
Torsion waves in metri{aÆne �eld theoryAlastair D Kingy and Dmitri VassilievzDepartment of Mathematial Sienes, University of Bath, Bath BA2 7AY, UKE-mail: yA.D.King�maths.bath.a.ukE-mail: zD.Vassiliev�bath.a.ukAbstrat. The approah of metri{aÆne �eld theory is to de�ne spaetime as areal oriented 4-manifold equipped with a metri and an aÆne onnetion. The 10independent omponents of the metri tensor and the 64 onnetion oeÆients arethe unknowns of the theory. We write the Yang{Mills ation for the aÆne onnetionand vary it both with respet to the metri and the onnetion. We �nd a familyof spaetimes whih are stationary points. These spaetimes are waves of torsionin Minkowski spae. We then �nd a speial subfamily of spaetimes with zero Riiurvature; the latter ondition is the Einstein equation desribing the absene of souresof gravitation. A detailed examination of this speial subfamily suggests the possibilityof using it to model the neutrino. Our model naturally ontains only two distinttypes of partiles whih may be identi�ed with left-handed neutrinos and right-handedantineutrinos.PACS numbers: 04.50.+h, 03.65.PmSubmitted to: Class. Quantum Grav.1. Main resultsWe onsider spaetime to be a real oriented 4-manifold M equipped with a non-degenerate symmetri metri g and an aÆne onnetion �. The 10 independentomponents of the metri tensor g�� and the 64 onnetion oeÆients ���� are theunknowns, as is the manifold M itself. This approah is known as metri{aÆne �eldtheory. Its origins lie in the works of authors suh as �E Cartan, A S Eddington,A Einstein, T Levi-Civita, E Shr�odinger and H Weyl; see, for example, AppendixII in [1℄, or [2℄. Reviews of the more reent work in this area an be found in [3, 4, 5, 6℄.The Yang{Mills ation for the aÆne onnetion isSYM := Z R���� R���� (1)where R is the Riemann urvature tensor (14). Variation of (1) with respet to themetri g and the onnetion � produes Euler{Lagrange equations whih we, for thetime being, will write symbolially as�SYM=�g = 0 ; (2)



Torsion waves in metri{aÆne �eld theory 2�SYM=�� = 0 : (3)Equation (3) is the Yang{Mills equation for the aÆne onnetion. Equation (2) doesnot have an established name; we will all it the omplementary Yang{Mills equation.Our initial objetive is the study of the ombined system (2), (3). This is a systemof 74 real non-linear partial di�erential equations with 74 real unknowns.In order to state our results we will require the Maxwell equationÆdu = 0 (4)as well as the polarized Maxwell equation�du = �idu ; (5)� = �1; here u is the unknown vetor funtion. In alling (5) the polarized Maxwellequation we are motivated by the fat that any solution of (5) is a solution of (4). Weall a solution u of the Maxwell equation (4) non-trivial if du 6� 0.If the metri is given and the onnetion is known to be metri ompatible thenthe onnetion oeÆients are uniquely determined by torsion (13) or ontortion (16).The hoie of torsion or ontortion for the purpose of desribing a metri ompatibleonnetion is purely a matter of onveniene as the two are expressed one via the otherin aordane with formulae (17).We de�ne Minkowski spae M 4 as a real 4-manifold with a global oordinate system(x0; x1; x2; x3) and metri g�� = diag(+1;�1;�1;�1) . Our de�nition of M 4 spei�esthe manifold M and the metri g, but does not speify the onnetion �.Our �rst result isTheorem 1 Let u be a omplex-valued vetor funtion on M 4 whih is a non-trivialplane wave solution of the polarized Maxwell equation (5), let L 6= 0 be a onstantomplex antisymmetri tensor satisfying�L = ~�iL ; (6)~� = �1, and let � be the metri ompatible onnetion orresponding to ontortionK��� = Re(u�L��) : (7)Then the spaetime fM 4 ;�g is a solution of the system of equations (2), (3).Remark 1 In abstrat Yang{Mills theory it is not ustomary to onsider the equation(2) beause there