
Rationality of moduli of vector bundles oncurvesAidan Schof�eld and Alastair King1 IntroductionLet C be a smooth projective curve of genus g over an algebraically closed�eld k. Let Mr;d be the moduli space of stable vector bundles of rank r anddegree d over C. This is a smooth quasi-projective variety of dimension r2(g�1) + 1, which is projective when r and d are coprime. Up to isomorphism,it depends only on the congruence class of d mod r. The rank 1 case M1;dis isomorphic to the Jacobian J(C) and every moduli space comes equippedwith a determinant map det : Mr;d ! M1;d whose �bre over L is Mr;L, themoduli space of bundles with �xed determinant L.The goal of this paper is to describe these moduli spaces in the birationalcategory, that is, to describe their function �elds. We shall prove the followingresult.Theorem 1.1. The moduli space Mr;d is birational to Mh;0 � A (r2�h2)(g�1),where h = hcf(r; d).In other words, there is a dominant rational map � : Mr;d 9 9 KMh;0 whosegeneric �bre is rational. We shall observe that this map restricts to a map be-tween �xed determinant moduli spaces (not necessarily with the same deter-minant) and so, in the case when r and d are coprime, we obtain the followinglong believed corollary, which has been proved in special cases ([5],[6],[1]).Theorem 1.2. If L is a line bundle of degree d coprime to r, then Mr;L isa rational variety.To ease the discussion, we use the following terminology to describe therelationship between Mr;d and Mh;0. An irreducible algebraic variety X is1



birationally linear over another irreducible algebraic variety Y if there existsa dominant rational map � : X 9 9 KY whose generic �bre is rational, that is,the function �eld k(X) is purely transcendental over the function �eld k(Y ).Such a map � will also be called birationally linear.What we shall actually prove is a stronger statement that the map � isbirationally linear and preserves a suitable Brauer class. More precisely, foreach type (r; d) with hcf(r; d) = h, the moduli space Mr;d carries a Brauerclass  r;d for its function �eld, represented by a central simple algebra ofdimension h2, and the map � has the property that ��( h;0) =  r;d. Thisstrengthening of the statement is the key to the proof, because it enables aninduction on the rank r.In section 2, we construct an open dense subvariety ofMr;d as a quotientspace of a suitable variety Xr;d by a generically free action of PGLh whereh = hcf(r; d). This arises because we are able to show that a general vectorbundle E of type (r; d) arises as a quotient of a particular bundle F h in aunique way so that we can take Xr;d to be a suitable open subvariety ofQuot(F h; r; d) on which PGLh acts in the natural way. We also arrange inthis section that the kernel of the surjection from F h to E should have smallerrank (at least in the case where h 6= r) and this induces a rational map fromMr;d to Mr1;d1 for some type (r1; d1) where r1 < r. After this, in section 3,we show how this description of Mr;d as a quotient space for a genericallyfree action of PGLh allows us to associate a Brauer class to its function �eldand we use this Brauer class to describe birationally the rational map fromMr;d to Mr1;d1 in terms of \twisted Grassmannian varieties". In section 4,we use parabolic moduli spaces which give us other \twisted Grassmannianvarieties" which we may choose to be twisted \in the same way" as our mapbetween moduli spaces above. In the �nal section, we put these variousresults together to construct a birationally linear rational map fromMr;d toMh;0.2 The �rst stepThe purpose of this section is to show that the general bundle E of rankr and degree d may be constructed as a quotient of F h, where F is a �xedbundle of an appropriate type and h = hcf(r; d).This will enable us to de�ne the Brauer class on Mr;d that will be thefocus of most of the paper. Furthermore, we will see that the kernel of the2



quotient map q : F h ! E is also general so that we may de�ne a dominantrational map from Mr;d to Mr1;d1 , where r1 < r when r does not divide d.This will be the basis of the inductive construction of the birationally linearmap to Mh;0.We will say that a vector bundle E of rank r and degree d has `type'(r; d). For E of type � = (rE; dE) and F of type � = (rF ; dF ), we write�(F;E) = hom(F;E)� ext(F;E)= rFdE � rEdF � rErF (g � 1) = �(�; �);where hom(F;E) = dimHom(F;E) and ext(F;E) = dimExt(F;E). Themiddle equality is the Riemann-Roch Theorem.We start with a lemma about the nature of generic maps between genericvector bundles. The proof is closely based on the proof given by Russo &Teixidor ([7] Theorem 1.2) that the tensor product of generic bundles is notspecial; a result originally due to Hirschowitz.Lemma 2.1. Let E; F be generic vector bundles of �xed types. Suppose thatthere exists a non-zero map � : F ! E and take � to be a generic such map.Then ext(F;E) = 0 and � has maximal rank. If rE 6= rF , then coker � istorsion-free; in particular, if rE < rF , then � is surjective and if rE > rFthen � is injective.Proof. Let [�] denote the homothety class of � in P(Hom(F;E)). Then thetriple (F;E; [�]) depends onp0 = 1� �(F; F ) + 1� �(E;E) + hom(F;E)� 1parameters (cf. [2] Section 4). Let I = im�, K = ker �, Q = coker � and Tbe the torsion subsheaf of Q. Further, let Q0 = Q=T and I 0 be the inverseimage of T in E. Thus we have three short exact sequences0! K ! F ! I ! 0 (2.1)0! I ! E ! Q! 0 (2.2)0! I 0 ! E ! Q0 ! 0 (2.3)in which all terms except Q are vector bundles. The triple (F;E; [�]) isdetermined by the �rst and last sequences (up to homothety) and a map3



