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Abstract

Geometric and algebraic aspects of multi-ratios M2n are investigated
in detail. Connections with Menelaus’ theorem, Clifford configurations
and Maxwell’s reciprocal quadrangles are utilized to associate the multi-
ratios M4, M6 and M8 with tetrahedra, octahedra and cubo-octahedra
respectively. Integrable maps defined on face-centred (fcc) lattices and
irregular lattices composed of the face centres of simple cubic lattices
are constructed and related to the discrete KP and BKP equations and
the integrable discrete Darboux system governing conjugate lattices. An
interpretation in terms of integrable irregular lattices of slopes on the
plane is also given.

1 Introduction

The classical cross-ratio in conformal and projective geometry [9, 36] has been
the subject of extensive studies. Apart from its significance in pure (differential)
geometry, it also finds application in other areas such as the geometric analysis of
flows in fluid mechanics [19, 38]. In the past decade, the importance of the cross-
ratio and its natural quaternionic generalization has been recognized in the field
of discrete integrable geometry in the context of discrete holomorphic functions
and conformal mappings, circle and sphere patterns, and discrete isothermic,
constant mean curvature and minimal surfaces (see [3] and references therein).

The multi-ratio of 2n points on the complex plane (M2n) which constitutes a
canonical algebraic extension of the cross-ratio appears to have attracted much
less attention even though a geometric interpretation of real and purely imagi-
nary multi-ratios was given in as early as 1937 by Morley and Musselman [32].
Multi-ratios may be used in the formulation of Carnot’s theorem [8] and canon-
ical generalizations of Ceva’s and Menelaus’ theorems [28, 39]. They appear
naturally in the context of the integrable Gaudin spin model [17, 18]. ‘Elliptic’
versions of multi-ratios make an appearance in integrable time discretizations
of the Calogero-Moser and Ruijsenaars-Schneider models [33, 34] and in sta-
tistical mechanics in connection with the Bethe ansatz [26, 27]. Only recently,
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the six-point multi-ratio condition M6 = −1 has been employed in the study
of hexagonal circle patterns, regular triangular lattices and symmetric circle
patterns [1, 2].

In [24], a remarkable connection between Menelaus’ theorem of plane ge-
ometry, the multi-ratio condition M6 = −1 and the integrable Kadomtsev-
Petviashvili (KP) hierarchy of soliton equations has been brought to light. In a
subsequent paper [25], Maxwell’s reciprocal figures of graphical statics represent-
ing frameworks in equilibrium have been linked to the KP hierarchy of B-type
and cross-ratio relations involving M4. In both cases, it has been demonstrated
that the underlying discrete KP and BKP equations constitute canonical objects
of plane inversive geometry.

Here, we further explore the geometry and algebra of multi-ratios. We
present a novel characterization of reciprocal quadrangles and establish a formal
connection with Menelaus’ theorem via the multi-ratio condition M6 = −1. We
show that BKP lattices consisting of an infinite number of reciprocal quadran-
gles are governed by the multi-ratio condition M6 = −1 and three multi-ratio
conditions M8 = 1. Interestingly, the latter three conditions may also be inter-
preted as an integrable Möbius invariant version of the discrete Darboux system
descriptive of conjugate lattices. We demonstrate that the multi-ratio condition
M6 = −1 constitutes an admissible constraint which ‘propagates’ through the
lattice.

In [25], a natural correspondence between the cross-ratio M4 and tetrahedra
has been recorded. In the present paper, this connection is reiterated and the
multi-ratios M6 and M8 are shown to be canonically defined on octahedra and
cubo-octahedra respectively. The vertices of these (quasi-)regular polyhedra
are interpreted as the vertices of regular face-centred cubic (fcc) lattices and
irregular lattices composed of the face centres of simple cubic lattices. A well-
posed Cauchy problem for BKP lattices and associated irregular lattices of slopes
on the plane is formulated.

2 Menelaus’ theorem and reciprocal quadran-

gles

The present paper is based on an interesting observation which characterizes
quadrangles and provides a link with Menelaus’ classical theorem of plane ge-
ometry. Here, we briefly review the basic geometric and algebraic properties
of Menelaus figures and reciprocal quadrangles [24, 25] and record the above-
mentioned novel characterization of quadrangles.