is no guarantee that this would lead to physially meaningful results. Asan illustration let us examine the Maxwell equation (4) for real-valued vetor funtionson a Lorentzian manifold, whih is the simplest example of a Yang{Mills equation.Straightforward alulations show that it does not have non-trivial solutions whih arestationary points of the Maxwell ation with respet to the variation of the metri.It is easy to see that the onnetions from Theorem 1 are not at, i.e., R 6� 0.The non-trivial plane wave solutions of (5) an, of ourse, be written down expliitly:up to a proper Lorentz transformation they areu(x) = w e�ik�x (8)



Torsion waves in metri{aÆne �eld theory 3where w� = C(0; 1;��i; 0) ; k� = �(1; 0; 0; 1) ; (9)� = �1, and C is an arbitrary positive onstant (amplitude).Let us now introdue an additional equation into our model:Ri = 0 (10)where Ri is the Rii urvature tensor. This is the Einstein equation desribing theabsene of soures of gravitation.Remark 2 If the onnetion is that of Levi-Civita then (10) implies (3). In the generalase equations (3) and (10) are independent.The question we are about to address is whether there are any spaetimes whihsimultaneously satisfy the Yang{Mills equation (3), the omplementary Yang{Millsequation (2), and the Einstein equation (10). More spei�ally, we are interested inspaetimes whose onnetions are not at and not Levi-Civita onnetions.The following theorem provides an aÆrmative answer to the above question.Theorem 2 A spaetime from Theorem 1 satis�es equation (10) if and only if Lis proportional to (du)jx=0, in whih ase torsion equals ontortion up to a naturalreordering of indies:T��� = K��� : (11)When desribing the spaetimes from Theorem 2 it is onvenient to take L = durather than L = (du)jx=0 . This leads to a resaling of the wave vetor k whih an, ofourse, be inorporated into a Lorentz transformation. Thus, the torsion of spaetimesfrom Theorem 2 an be written asT��� = Re(u�(du)��) : (12)The paper has the following struture.Setions 3 and 4 ontain the proof of Theorem 1, whereas Setion 5 ontains theproof of Theorem 2. The entral elements of our onstrution are the linearizationansatz (Lemma 2) and the double duality ansatz (Lemma 3).The rest of the paper is a detailed examination of the spaetimes from Theorem 2.In Setion 6 we establish general invariant properties of the spaetimes fromTheorem 2. In partiular, it turns out (Lemma 6) that their Riemann urvature tensorspossess all the symmetry properties of the \usual" urvature tensors generated by Levi-Civita onnetions. This means that in observing suh onnetions we might be led tobelieve (mistakenly) that we live in a Levi-Civita universe.In Setion 7 we show that the Riemann urvature tensors orresponding to spae-times from Theorem 2 have an algebrai struture whih makes them equivalent tobispinors. It turns out (Lemma 8) that these bispinors satisfy the Weyl equation, whihsuggests the possibility of interpreting suh spaetimes as a model for the neutrino. Our



Torsion waves in metri{aÆne �eld theory 4model naturally ontains only two distint types of partiles whih may be identi�edwith left-handed neutrinos and right-handed antineutrinos.Finally, in Setion 8 we ompare our results with those of Einstein [7℄ who performeda double duality analysis of Riemann urvatures with the aim of modelling elementarypartiles. We show that the spaetimes from Theorem 2 are in agreement with theresults of Einstein's analysis, in that we get the sign predited by Einstein.2. NotationWe denote �� = �=�x� and de�ne the ovariant derivative of a vetor funtion asr�v� := ��v� + ����v�. We de�ne the torsion tensor asT ��� := ���� � ���� ; (13)the Riemann urvature tensor asR���� := ������ � ������ + �������� � �������� ; (14)and the Rii urvature tensor as Ri�� := R����.We employ the usual