t : I ! I 0 whose cokernel is T . The triple (I; I 0; [t]) depends on 1� �(I; I) +rIdT parameters and so the whole con�guration depends on at mostp1 = 1� �(K;K) + 1� �(I; I) + rIdT + 1� �(Q0; Q0)+ ext(I;K)� 1 + ext(Q0; I 0)� 1parameters. Now, E and F are stable, so hom(I;K) = hom(Q0; I 0) = 0and hence ext(I;K) = ��(I;K) and ext(Q0; I 0) = ��(Q0; I 0). Furthermore�(Q0; Q0) = �(Q;Q) and�(Q0; I 0) = rQ(dI + dT )� rI(dQ � dT )� rQrI(g � 1) = �(Q; I) + rEdTHence, using the bilinearity of � in short exact sequences, we getp1 = 1� �(F;K)� �(Q;E)� �(I; I)� rQdTBut now p0 � p1 and sohom(F;E) � �(F; I) + �(I; E)� �(I; I)� rQdT= �(F;E)� �(K;Q)� rQdTand hence ext(F;E) � ��(K;Q)� rQdT (2.4)A simple dimension count (cf. [3] Lemma 2.1) shows that, for general E andF to appear in sequences (2.1) and (2.3), it is necessary that �(K; I) � 0and �(I 0; Q0) � 0. In other words,rKdI � rIdK � rKrI(g � 1)rIdQ � rQdI � rIrQ(g � 1) + rEdTand hence�(K;Q) = �rK(rIdQ � rQdI) + rQ(rKdI � rIdK)� rKrIrQ(g � 1)�=rI� rKrQ(g � 1) + dT (rKrE=rI)Thus, subsituting this into (2.4), we �nally deduce thatext(F;E) � �rKrQ(g � 1)� dT (rQ + rKrE=rI)This is only possible if (i) ext(F;E) = 0, (ii) rK = 0 or rQ = 0 and (iii) unlessrQ = rK = 0, we also have dT = 0. But (ii) means that rI has maximal rankand then (iii) means that coker � is torsion-free, unless rE = rF .4



We shall also use the following lemma which may be thought of as ageneralisation of the result that any (bounded) family of bundles on a curvemay be extended to an irreducible family (cf. [4] Proposition 2.6).Lemma 2.2. Let fGx : x 2 Xg be an irreducible family of vector bundlesover C and let fEy : y 2 Y g be any family of vector bundles over C of �xedtype. Then there exists an irreducible family of extensions of vector bundles,f0! G 0z ! F 0z ! E 0z ! 0 : z 2 Zgsuch that every vector bundle G 0z is isomorphic to some Gx and every extension0! Gx ! F ! Ey ! 0 is isomorphic to one in this family.Proof. After twisting by a suitable line bundle of positive degree, we mayassume that Ext1(O;Gx) = 0, for all x 2 X, and that every Ey is generatedby global sections. Suppose that each Ey is of type (n; d). Extending theusual dimension counting argument in the Grassmannian Gr(n;H0(Ey)), wemay choose n sections of Ey so that the induced map � : On ! Ey is anisomorphism of the �bres at the general point of C and drops rank by only1 at other points. Thus the cokernel of � is the structure sheaf T� of asubscheme � of degree d in C, that is, Ey is an extension of T� on top of On.The parameter space of such subschemes � is the d-fold symmetric productC(d), which is an irreducible algebraic variety and which carries a universalfamily T . Since T� is torsion, Hom(T�;Gx �On) = 0 for all � 2 C(d) and allx 2 X. Hence there is a vector bundle � : Z ! X � C(d) whose �bre abovethe point (x; �) is Ext(T�;Gx � On) and this carries a tautological family ofextensions f0! G�1�(z) �On ! F 0z ! T�2�(z) ! 0 : z 2 Zg:Letting G 0z = G�1�(z) and E 0z = F 0z=G 0z, we may replace Z by the non-emptyopen set on which F 0z and E 0z are vector bundles and obtain the requiredirreducible familty of extensions of vector bundles. To see that every possibleextension of Ey on top of Gx occurs note that every such extension has a 3step �ltration with T� on top of On on top of Gx. But, since Ext1(O;Gx) = 0,the extension at the bottom of this �ltration splits and so it is simply anextension of T� on top of Gx �On.Using these lemmas, we have the following result.5



Proposition 2.3. For any type � = (r; d), let h = hcf(r; d). Then there isa unique type � = (s; e) satisfying(i) �(�; �) = h,(ii) r=h < s < 2r=h, if h < r, or s = 2, if h = r.Then, there exists a vector bundle F of type � such that for a general E oftype �,(iii) hom(F;E) = h and ext(F;E) = 0,(iv) the natural map "F (E) : Hom(F;E)
k F ! E is surjective,(v) the bundle E1 = ker "F (E) is general and has ext(E1; F ) = 0.Proof. To solve (i) we simply need to solve sd�tr = h and set e = t�(g�1)s.Given one solution (s; t), the complete set of solutions is f(s; t)+k(r=h; d=h) :k 2 Zg which contains precisely one solution in the range (ii). Part (iii) isprovided by Lemma 2.1.For the main part of the proof, the �rst step is to construct a short exactsequence 0! E1 ! F h ! E ! 0 (2.5)with E of type �, F of type � and Ext(E1; F ) = 0 = Ext(F;E).First suppose that h = 1. Then Lemma 2.1 implies that for generic Fand E we have Ext(F;E) = 0 and, since r < s, the generic map is surjective.Let F 0 ! E 0 be a particular choice of such generic bundles and map and letE 01 be the kernel. At this stage, we have Ext(F 0; E 0) = 0, but may not haveExt(E 01; F 0) = 0. On the other hand,�(� � �; �) = �(�; �) + �(� � �; � � �)� �(�; �) � �(�; �) = 1since s � r � r. Hence, Lemma 2.1 also implies that, for generic E1 and Fof types � � � and � respectively, Ext(E1; F ) = 0 and, since s � r < s, thegeneric map is an injection of vector bundles. Let E 001 ! F 00 be a particularchoice of such generic bundles and map and let E 00 be its cokernel. This time,we have Ext(E 001 ; F 00) = 0, but may not have Ext(F 00; E 00) = 0.6



