantum
Schur–Weyl theory

Bangming Deng, Jie Du and Qiang Fu
London Mathematical Society Lecture Note Series, Volume 401

Cambridge University Press, 2012
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Some conjectures in the book

Connections with various existing works by Lusztig, Schiffmann,
Varagnolo–Vasserot, Hubery, Chari–Pressley, Frenkel–Mukhin and
others are also discussed throughout the book.

There are several conjectures:

I The classification conjecture for simple SM(n, r)-modules (the
n ≤ r case); [Done in 2013 by Deng-D. and Fu]

I The realisation conjecture; [Done in 2014 by D.-Fu]

I The Lusztig form conjecture; [Done in 2014 by D.-Fu]

I The second centraliser property conjecture.
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Theorem (D.-Fu, 2013)

The quantum loop algebra Uυ(ĝln) is the Q(υ)-algebra which is
spanned by the basis {A(j) | A ∈ Θ±M (n), j ∈ Zn

M} and generated by
0(j), Sα(0) and tSα(0) for all j ∈ Zn

M and α ∈ Nn, where
Sα =

∑
1≤i≤n αiE

M
i ,i+1 and tSα is the transpose of Sα, and whose

multiplication rules are given by:

(1) 0(j′)A(j) = υj′�ro(A)A(j′ + j) and A(j)0(j′) = υj′�co(A)A(j′ + j).

(2) Sα(0)A(j) =∑
T∈ΘM(n)
ro(T )=α

υfA,T
∏

1≤i≤n
j∈Z, j 6=i

[[
ai ,j + ti ,j − ti−1,j

ti ,j

]]
(A + T± − T̃±)(jT , δT ).

(3) tSα(0)A(j) =∑
T∈ΘM(n)
ro(T )=α

υf
′
A,T

∏
1≤i≤n
j∈Z, j 6=i

[[
ai ,j − ti ,j + ti−1,j

ti−1,j

]]
(A−T±+T̃±)(j′T , δT̃ ).
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4. The super case
There is a super version of Wedderburn’s Theorem: A finite

dimensional simple superalgebras (i.e., a Z2-graded algebra) over C
is isomorphic to
I either a (full) matrix superalgebra M = Mn+m(C) with

M0̄ =

{(
A 0

0 B

)∣∣∣∣ A ∈ Mn(C)

B ∈ Mm(C)

}
, M1̄ =

{(
0 C

D 0

)∣∣∣∣C ∈ Mn,m(C)

D ∈ Mm,n(C)

}
,

I or a queer (or strange) matrix superalgebra

Q =

{(
A B

B A

)
| A,B ∈ Mn(C)

}
with Q0̄ =

{(A 0
0A

)}
and Q1̄ =

{(0B
B 0

)}
.

Equipped a superalgebra A with the super commutator defined
by [x , y ] := xy − (−1)x̂ ·ŷyx , where x , y ∈ A are homogeneous
elements and ẑ = i if z ∈ Ai , the two series simple superalgebras
M and Q give rise to, respectively, two series Lie superalgebras:
gln|m, the general linear Lie superalgebra, and qn, the queer Lie
superalgebra.
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Quantum Schur superalgebras

I If V denotes the natural representation of gln|m (resp., qn),
then the tensor product V⊗r is a representation of the
universal enveloping algebra U(gln|m) (resp., U(qn)). The
image S(n|m, r) (resp., Q(n, r)) of U(gln|m) (resp., U(qn)) in
End(V⊗r ) is called the Schur superalgebra, known as of type
M, (resp. queer Schur superalgebra, known as of type Q).

I Their quantum analogs Uυ(gln|m), Uυ(qn) and Sυ(n|m, r),
Qυ(n, r) are called respectively the quantum linear
supergroup, the quantum queer supergroup, a quantum Schur
superalgebra and a queer quantum Schur superalgebra (or a
quantum Schur superalgebras of type Q).
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THANK YOU!
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