onvention of raising or lowering tensor indies by ontrationwith the ontravariant or ovariant metri tensor. Some are is, however, required whenperforming ovariant di�erentiation: the operations of raising or lowering of indies donot ommute with the operation of ovariant di�erentiation unless the onnetion ismetri ompatible.By d we denote the exterior derivative and by Æ its adjoint. Of ourse, theseoperators do not depend on the onnetion.Given a salar funtion f we write for brevityZ f := ZM fpj det gj dx0dx1dx2dx3 ; det g := det(g��) : (15)Throughout the paper we work only in oordinate systems with positive orientation.Moreover, when we restrit our onsideration to Minkowski spae we assume thatour oordinate frame is obtained from a given referene frame by a proper Lorentztransformation. We use these onventions when de�ning the notions of left-handednessand right-handedness, as well as those of the forward and bakward light one.We de�ne the Hodge star as (�Q)�q+1:::�4 := (q!)�1pj det gjQ�1 :::�q"�1:::�4 where " isthe totally antisymmetri quantity, "0123 := +1.When dealing with a onnetion whih is ompatible with a given metri it isonvenient to introdue the ontortion tensorK��� := ���� � � ���� (16)where n ���o := 12g��(��g�� + ��g�� � ��g��) is the Christo�el symbol. Contortion hasthe antisymmetry property K��� = �K��� : A metri and ontortion uniquely determinethe metri ompatible onnetion. Torsion and ontortion are related asT ��� = K��� �K��� ; K��� = 12(T ��� + T ��� + T ���) ; (17)



Torsion waves in metri{aÆne �eld theory 5see formula (7.35) in [8℄.The remainder of this setion is devoted to the speial ase of Minkowski spae.Lorentz transformations are assumed to be \passive" in the sense that we transformthe oordinate system and not the tensors or spinors themselves.Consider a omplex-valued tensor or spinor funtion of the form onst � e�ik�xwhere k 6= 0 is a onstant real vetor and k � x := k�x�. We all suh a funtion a planewave and the vetor k a wave vetor. In de�ning a plane wave as � e�ik�x rather than� eik�x we follow the onvention of [9, 10, 11℄. We say that a lightlike wave vetor k lieson the forward (respetively, bakward) light one if k0 > 0 (respetively, k0 < 0).A bispinor is a olumn of four omplex numbers ( �1 �2 � _1 � _2 )T whih hangeunder Lorentz transformations in a partiular way, see Setion 18 in [10℄ for details. ThePauli and Dira matries are�0 =  1 00 1 ! ; �1 =  0 11 0 ! ; �2 =  0 �ii 0 ! ; �3 =  1 00 �1 ! ;0 =  0 ��0��0 0 ! ; j =  0 �j��j 0 ! ; j = 1; 2; 3;5 = i0123 =  �0 00 ��0 ! :We hose the sign of 5 as in [11℄ (in [10℄ it is opposite).3. Solving the Yang{Mills equationWhen dealing with the Yang{Mills equation it is onvenient to use matrix notation tohide two indies: R�� = R���� , �� = ����, with � enumerating the rows and � theolumns. Formulae (1), (14) an be rewritten in this notation asSYM := Z tr(R�� R��) ; (18)R�� = ���� � ���� + [��;��℄ ; (19)where trL := L�� (trae of a matrix) and [L;N ℄� � := L� �N�� � N � �L�� (ommutatorof matries). Straightforward analysis of formulae (18), (19), (15) shows that the Yang{Mills equation whih we initially wrote down symbolially as (3) is atually(�� + [��; � ℄)(pj det gjR��) = 0 : (20)From now on we work only in Minkowski spae and only with metri ompatibleonnetions. This leads to a number of simpli�ations. Connetion oeÆients nowoinide with ontortion, for whih we ontinue using matrix notation K� = K���.Formula (19) beomesR�� = ��K� � ��K� + [K�; K�℄ ; (21)