But now we may include E 01 and E 001 in an irreducible family fE1;x : x 2 Xgby [4] Proposition 2.6. Then, by Lemma 2.2, there is an irreducible familyof extensions f0! G 0z ! F 0z ! E 0z ! 0 : z 2 Zgwhich includes both 0! E 01 ! F 0 ! E 0 ! 0 and 0! E 001 ! F 00 ! E 00 ! 0.Hence we may choose for (2.5) a general extension in this family and bothExt groups will vanish as required.For an arbitrary value of h, we may obtain a sequence of the form (2.5)by taking the direct sum of h copies of one for � = �=h.For the second step, suppose that we have a sequence of the form (2.5).By [4] Proposition 2.6, we may include E1 in an irreducible family fE1;x : x 2Xg, whose generic member is general and for which every member satis�esext(E1;x; F ) = 0. There is then a vector bundle � : Y ! X whose �bre atx is Hom(E1;x; F h) and over Y there is a tautological map fy : E1;�(y) ! F h.Replacing Y by the non-empty open set on which fy is injective, we haveEy = coker fy of type �. We may further replace Y by the non-empty openset on which ext(F; Ey) = 0.Now observe that the homomorphism F h ! Ey must be isomorphic to"F (Ey) : Hom(F; Ey)
k F ! Ep, because a linear dependence between the hcomponents of the homomorphism from F h to Ey would imply that F is asummand of the kernel, which would contradict ext(E1;x; F ) = 0.If we consider just the family fEy : y 2 Y g, then, as before, we mayinclude this in an irreducible family fEz : z 2 Zg, whose generic member isgeneral and such that ext(F; Ez) = 0 and hom(F; Ez) = h for every z 2 Z.Hence the kernel E 01;z of the homomorphism "F (Ez) : Hom(F; Ez)
k F ! Ezis general and satis�es ext(E 01;z; F ) = 0, because this was already true overY . Thus we have all the properties we require.Proposition 2.3 shows that we have a dominant rational map�F : Mr;d 9 9 KMr1;d1 : [E] 7! [E1];where E1 = ker "F (E) has type (r1; d1) = h(s; e)� (r; d). One may immedi-ately check the following.Lemma 2.4. The type (r1; d1) of E1 satis�es(i) if h < r, then r1 < r, 7



(ii) h1 = hcf(r1; d1) is divisible by h,(iii) det(E1) �= det(F )h det(E)�1.The proof of Proposition 2.3 shows that the �bre of �F above a closedpoint [E1] is birationally the Grassmannian of h-dimensional subspaces ofHom(E1; F ). However, this bundle of Grassmannians may be `twisted', thatis, it may not be locally trivial in the Zariski topology. In fact, it will fail tobe locally trivial whenever h 6= 1 and will not be birationally linear wheneverh1 6= h, but we will be able to measure how twisted it is using a Brauer classon Mr1;d1 and then compare �F to another Grassmannian bundle with thesame twisting, but smaller �bres, to construct inductively our birationallylinear map.In fact, Proposition 2.3 also provides us with the way of constructing thisBrauer class, because it yields a description ofMr;d as a quotient of an openset in the quot scheme Quot(F h; r; d) by PGLh. We describe this in detailin the next section.3 Brauer classes and free PGL actionsIn this section, we collect a number of results about free actions of the pro-jective general linear group PGL, which allow us to de�ne and compare theBrauer classes we are interested in.Recall that the Brauer group of a �eld k may be described as consistingof classes represented by central simple algebras A over the �eld and that[A1] = [A2] in the Brauer group if and only if A1 and A2 are Morita equivalentor equivalently Ao1
A2 is isomorphic toMn(k) for a suitable integer n whereAo is the opposite algebra to A. This is equivalent to saying that there is anA1, A2 bimodule of dimension n where n2 = dimA1 dimA2. The product inthe Brauer group is induced by the tensor product of algebras.The reader may wish to consult [8] for further discussion of the Brauergroup and central simple algebras.De�nition 3.1. Let X be an a�ne algebraic variety on which the algebraicgroup PGLn acts freely. Over the quotient variety X=PGLn there is a bundleof central simple algebras Mn(k) �PGLn X of dimension n2. At the genericpoint, this is a central simple algebra over the function �eld k(X=PGLn) andhence de�nes a class in the Brauer group of k(X=PGLn). We shall denotethis class by Br (X=PGLn). 8