2.1 Menelaus’ theorem

We begin with a fundamental theorem of ancient Greek geometry which bears
the name of Menelaus but may have been known to Euclid [9, 36].
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Figure 1: A Menelaus figure

Theorem 1 (Menelaus’ theorem and its converse). Let A,B,C be the
vertices of a triangle and D,E, F be three points on the (extended) edges of the
triangle opposite A,B,C respectively (see Figure 1). Then, the points D,E, F
are collinear if and only if

AF

FB

BD

DC

CE

EA
= −1, (2.1)

where PQ/QR denotes the ratio of directed lengths associated with any three
collinear points P,Q,R.

For our purposes, it is convenient to regard the plane as the complex plane and
label the points by complex numbers as indicated in Figure 1. Thus, if we define
the multi-ratio of 2n complex numbers by

M2n = M(P1, . . . , P2n) =
(P1 − P2)(P3 − P4) · · · (P2n−1 − P2n)

(P2 − P3)(P4 − P5) · · · (P2n − P1)
(2.2)

then the Menelaus relation (2.1) assumes the form

M(P13, P14, P12, P24, P23, P34) = −1. (2.3)

It is important to note that the multi-ratio is invariant under the group of
Möbius transformations acting on the complex plane. This property is well-
known for the classical cross-ratio of four points [9, 36] which is represented
by n = 2.

It is evident that the above multi-ratio relation may also be regarded as
an identity for the six points of intersection of four generic straight lines on
the complex plane. However, in general, the geometry of the multi-ratio condi-
tion (2.3) is that of four circles S1, S2, S3, S4 meeting at a point P as displayed
in Figure 2. Indeed, if we label the point of intersection of two circles Si and Sk

by Pik then the following theorem obtains [24]:

Theorem 2 (The geometry of the multi-ratio condition M6 = −1).
Four generic circles S1, S2, S3, S4 on the complex plane pass through a point P
if and only if the points of intersection P13, P14, P12, P24, P23, P34 satisfy the
multi-ratio condition

M(P13, P14, P12, P24, P23, P34) = −1. (2.4)
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Figure 2: A Menelaus configuration

The connection with Menelaus’ theorem is provided by the symmetry group
of the multi-ratio condition (2.4). Indeed, since the latter is invariant under
the group of inversive transformations [9, 36], that is Möbius transformations
and complex conjugation, the point P may be mapped to infinity by means
of an inversive transformation without changing the multi-ratio. The circles
S1, S2, S3, S4 then become straight lines l1, l2, l3, l4 and a Menelaus figure is
obtained (cf. Figure 1).

Theorem 2 implies that the multi-ratio condition (2.4) is invariant under
any permutation of the indices 1, 2, 3, 4. However, the multi-ratio condition
(2.4) may also be formulated as

M(P14, P12, P24, P23, P34, P13) = −1. (2.5)

This implies that the four circles Sikl passing through the points Pik, Pil, Pkl

also meet at a point P1234, say (see Figure 3). This is the content of a classical
theorem due to Clifford [10] and, indeed, point-circle configurations of this kind
are known as Clifford configurations [40].

2.2 Reciprocal quadrangles

In the preceding, we have discussed the properties of figures consisting of four
lines and six points and their inversive geometric generalization. Here, we focus
on figures involving six lines and four points, namely quadrangles. Thus, given
four points Φ23,Φ13,Φ12,Φ on the complex plane, we denote the six lines linking
these points by α, β, γ, α1, β2, γ3 as indicated in Figure 4. We may now inquire
as to whether there exists another quadrangle which is such that the lines of the
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Figure 3: A C4 Clifford configuration

two quadrangles are pairwise parallel and any three lines meeting at a point of
one quadrangle correspond to the edges of a triangle in the other (see Figure 4).
It turns out that such a quadrangle always exists and is uniquely defined up to a
scaling. Since the defining relation between the two quadrangles is reciprocal in
nature, the two quadrangles (Φ23,Φ13,Φ12,Φ) and (Φ1,Φ2,Φ3,Φ123) are termed
reciprocal quadrangles.†