Torsion waves in metri{aÆne �eld theory 6and the Yang{Mills equation (20) beomes(�� + [K�; � ℄)R�� = 0 : (22)The Yang{Mills equation (22) appears to be overdetermined as it is a system of 64equations with only 24 unknowns (24 is the number of independent omponents of theontortion tensor). However 40 of the 64 equations are automatially ful�lled. This is aonsequene of the fat that the 6-dimensional Lie algebra of real antisymmetri rank 2tensors is a subalgebra of the 16-dimensional general Lie algebra of real rank 2 tensors.The fundamental diÆulty with the Yang{Mills equation is that it is nonlinear withrespet to the unknown ontortion K. The following lemma plays a ruial role in ouronstrution by allowing us to get rid of the nonlinearities.Lemma 1 If L is an eigenvetor of the Hodge star then [ReL; ImL℄ = 0.Proof of Lemma 1 The result follows from the general formula [�L;N ℄ = �[L;N ℄. �Lemma 1 an be rephrased in the following way: the 6-dimensional Lie algebra ofreal antisymmetri rank 2 tensors has 2-dimensional abelian subalgebras whih an beexpliitly desribed in terms of the eigenvetors of the Hodge star.Lemma 1 immediately implies the following linearization ansatz.Lemma 2 Suppose ontortion is of the form (7) where u is a omplex-valued vetorfuntion and L 6= 0 is a onstant omplex antisymmetri tensor satisfying (6). Thenthe nonlinear terms in the formula for Riemann urvature (21) and in the Yang{Millsequation (22) vanish.Substituting (7) into (21) and the latter into (22) we see that the Yang{Millsequation redues to the Maxwell equation (4) for the omplex-valued vetor funtion u.4. Solving the omplementary Yang{Mills equationStraightforward analysis of formulae (1), (15) shows that the omplementary Yang{Millsequation whih we initially wrote down symbolially as (2) is atuallyH � 14 (trH) Æ = 0 (23)where H = H�� := R����R���� and Æ = Æ�� is the identity tensor. Note the importantdi�erene between the Yang{Mills equation (20) and the omplementary Yang{Millsequation (23): equation (20) is linear in urvature, whereas (23) is quadrati.Equation (23) was written down without any assumptions on the onnetion.We, however, will be interested in solving (23) in the lass of spaetimes with metriompatible onnetions, in whih ase the Riemann urvature tensor has the symmetriesR���� = �R���� = �R���� : (24)Let R be the 36-dimensional linear spae of real rank 4 tensors satisfying (24). Wede�ne in R the following two ommuting endomorphismsR! �R ; (�R)���� := 12pj det gj "�0�0��R�0�0�� ;



Torsion waves in metri{aÆne �eld theory 7R! R� ; (R�)���� := 12pj det gj R���0�0 "�0�0�� ;and we also onsider their ompositionR! �R� : (25)Clearly, the endomorphism (25) has eigenvalues �1.Remark 3 It is easy to see that the endomorphism (25) is well de�ned even if themanifold is not orientable. This observation is related to a muh deeper fat establishedin [12℄: the rank 8 tensor (det g) "�0�0�� "�0�0�� is a purely metrial quantity, i.e., it isexpressed via the metri tensor.The following lemma is the double duality ansatz whih redues the omplementaryYang{Mills equation to an equation linear in urvature.Lemma 3 If R 2 R is an eigenvetor of (25) then it satis�es (23).Proof of Lemma 3 We haveH�� = R����R���� = R����R���� = 12(R����R���� + (�R�)����(�R�)����) : (26)For antisymmetri rank 2 tensors we have the identities(�L)��(�N)�� = �L��N�� ;(�L)��(�N)�� + (�N)��(�L)�� = L��N�� +N��L�� + L��N�� Æ�� ;so formula (26) an be ontinued asH�� = 12(R����R���� � (R�)����(R�)����)= 14((R����R���� +R����R����)� ((R�)����(R�)���� + (R�)����(R�)����))= �14R����R����Æ�� :The tensor H�� is proportional to the identity tensor Æ��, therefore it satis�es (23). �Let us now apply Lemma 3 to the spaetimes onstruted in the previous setion.In view of Lemma 2 the Riemann urvature in this ase isR���� = Re(L��(du)��) (27)where L is an eigenvetor of the Hodge star and u is a non-trivial omplex-valued solutionof the Maxwell equation (4). Clearly, (27) is an eigenvetor of the endomorphism (25) ifand only if du is an eigenvetor of the Hodge star. The latter means that u is a solutionof the polarized Maxwell equation (5). The proof of Theorem 1 is omplete.