It is important to note thatBr (X=PGLn) depends on the action of PGLnon X and not just on the quotient space Y = X=PGLn. Note also that thebundle of central simple algebras B = Mn(k)�PGLn X over Y is essentiallyequivalent to the PGLn action on X, because X can be recovered as theY -scheme that represents the functor of isomorphisms between B and thetrivial bundle of central simple algebras Mn(k) � Y over Y . The PGLnaction is recovered via its action onMn(k). Moreover, we have the following.Lemma 3.2. Let PGLn act freely on a�ne algebraic varieties X1 and X2.Let � : X1=PGLn ! X2=PGLnbe a dominant rational map. Then there is a PGLn-equivariant dominantrational map �: X1 ! X2 making the following diagram commuteX1 ����! X2??y ??yX1=PGLn ����! X2=PGLnif and only if Br (X1=PGLn) = ��1Br (X2=PGLn).Proof. After restricting to suitable open subvarieties and taking the pullbackalong � we may assume that � is the identity map. We have two distinctPGLn bundles. These have the same Brauer class if and only if over a suitableopen subvariety ofX=PGLn the associated bundles of central simple algebrasare isomorphic or equivalently the two PGLn bundles are isomorphic overthis open subvariety.We can now de�ne the Brauer classes on (the function �elds of) ourmoduli spaces that we will use in the rest of the paper. For each type (r; d),�x one vector bundle F , which is general in the sense of Proposition 2.3 andrecall that h = hcf(r; d). Let Xr;d be the open subset of Quot(F h; r; d),which parametrizes (up to scaling) quotients q : F h ! E of type (r; d) whichare stable bundles and for which the induced map kh ! Hom(F;E) is anisomorphism. The obvious action of GLh = Aut(F h) induces a free action ofPGLh on Xr;d and the map Xr;d !Mr;d, which forgets the quotient map q,identi�es Xr;d=PGLh with an open dense subset of Mr;d and, in particular,identi�es their function �elds. Since Mr;d is a projective variety we mayreplace Xr;d by an open dense a�ne PGLh-equivariant subset of itself by9



taking the inverse image of some open dense a�ne subset of Mr;d containedin the image of Xr;d.De�nition 3.3. For every type (r; d), the Brauer class  r;d on Mr;d is theclass corresponding to Br (Xr;d=PGLh) after we identify k(Xr;d=PGLh) withk(Mr;d) as described above.There are more general Brauer classes that arise naturally on X=PGLn,which we now describe and relate toBr (X=PGLn). Let P be a vector bundleover the algebraic variety X on which GLn acts lifting the action of PGLnon X such that k� acts with weight w on the �bres of P . We will call sucha bundle P a vector bundle of weight w on X; the GLn action on P liftingthe PGLn action on X will be implicit. If P is a vector bundle of weight0, then PGLn acts on P and P=PGLn is a vector bundle over X=PGLn. IfP is a vector bundle of weight w then P_ 
 P is a vector bundle of weight0 and P_ 
 P=PGLn is a bundle of central simple algebras over X=PGLn.The bundle of central simple algebras associated to the PGLn action of X isthe special case where P is taken to be the bundle of weight 1 over X givenby kn � X, with GLn acting diagonally, since we may identify Mn(k) with(kn)_ 
 kn. We de�ne the Brauer class de�ned by P to be the Brauer classof the central simple algebra over k(X=PGLn) de�ned by the generic �breof the bundle of central simple algebras P_ 
 P=PGLn.Lemma 3.4. Let P be a vector bundle of weight w over an algebraic vari-ety X on which PGLn acts freely. Then the Brauer class de�ned by P iswBr (X=PGLn).Proof. Let P and Q be vector bundles of weight w. Then P_
Q is a vectorbundle of weight 0 and P_ 
Q=PGLn is a vector bundle over X=PGLn. Ithas a structure of a bimodule with P_ 
 P=PGLn acting on the left andQ_ 
 Q=PGLn acting on the right. Over the generic point of X=PGLn itde�nes a Morita equivalence between (the generic �bres of) P_ 
 P=PGLnand Q_
Q=PGLn. Hence the Brauer classes de�ned by P and Q are equal;in other words the Brauer class depends only on the weight.Now, if w > 0, then Qw = (kn)
w � X with the diagonal action ofGLn is a vector bundle of weight w and Q_w 
 Qw=PGLn is the wth tensorpower of Q_1 
 Q1=PGLn. Since the class de�ned by Q1 is Br (X=PGLn),the class de�ned by Qw is wBr (X=PGLn). On the other hand, Q�w =((kn)_)
w �X with the diagonal action of GLn is a vector bundle of weight10