In 1864, Maxwell [30] gave a remarkably simple constructive proof of the
existence of reciprocal quadrangles. His investigation of reciprocal quadran-
gles and, more generally, reciprocal figures (configurations of points and lines)
was instigated by a problem of graphical statics, namely the existence of frames
which can support forces. Thus, if a reciprocal figure exists then the original fig-
ure (e.g. a quadrangle) may be regarded as a frame which is in equilibrium with
closed diagrams of forces provided by the closed polygons (e.g. triangles) in the
reciprocal figure. Reciprocal figures and related graphical methods were applied
extensively by Maxwell’s contemporaries in [7, 11, 12, 20, 21, 37]. Moreover,
Maxwell discovered a fascinating connection between the existence of reciprocal
figures and the representation of reciprocal figures as orthogonal projections of
closed polyhedra. Interestingly, a century later, this connection was rediscovered

†In [25], we referred to these as reciprocal triangles since the points Φ and Φ123 are uniquely
determined by the triangles (Φ23, Φ13,Φ12) and (Φ1,Φ2,Φ3). Here, we prefer to use the
classical term quadrangle.
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Figure 4: Reciprocal quadrangles

in the context of ‘artificial intelligence’, namely the recognition and realizability
of plane line drawings as three-dimensional polyhedral scences [16, 29].

It turns out [25] that the vertices of reciprocal quadrangles obey the cross-
ratio relation

M(Φ23,Φ13,Φ12,Φ) = M(Φ1,Φ2,Φ3,Φ123). (2.6)

This relation is preserved by Möbius transformations which act independently
on the two quadrangles. Either quadrangle is thereby mapped to a quadrangle
whose vertices are linked by circular arcs which meet at a point. In [25], this
observation has been exploited to define reciprocal quadrangles in the setting
of inversive geometry and it has been shown that these are governed by the
cross-ratio relation (2.6).

The novel key observation is now the following: if we regard the labels
α, β, γ, α1, β2, γ3 as the slopes of the edges of the quadrangle (Φ23,Φ13,Φ12,Φ)
then it is not difficult to show that

M(α, β2, γ, α1, β, γ3) = −1. (2.7)

A proof of this fact will be obtained as a by-product of the deliberations of
Section 4. In fact, it will be shown that (2.7) is also a sufficient condition for
six lines being part of a quadrangle. The multi-ratio condition (2.7) written as

M(α1, β, γ3, α, β2, γ) = −1 (2.8)

therefore implies that there exists another quadrangle (Φ1,Φ2,Φ3,Φ123) with the
same slopes but different incidence structure (cf. Figure 4). Thus, an elegant
alternative proof of the existence of reciprocal quadrangles has been established.
This is summarized in the following theorem:
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Theorem 3 (A characterization of reciprocal quadrangles). Six lines
with slopes α, β, γ, α1, β2, γ3 are parallel to the edges of reciprocal quadrangles of
the incidence structure displayed in Figure 4 if and only if

M(α, β2, γ, α1, β, γ3) = −1. (2.9)

3 Integrable lattices associated with Menelaus

configurations and reciprocal quadrangles

In [24, 25], it has been shown that there exist canonical integrable lattices on the
complex plane which encapsulate an infinite number of Menelaus figures, Clifford
configurations and reciprocal quadrangles. Their construction is summarized in
this section.

3.1 Menelaus and Clifford lattices

We first observe that it is canonical to interpret the lines l1, l2, l3, l4 in the
Menelaus figure 1 as degenerate triangles. In this way, we may think of a
Menelaus figure as consisting of eight triangles and six vertices. Accordingly, a
Menelaus figure admits the same combinatorics as an octahedron. Indeed, this
becomes evident if one inspects the Clifford configuration displayed in Figure 3.
Thus, the six points Pik represent the vertices of an octahedron while the eight
circles are associated with the eight triangular faces of the octahedron. We may
therefore regard a Menelaus figure or a Clifford configuration as the image of
an octahedron under some map ψ, say, which preserves the combinatorics.