Torsion waves in metri{aÆne �eld theory 85. Solving the Einstein equationSubstituting (27) into the Einstein equation (10) we get Re(L��(du)��) = 0 . As theexpression under the Re sign is a plane wave, the latter is equivalent toL��((du)jx=0)�� = 0 : (28)It is onvenient to perform further alulations in the oordinate system in whih u hasthe anonial form (8), (9). Then(du)�� = C i0BBB� 0 �1 �i 01 0 0 1��i 0 0 ��i0 �1 �i 0 1CCCA e�i�(x0+x3) (29)and (28) beomes an expliit system of linear algebrai equations with respet to theunknown omponents of the tensor L ; namely, it is a system of 16 equations with3 unknowns (reall that L has to be an eigenvetor of the Hodge star). Elementaryanalysis shows that equation (28) is satis�ed if and only if L is proportional to (du)jx=0.Finally, formula (11) is established by straightforward alulations (see also Lemma 5in the next setion). The proof of Theorem 2 is omplete.6. Invariant properties of our solutionsIt is known [4, 5, 6℄ that the 24-dimensional spae of real torsions deomposes into thefollowing 3 irreduible subspaes: tensor torsions, trae torsions, and axial torsions. Thedimensions of these subspaes are 16, 4, and 4, respetively.Lemma 4 The torsions of spaetimes from Theorem 2 are purely tensor.Proof of Lemma 4 The trae omponent of a torsion tensor T��� is zero if T ��� = 0,and the axial omponent is zero if T��� "���� = 0. These identities are established bydiret examination of the expliit formulae (12), (8), (9). �It has been suggested [13℄ to interpret the axial omponent of torsion as the Hodgedual of the eletromagneti vetor potential. If one takes this point of view thenLemma 4 implies that in spaetimes from Theorem 2 the eletromagneti �eld is zero.Let us mention (without proof) the following useful general result.Lemma 5 Equation (11) is satis�ed if and only if the axial omponent of torsion iszero.Lemmas 4 and 5 imply that when working with spaetimes from Theorem 2 one answith from ontortion to torsion and bak without aquiring umbersome expressions.Lemma 6 The Riemann urvatures of spaetimes from Theorem 2 have all the sym-metry properties of Riemann urvatures in the Levi-Civita setting, that is,R���� = �R���� = �R���� = R���� ; (30)R���� "���� = 0 : (31)



Torsion waves in metri{aÆne �eld theory 9Proof of Lemma 6 Let us de�ne the omplex Riemann urvature tensorCR���� := F��F�� (32)where F := du (33)and u is a plane wave solution of (5). Then the Riemann urvature generated by torsion(12) an be written asR = Re CR (34)(f. (27)). Diret examination of formulae (32){(34), (29) establishes the identities (30),(31). �7. Weyl's equationThe torsions (and, therefore, spaetimes) from Theorem 2 are desribed, up to a properLorentz transformation and a saling fator C > 0, by a pair of indies �; � = �1;see (12), (8), (9). It may seem that this gives us 4 essentially di�erent spaetimes.However, formula (12) ontains the operation of taking the real part and, as a result,the transformation f�; �g ! f��;��g does not hange our torsion. Thus, Theorem 2provides us with only two essentially di�erent spaetimes labelled by the produt�� = �1. The purpose of this setion is to show that it is natural to interpret thesetwo spaetimes as the neutrino and antineutrino.We base our interpretation on the analysis of the Riemann urvature tensor. Wehoose to deal with urvature rather than with torsion beause urvature is an aeptedphysial observable.We will work with the omplex urvature (32) rather than the real urvature (34)beause the omplex one has a simpler struture. Indeed, aording to formula (32) theomplex Riemann urvature tensor CR fatorizes as the square of a rank 2 tensor F andis, therefore, ompletely determined by it.Working with the rank 2 tensor F is muh easier than with the original rank 4tensor CR, but one would like to simplify the analysis even further by fatorizing Fitself. It is impossible to fatorize F as the square of a vetor but it is possible tofatorize F as the square of a bispinor.Lemma 7 A omplex rank 2 antisymmetri tensor F satisfying the onditionsF��F �� = 0; (�F )��F �� = 0 (35)is equivalent to a bispinor  , the relationship between the two beingF �� = � i4  T02�� : (36)Proof of Lemma 7 Formula (36) is a speial ase of the general equivalene relationbetween rank 2 antisymmetri tensors and rank 2 symmetri bispinors, see end ofSetion 19 in [10℄. Conditions (35) are neessary and suÆient for the fatorizationof the symmetri rank 2 spinors as squares of rank 1 spinors. �



Torsion waves in metri{aÆne �eld theory 10Remark 4 The orresponding text in the end of Setion 19 in [10℄ ontains mistakes.These an be orreted by replaing everywhere i by �i:Remark 5 For a given F formula (36) de�nes the individual spinors � = ( �1 �2 )Tand � = ( � _1 � _2 )T uniquely up to hoie of sign. This is in agreement with the generalfat that a spinor does not have a spei� sign, see the beginning of Setion 19 in [10℄.Remark 6 Conditions (35) are equivalent to detF = 0, det �F = 0.Our partiular tensor F de�ned by formula (33) satis�es onditions (35). Indeed,F��F �� = 0 is the statement that the omplex salar urvature is zero (onsequeneof the omplex Rii urvature being zero), whereas (�F )��F �� = 0 is the statementthat the omplex Riemann urvature satis�es the yli sum identity, f. (31). Thus,the omplex Riemann urvature tensor (32) has an algebrai struture whih makes itequivalent to a bispinor. We will now establish whih equations this bispinor satis�es.We say that two solutions u and u0 of the Maxwell equation (4) belong to the sameequivalene lass if du = du0. We say that two bispinor funtions  and  0 belong tothe same equivalene lass if  = � 0.Lemma 8 Formula (36) establishes a one{to{one orrespondene between the equi-valene lasses of non-trivial plane wave solutions of the polarized Maxwell equation(5) and of the system��� = 0 ; (37)5 = � : (38)Equation (37) is, of ourse, the Weyl equation (Dira equation for massless partile).Proof of Lemma 8 If u is a non-trivial plane wave solution of the polarized Maxwellequation (5) then, up to a proper Lorentz transformation, our tensor F is given byformula (29), where C is a positive onstant. If  is a non-trivial plane wave solutionof the system (37), (38) then, up to a proper Lorentz transformation, = �pC i0BBB� 01 + �i� �i0 1CCCA e� i2�(x0+x3) (39)where C is a positive onstant. Straightforward alulations show that the tensorfuntion (29) and the bispinor funtion (39) are related in aordane with formula(36). �The parameter � = �1 in formula (39) determines whether the wave vetor lies onthe forward (� = +1) or bakward (� = �1) light one. Non-trivial plane wave solutionsof (37), (38) whose wave vetor lies on the forward light one are alled neutrinos whereasthose whose wave vetor lies on the bakward light one are alled antineutrinos.The parameter � = �1 in formula (39) determines whether the solution is left- orright-handed. A neutrino is said to be left-handed if � = �1 and right-handed if � = +1.An antineutrino is said to be left-handed if � = +1 and right-handed if � = �1.



Torsion waves in metri{aÆne �eld theory 11Remark 7 The above de�nitions of left- and right-handedness are given in terms ofheliity. See Setion 2-4-3 in [11℄ for a detailed explanation of why one should useheliity rather than hirality for these purposes.As explained in the beginning of this setion, the transformation f�; �g !f��;��g does not hange the resulting spaetime. This means that the torsionwave whih models the left-handed neutrino is idential to that for the left-handedantineutrino, and the torsion wave whih models the right-handed neutrino is identialto that for the right-handed antineutrino. Thus, our model ontains as many distinttypes of neutrinos as are urrently observed experimentally.8. Einstein's double duality analysisLet us examine in more detail the linear spae of Riemann urvatures R introdued inSetion 4. For R 2 R we de�ne its transpose RT as (RT )���� := R����. We onsiderthe following two ommuting endomorphisms in R:R! RT (40)and (25). The endomorphisms (40) and (25) have no assoiated eigenvetors and theireigenvalues are �1. Therefore, R deomposes into a diret sum of 4 invariant subspaesR = �a;b=� Rab ; Rab := fR 2 R j RT = aR; �R� = bRg : (41)The deomposition (41) was suggested in [14℄ and analyzed in [7, 12℄. Atually,[14, 7, 12℄ dealt only with the ase of a Levi-Civita onnetion, but the generalizationto an arbitrary metri ompatible onnetion is straightforward. Lanzos alled tensorsR 2 R self-dual (respetively, antidual) if �R� = �R (respetively, �R� = R). Suh ahoie of terminology is due to the fat that Einstein and Lanzos de�ned their doubleduality endomorphism asR! (sgn det g) �R� (42)rather than as (25). The advantage of (42) is that this linear operator is expressed viathe metri tensor as a rational funtion. The endomorphism (42) is, in a sense, evenmore invariant than (25) beause it does not \feel" the signature of the metri.Lemma 9 (Rainih [14℄) The subspaes R++ and R+� have dimensions 9 and 12,respetively.Remark 8 In Rainih's artile the dimensions are atually given as 9 and 11. Thereason behind this is that Rainih imposed on urvatures the yli sum ondition (31).This exludes from R+� urvatures of the type R���� = onst � "���� and, therefore,redues the dimension by 1.Lemma 10 (Einstein [7℄) Let R 2 R++. Then the orresponding Rii tensor issymmetri and trae free. Moreover, R is uniquely determined by its Rii tensor andthe metri tensor aording to the formulaR���� = 12(g��Ri�� + g��Ri�� � g��Ri�� � g��Ri��) : (43)
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