�w. In particular, Q_�1 
 Q�1=PGLn is the sheaf of algebras opposite toQ_1 
 Q1=PGLn and therefore the class de�ned by Q�1 is �Br (X=PGLn)and, as above, the class de�ned by Q�w is �wBr (X=PGLn). Finally, OX isa vector bundle of weight 0 and de�nes the class 0.Thus, if P is a vector bundle of weight 1 and rank r, then the Brauerclass Br (X=PGLn) is represented by a central simple algebra of dimensionr2, namely P_
P=PGLn. It will be important to observe that, birationally,the converse is true. More precisely, we have the following.Lemma 3.5. Let PGLn act freely on an algebraic variety X and supposethat the Brauer class wBr (X=PGLn) is represented by a central simplealgebra S of dimension s2 over k(X=PGLn). Then there exists a PGLn-equivariant open subset Y of X and a vector bundle Q of weight w over Ywhose rank is s.Proof. Let P be a vector bundle of weight w and rank p. It is enough todeal with the case where S is a division algebra since the remaining cases areall matrices over this and hence the values for s that arise are all multiplesof this. In particular, therefore, we may assume that s divides p. If s = p,there is nothing to prove so we may assume that s < p. Thus at the genericpoint of P_ 
 P=PGLn, there is an idempotent of rank s. This idempotentis de�ned over some open subset of X which is PGLn-equivariant since theidempotent is PGLn-invariant and gives a decomposition P �= P1 � P2 asa direct sum of vector bundles which are GLn-equivariant one of which hasrank s. These bundles have weight w since they are subbundles of P whichhas weight w.We now come to the main object of this section, to describe the relation-ship between the Brauer classes considered above and twisted Grassmannianbundles such as �F : Mr;d !Mr1;d1 . We start in the general context of Grass-mannian bundles associated to a vector bundle P of weight w, although inthe end we will only need to consider weights �1. Let j < rk(P ) be apositive integer. Then PGLn acts freely on the bundle of GrassmanniansGr(j; P ) over X and � : Gr(j; P )=PGLn ! X=PGLn is a Grassmannianbundle over X=PGLn that is usually not trivial in the Zariski topology.Since the map from Gr(j; P ) to X is PGLn-equivariant the Brauer classBr (Gr(j; P )=PGLn) is just the pullback of the Brauer class Br (X=PGLn).We can also realise the algebraic variety Gr(j; P )=PGLn as a quotient vari-ety for a free action of the algebraic group PGLj on the partial frame bundle11



of j linearly independent sections of the vector bundle P and we will needto know how to relate the two Brauer classes we obtain in this way.We must take care to di�erentiate two distinct ways of constructing thepartial frame bundle. Let S be the universal sub-bundle on Gr(j; P ). LetFr(j; P ) be the `covariant' partial frame bundle, whose �bre at x consistsof isomorphisms kj ! Sx and let Fr_(j; P ) be the `contravariant' partialframe bundle, whose �bre at x consists of isomorphisms (kj)_ ! Sx. ThenGLj acts freely on both Fr(j; P ) and Fr_(j; P ) and the quotient variety isGr(j; P ) in both cases. The di�erence is that the pullback of S to Fr(j; P )is the trivial bundle with �bre kj on which GLj acts with weight 1, whilethe pullback of S to Fr_(j; P ) is the trivial bundle with �bre (kj)_ on whichGLj acts with weight �1. The obvious isomorphism between the two framebundles is compatible with the transpose inverse automorphism of GLj, butnot with the identity automorphism.The action of GLn lifts fromGr(j; P ) to Fr(j; P ) and Fr_(j; P ), so bothcarry an action of GLj�GLn. The kernel of each action is isomorphic to k�,but in the covariant case it is f(twI; tI) : t 2 k�g, while in the contravariantcase it is f(twI; t�1I) : t 2 k�g. (Recall that w is the weight of the actionof GLn on P .) Hence, both Fr(j; P )=GLn and Fr_(j; P )=GLn carry freeactions of PGLj which determine Brauer classes on the quotient, which isequal to Gr(j; P )=PGLn in both cases.We summarise the maps considered above in the following commutativediagram for the case of the covariant partial frame bundle. Note that thegroups that appear as labels below the arrows indicate that the maps arequotient maps by a (generically) free action of the group.

X=PGLnX @@@RPGLn Gr(j; P )=PGLn���	�
Gr(j; P )���	 @@@RPGLn Fr(j; P )=GLn���	 PGLj

Fr(j; P )���	GLj @@@RGLn
(3.1)12



The diagram for the contravariant frame bundle is of the identical form, butthe need to distinguish the two cases is made clear by the following result,which describes the relationship between the Brauer classes determined byall the PGL actions in the diagram.Lemma 3.6. Let P be a bundle of weight w on X. Then, in the notationdescribed above, Br (Gr(j; P )=PGLn) = �� (Br (X=PGLn))Br �(Fr(j; P )=GLn)�PGLj� = wBr (Gr(j; P )=PGLn)Br �(Fr_(j; P )=GLn)�PGLj� = �wBr (Gr(j; P )=PGLn)Proof. The �rst equality follows immediately from the fact that the lowerdiamond in (3.1) is an equivariant pullback. The action of GLn on P overX lifts naturally to an action of GLn on the universal subbundle S overGr(j; P ). Hence S has weight w and so the Brauer class on Gr(j; P )=PGLnrepresented by S_ 
 S=PGLn is wBr (Gr(j; P )=PGLn) by Lemma 3.4. Asalready observed, the pullback S 0 of S to Fr(j; P ) is trivial with �bre kjand so the quotient by GLn also gives a trivial bundle S 00 with �bre kj onFr(j; P )=GLn. But thenBr �(Fr(j; P )=GLn)�PGLj� is equal to the Brauerclass represented by (S 00)_ 
 (S 00)=PGLj, which is equal to the Brauer classrepresented by S_ 
 S=PGLn, completing the proof in the covariant case.The proof in the contravariant case is identical except that now S 0 and S 00 aretrivial with �bre (kj)_ so that Br �(Fr_(j; P )=GLn)�PGLj� is the negativeof the class represented by (S 00)_ 
 (S 00)=PGLj.We may now describe the rational map �F : Mr;d ! Mr1;d1 as a Grass-mannian bundle of the type described above and determine the behaviour ofthe Brauer classes under pullback. Recall that there exists a vector bundle F1and an open subset Xr1;d1 of Quot(F h11 ; r1; d1) such that the map to Mr1;d1is birational to the PGLh1 quotient map.Proposition 3.7. On an open subset of Xr1;d1, there exists a vector bundleP of weight �1 and of rank lh1 for some integer l such that the rational map�F : Mr;d !Mr1;d1is birational to the Grassmannian bundle� : Gr(h; P )=PGLh1 ! Xr1;d1=PGLh1:13