It is natural to consider maps from a face-centred cubic (fcc) lattice to the
complex plane, that is

ψ : G(1) → C

G(1) = {(n1, n2, n3) ∈ Z
3 : n1 + n2 + n3 odd}.

(3.1)

The edge structure of G(1) is obtained by starting at the vertex (1, 0, 0) of the Z3

simple cubic lattice and drawing diagonals across the faces of the cubes. The six
diagonals on each cube then form a tetrahedron as shown in Figure 5(a). The
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Figure 6: The stella octangula

eight tetrahedra inscribed in any eight adjacent cubes enclose an octahedron
(cf. Figure 6), thereby forming a stella octangula, while any tetrahedron is
enclosed by four octahedra. Thus, the G(1) fcc lattice is composed of tetrahedra
and octahedra. We now demand that any octahedron be mapped to a Clifford
configuration in the sense specified earlier. Accordingly, the map ψ is defined
by the multi-ratio condition

M(ψ1̄,ψ2,ψ3̄,ψ1,ψ2̄,ψ3) = −1, (3.2)

where the arguments of ψ have been suppressed and the notation

ψ = ψ(n1, n2, n3), ψ1̄ = ψ(n1−1, n2, n3), ψ1 = ψ(n1+1, n2, n3), . . . (3.3)

has been used.
The multi-ratio condition (3.2) which now constitutes a lattice equation

is nothing but an integrable discrete version of the Schwarzian Kadomtsev-
Petviashvili (SKP) equation and, in fact, its entire hierarchy [5, 6]. It may
also be regarded as a superposition principle for solutions of the Schwarzian
KP hierarchy as well as a permutability theorem associated with Darboux-type
transformations [24]. Since the dSKP equation is equivalent to the complex
discrete KP equation

τ1̄τ1 + τ2̄τ2 + τ3̄τ3 = 0, (3.4)

there exists a remarkable connection between Menelaus’ theorem and Hirota’s
‘master equation’ (3.4). Links with pseudo-analytic functions (quasi-conformal
mappings) have also been recorded in [24]. We observe in passing that real
solutions of the ‘tau-function’ equation (3.4) correspond to Menelaus lattices on
the complex plane, that is lattices which embody Menelaus figures rather than
Clifford configurations.

3.2 Lattices composed of reciprocal quadrangles

It is evident that quadrangles admit the combinatorics of tetrahedra. Indeed, as
Maxwell pointed out [30], the very fact that a quadrangle may be regarded as an
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orthogonal projection of a tetrahedron guarantees the existence of a reciprocal
quadrangle. Thus, we now think of a quadrangle as the image of a tetrahedron
under a map Φ, say, which preserves the combinatorics. A lattice composed of
quadrangles is obtained by mapping the tetrahedra of an fcc lattice onto the
complex plane. If we consider two such maps, we may demand that the images
of corresponding pairs of tetrahedra constitute reciprocal quadrangles.

Under the assumption of a natural correspondence between pairs of tetrahe-
dra, the integrability of maps of the afore-mentioned kind has been established
in [25]. Indeed, if, for convenience, we choose the vertices of the second fcc lat-
tice G(0) as the complement of G(1) with respect to Z3, that is (cf. Figure 5(b))

G(0) = {(n1, n2, n3) ∈ Z
3 : n1 + n2 + n3 even}, (3.5)

then we may combine the two maps in question to

Φ : Z
3 → C (3.6)

and demand that the images of the two tetrahedra in any elementary cube of
the Z3 lattice under Φ be reciprocal quadrangles. If, as usual, indices indicate
increments of the respective variables then the pairs of reciprocal quadrangles
are labelled as in Figure 4, namely by (Φ23,Φ13,Φ12,Φ), (Φ1,Φ2,Φ3,Φ123).