Furthermore, ��F ( r1;d1) =  r;d:Proof. The idea of the proof is that since F is general, the set of quotientsp : F 
 V ! E 2 Xr;d such that E1 := ker p 2 Mr1;d1 , Ext(F;E) = 0and Ext(E1; F ) = 0 is not empty. It is bijective to the set of h-dimensionalsubspaces V _ � Hom(E1; F ) such that p : E1 ! F 
 V is injective, E :=coker p 2 Mr;d, Ext(E1; F ) = 0 and Ext(F;E) = 0. We �ll in the detailsbelow.Consider the open set in Xr1;d1 parametrizing those q1 : F h11 ! E1 forwhich Ext(E1; F ) = 0. Over this open set there is a vector bundle P whose�bre at [q1] is Hom(E1; F ). Since PGLh1 acts with weight 1 on E1, it actswith weight �1 on P . We claim that Gr(h; P )=PGLh1 is birational toMr;d. To see this, consider the contravariant partial frame bundle Fr_(h; P )whose �bre over [q1] 2 Xr1;d1 is naturally identi�ed with the set of mapsp : E1 ! F h for which the induced map (kh)_ ! Hom(E1; F ) is injective.On an open subset in Fr_(h; P ), the map p is injective as a map of bun-dles and its cokernel q : F h ! E gives a point in Xr;d. Since p, but notq1, is determined by q we see that Fr_(h; P )=GLh1 is birational to Xr;dand so (Fr_(h; P )=GLh1)=PGLh is birational to Mr;d. Since Gr(h; P ) isFr(h; P )=GLh, we deduce that Gr(h; P )=PGLh1 is birational to Mr;d.We can arrange all the rational maps we have considered above into thefollowing diagram of the form of (3.1).

Mr1;d1Xr1;d1@@@RPGLh1 Mr;d���	�F
Gr(h; P )���	 @@@RPGLh1 Xr;d���	 PGLh

Fr_(h; P )���	GLh @@@RGLh1
(3.2)Since P has weight �1, the �rst and last formulae in Lemma 3.6 give��F ( r1;d1) = Br (Gr(h; P )=PGLh1) =  r;d14



which completes the proof.4 The Hecke correspondenceOne of the main ideas of the paper is to compare the (birationally) twistedGrassmannian bundle �F : Mr;d ! Mr1;d1 to another Grassmannian bundlewhich is twisted by the same amount but has smaller �bres. This secondbundle is provided by the Hecke correspondence, which we describe in thissection. Within this section, we may let h and h1 be arbitrary integers withh � h1. Only later, will we need to use the fact that h actually divides h1.Let Ph1;0;h be the moduli space of parabolic bundles, which parametrizespairs consisting of a bundle (or locally free sheaf) E1 of type (h1; 0) togetherwith a locally free subsheaf E2 � E1 such that the quotient E1=E2 is isomorphicto �Ox�h for a �xed point x 2 C. In order to specify a projective moduli spaceexactly, we would need to specify parabolic weights to determine notions ofstability and semistability. However, we are only interested in this space upto birational equivalence and it is known ([1] Section 4) that the birationaltype of the moduli space does not depend on the choice of parabolic weights.Indeed, we may choose to let Ph1;0;h denote the dense open set of quasi-parabolic bundles E2 � E1 that are stable for all choices of parabolic weights.The type of E2 must be (h1;�h) and there are two dominant rationalmaps �1 : Ph1;0;h 9 9 KMh1;0 : [E2 � E1] 7! [E1]�2 : Ph1;0;h 9 9 KMh1;�h : [E2 � E1] 7! [E2]The key point is that, like �F , the maps �1 and �2 are (birational to)twisted Grassmannian bundles whose twisting is measured by the Brauerclasses  h1;0 and  h1;�h respectively. Furthermore, as we shall show below,these two Brauer classes pull back to the same class on Ph1;0;h.To construct Ph1;0;h birationally fromMh1;0, let H1 be the vector bundleover Xh1;0 whose �bre over the point �q1 : F h11 ! E1� is Hom(E1;Ox), whereOx is the structure sheaf of the point x 2 C. Then H1 is a vector bundleof weight �1 and Ph1;0;h is birational to Gr(h;H1)=PGLh1. To see this,consider the contravariant frame bundle Fr_(h;H1). A point in the �breover [q1] may be identi�ed with a mapp : E1 ! (Ox)h (4.1)15



such that the induced map (kh)_ ! Hom(E;Ox) is injective. If we re-strict to the open set on which p is also surjective so that it determines aquasi-parabolic structure, then the map to Ph1;0;h which forgets p and q1 isprecisely the quotient by GLh that gives Gr(h;H1), followed by the quotientby PGLh1.Thus we have another diagram of the form of (3.1).

Mh1;0Xh1;0@@@RPGLh1 Ph1;0;h���	�1
Gr(h;H1)���	 @@@RPGLh1 Fr_(h;H1)=GLh1���	 PGLh

Fr_(h;H1)���	GLh @@@RGLh1
(4.2)Hence, by Lemma 3.6, we have��1( h1;0) = Br ((Fr_(h;H1)=GLh1)=PGLh) (4.3)Now we construct Ph1;0;h birationally fromMh1;�h. To preserve the gen-erality of this section, let m = hcf(h1; h), but note that m = h in the caseof real interest. Let H2 be the vector bundle over Xh1;�h whose �bre abovea point [q2 : Fm2 ! E2] is Ext(Ox; E2). Then H2 has weight 1 and Ph1;0;h isalso birational to Gr(h;H2)=PGLm. This follows, as above, by consideringthe open set in Fr(h;H2) parametrizing extensions0! E2 ! E1 ! (Ox)h ! 0: (4.4)such that the induced map kh ! Ext(Ox; E2) is injective. The moduli spacePh1;0;h arises (birationally) by taking the quotient by GLh and then PGLm.

16



Thus, again, we have a diagram of the form of (3.1).

Mh1;�hXh1;�h@@@RPGLm Ph1;0;h���	�2
Gr(h;H2)���	 @@@RPGLm Fr(h;H2)=GLm���	 PGLh

Fr(h;H2)���	GLh @@@RGLm
(4.5)and, by Lemma 3.6, we have��2( h1;�h) = Br ((Fr(h;H2)=GLm)=PGLh) (4.6)But now we simply need to observe that the data in (4.1) and in (4.4) havethe same form and di�er only in the imposition of di�erent open conditions.Thus we may identify open subsets of Fr(h;H2)=GLm and Fr(h;H1)=GLh1 .One could in principle identify both of these as open subsets of an appropriate�ne moduli space for such data. Furthermore, this identi�cation is compatiblewith the PGLh actions and so we may combine (4.3) and (4.6) to obtain��2( h1;�h) = ��1( h1;0): (4.7)5 Construction of birationally linear mapsWe may now proceed with the proof of the main theorem of the paper on theexistence of a birationally linear map from the moduli space Mr;d of vectorbundles of rank r and degree d to the moduli spaceMh;0. The proof goes byinduction on the stronger statement that there is such a birationally linearrational map that preserves the Brauer classes de�ned in the Section 3. Moreprecisely, we prove the following theorem.Theorem 5.1. Let  r;d be the Brauer class on Mr;d de�ned for every type(r; d) in De�nition 3.3 and let h = hcf(r; d). Then there exists a birationallylinear map � : Mr;d 9 9 KMh;0 such that ��( h;0) =  r;d.17



Proof. If r divides d, then h = r andMr;d is isomorphic toMh;0 by tensoringwith a line bundle of degree d=r. This isomorphism may be taken to be � andit preserves the Brauer class. Otherwise, we saw in Section 2 how to constructa map �F : Mr;d 9 9 KMr1;d1 with r1 < r and we proved in Proposition 3.7that ��F ( r1;d1) =  r;d: (5.1)We construct the map �, by induction on the rank r, as the composite of thetop row of the following commutative diagram of dominant rational mapswhich combines �F and the Hecke correspondence described in Section 4.The other elements of the diagram we will explain next.Mr;d @@@@R�F -�
Mr1;d1 -�1 Mh1;0
bP -b�1?

b�1 Ph1;0;h -�2?�1 Mh1;�h -�2 Mh;0
(5.2)The maps �1 and �2 are of the same sort as � and may be assumed to existby induction, since both r1 and h1 = hcf(r1; d1) are less than r. Thus theyare birationally linear and satisfy��1( h1;0) =  r1;d1 (5.3)��2( h;0) =  h1;�h: (5.4)because h = hcf(h1;�h) by Lemma 2.4.The central square in the diagram is a pull back. In particular, b�1 : bP 9 9 KMr1;d1 is the pull back of �1 along �1 and hence, by (5.3), it is a Grassmannianbundle overMr1;d1 whose twisting is measured by  r1;d1 . Thus b�1 and �F aretwisted Grassmannian bundles associated to vector bundles of weight �1over Xr1;d1 and of ranks h1 and lh1 respectively (see Proposition 3.7). Wewill prove in Lemma 5.3 below that this implies that there is a birationallylinear map � : Mr;d 9 9 K bP such that �F = b�1� and hence�� �b��1 ( r1;d1)� =  r;d: (5.5)18



The pullback b�1 of �1 along �1 is birationally linear and satis�esb��1 (��1( h1;0)) = b��1 (��1( h1;0) = b��1 ( r1;d1) : (5.6)Thus b�1� : Mr;d 9 9 KPh1;0;h is birationally linear and pulls back ��1( h1;0) to r;d. But by (4.7) and (5.4), this means that � = �2�2b�1� pulls back  h;0to  r;d as required and to complete the proof we need to show that �2 isbirationally linear. This follows from Lemma 5.2 below, because, as we sawin Section 4, �2 is a twisted Grassmannian bundle of h-dimensional subspacesof a vector bundle H2 of weight 1 over Xh1;�h and the Brauer class  h1;�h isrepresented by a central simple algebra of dimension h2. Thus although �2 isnot locally trivial in the Zariski topology when h 6= 1, we can show that it isbirationally linear since its generic �bre is birational to a Grassmannian overa division algebra; this is not the way it is expressed in Lemma 5.2 thoughthe translation to this is fairly simple.Thus (modulo two lemmas) we have proved Theorem 1.1 as we set out todo. To deduce Theorem 1.2, it is su�cient to observe that, by Lemma 2.4, themap �F restricts to a map between moduli spaces of �xed determinant andthat the Hecke correspondence restricts to a correspondence between modulispaces of �xed determinant. Therefore the map � : Mr;d ! Mh;0 restrictsto a map between �xed determinant moduli spaces, although precisely howthe determinants are related will depend on various choices made in theconstruction. In the case h = 1, the �xed determinant moduli space is apoint and we obtain Theorem 1.2.We �nish with the proofs of the two lemmas about birationally linearmaps that we used in the proof of Theorem 5.1. The �rst thing we need tounderstand is when a twisted Grassmannian bundle is birationally linear overits base. We shall provide a su�cient condition which is in fact necessarythough we shall not prove that here since we do not need it.Start by observing that, if P and Q are vector bundles of weight w overX, then M = P_ 
Q=PGLn is a bundle of left modules for P_ 
 P=PGLnand that this correspondence is invertible because Q = P 
P_
P 
�M , where
 : X ! X=PGLn is the quotient map.Lemma 5.2. Let P be a vector bundle of weight w over X. Assume thatthe Brauer class associated to P is represented by a central simple algebra ofdimension j2. Then � : Gr(j; P )=PGLn ! X=PGLn is a birationally linearmap. 19



Proof. Let A be the central simple algebra given by the bundle of centralsimple algebras P_
P=PGLn over the �eld k(X=PGLn). Then by assump-tion A has a left ideal of dimension j rk(P ) which is of necessity a directsummand of A. Therefore, over some dense open subvariety of X=PGLn,P_ 
 P=PGLn �= L1 � L2 where L1 and L2 are bundles of left ideals forP_
 P=PGLn and rk(L1) = j rk(P ). We may as well assume that this hap-pens over X=PGLn. We obtain a corresponding direct sum decompositionof P , P �= P1 � P2 where P1 and P2 are GLn stable subbundles of P andhence both of weight w. Also rk(P1) = j. Now consider the vector bundleP_1 
 P2. Let � : P1 ! P2 be the universal homomorphism of vector bundlesde�ned on P_1 
 P2 and consider the map of vector bundles over P_1 
 P2,(Id; �) : P1 ! P1 � P2 �= P . This representation of P1 as a subbundle of Pde�nes a map from P_1 
P2 toGr(j; P ) which is PGLn-equivariant, injectiveand onto an open subvariety of Gr(j; P ). Hence P_1 
 P2=PGLn which is avector bundle over X=PGLn is an open subvariety of Gr(j; P ).It remains to show that two twisted Grassmannian bundles of equal di-mensional subspaces arising from vector bundles of the same weight have abirationally linear map between them.Lemma 5.3. Let P and Q be vector bundles of weight w over X and supposethat j < rk(Q) < rk(P ). Then there is a birationally linear rational map� : Gr(j; P )=PGLn ! Gr(j; Q)=PGLn:compatible with the bundle maps to X=PGLn.Proof. P_
Q=PGLn is a bundle of left modules for P_
 P=PGLn of rankequal to rk(P ) rk(Q) and since rk(Q) < rk(P ) there is an open subvariety ofX=PGLn on whichP_ 
 P=PGLn �= P_ 
Q=PGLn � Lfor some vector bundle of left ideals L since this is true at the generic pointof X=PGLn. Hence we may assume that on X=PGLn, P �= Q�Q0 for GLnstable subbundles Q and Q0. Let S be the universal subbundle on Gr(j; Q).Then S and Q0 are both vector bundles of weight w onGr(j; Q). We considerthe vector bundle S_ 
 Q0 over Gr(j; Q). Let � : S ! Q0 be the universalhomomorphism of vector bundles de�ned on S_ 
 Q0 and let � : S ! Q be20



the universal inclusion of S in Q pulled back to S_ 
 Q0; now consider themap of vector bundles (�; �) : S ! Q�Q0 �= Pde�ned on S_
Q0. This gives a subbundle of P of rank j and hence de�nesa map from S_ 
 Q0 to Gr(j; P ). This map is injective and onto an opensubvariety ofGr(j; P ) and it is also PGLn-equivariant. Hence S_
Q0=PGLnis an open subvariety ofGr(j; P )=PGLn. However, S_
Q0=PGLn is a vectorbundle over Gr(j; Q)=PGLn which gives our lemma.References[1] H.U. Boden and K. Yokogawa, Rationality of moduli spaces of parabolicbundles, preprint alg-geom/9610013.[2] L. Brambila-Paz, I. Grzegorczyk, and P.E. Newstead, Geography of Brill-Noether loci for small slopes, J. Algebraic Geometry 6 (1997), 645{669.[3] H. Lange, Zur Klassi�cation von Regelmannigfaltigkeiten, Math. Annalen262 (1983), 447{459.[4] M.S. Narasimhan and S. Ramanan, Deformation of the moduli space ofvector bundles over an algebraic curve, Annals of Math. 101 (1975), 391{417.[5] P.E. Newstead, Rationality of moduli spaces of stable bundles, Math. Ann.215 (1975), 251{268.[6] , Correction to \Rationality of moduli spaces of stable bundles",Math. Ann. 249 (1980), 281{282.[7] B. Russo and M. Teixidor-I-Bigas, On a conjecture of Lange, preprintalg-geom/9710019, 1997.[8] P. K. Draxl, Skew �elds, London Mathematical Society Lecture NoteSeries 81 (1981), Cambridge University Press, Cambridge.
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