In order to provide an analytic description of lattices on the complex plane
which consist of reciprocal quadrangles, it is convenient to focus initially on one
pair of reciprocal quadrangles. Thus, eight points Φ, . . . ,Φ123 on the complex
plane constitute the vertices of two reciprocal quadrangles (Φ23,Φ13,Φ12,Φ),
(Φ1,Φ2,Φ3,Φ123) if and only if there exist six real dilation coefficients a, b, c
and a1, b2, c3 such that

Φ12 − Φ = c(Φ1 − Φ2)

Φ23 − Φ = a(Φ2 − Φ3)

Φ13 − Φ = b(Φ3 − Φ1)

(3.7)

and
Φ123 − Φ3 = c3(Φ13 − Φ23)

Φ123 − Φ1 = a1(Φ12 − Φ13)

Φ123 − Φ2 = b2(Φ23 − Φ12).

(3.8)

As shown in [25], on use of (3.7), elimination of Φ123 from (3.8) leads to three
relations for the dilation coefficients only, viz

a1 = −
a

ab+ bc+ ca
, b2 = −

b

ab+ bc+ ca
, c3 = −

c

ab+ bc+ ca
. (3.9)

This result may be interpreted in two ways. Firstly, it provides an algebraic
proof of the existence of reciprocal quadrangles in that if we choose an arbi-
trary quadrangle (Φ23,Φ13,Φ12,Φ) and arbitrarily prescribe three real dilation
coefficients a, b, c then the system (3.7), (3.8) determines a reciprocal quad-
rangle (Φ1,Φ2,Φ3,Φ123) uniquely up to translation. Secondly, in the case of
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maps Φ which are to encode an infinite number of reciprocal quadrangles, the
dilation coefficients a, b, c are functions of the discrete variables and the three
linear equations (3.8) are nothing but incremented versions of the three linear
equations (3.7). The nonlinear system (3.9) then represents the compatibility
conditions which guarantee the existence of the map Φ. Thus, any solution of
the discrete system (3.9) gives rise to a map Φ which may be decomposed into
two maps defined on the complementary fcc lattices with the required properties.

The relations a1b = b2a, b2c = c3b and c3a = a1c imply the existence of a
potential τ which parametrizes the dilations a, b, c according to

a =
τ2τ3
ττ23

, b =
τ1τ3
ττ13

, c =
τ1τ2
ττ12

(3.10)

so that (3.9) reduces to the integrable discrete BKP (dBKP) equation

ττ123 + τ1τ23 + τ2τ13 + τ3τ12 = 0. (3.11)

We therefore refer to the lattices on the complex plane defined by Φ as BKP
lattices. The dBKP equation is known to discretize the complete BKP hierarchy
of soliton equations [31]. It also represents a superposition principle for eight so-
lutions of a 2+1-dimensional sine-Gordon system [22] generated by the classical
Moutard transformation [35]. Thus, once again, there exists a remarkable con-
nection between reciprocal figures of graphical statics and the important Miwa
equation (3.11).

4 A novel characterization of BKP lattices. In-

tegrable irregular lattices of slopes on the plane

In Section 2, it has been stated that reciprocal quadrangles may be character-
ized by a constraint on the slopes of their edges, namely M6 = −1. Here, we
give a proof of this assertion and derive the necessary and sufficient conditions
on the slopes which guarantee the existence of lattices composed of reciprocal
quadrangles.

4.1 Slope characterization of reciprocal quadrangles

We first decompose any point Φ on the complex plane in its real and imaginary
parts according to Φ = ϕ + iψ and note that six points Φ, . . . ,Φ123 constitute
the vertices of two reciprocal quadrangles (Φ23,Φ13,Φ12,Φ), (Φ1,Φ2,Φ3,Φ123)
if and only if the relations

ϕ12 − ϕ

ϕ1 − ϕ2
=

ψ12 − ψ

ψ1 − ψ2
,

ϕ123 − ϕ3

ϕ13 − ϕ23
=
ψ123 − ψ3

ψ13 − ψ23

ϕ23 − ϕ

ϕ2 − ϕ3
=

ψ23 − ψ

ψ2 − ψ3
,

ϕ123 − ϕ1

ϕ12 − ϕ13
=
ψ123 − ψ1

ψ12 − ψ13

ϕ13 − ϕ

ϕ3 − ϕ1
=

ψ13 − ψ

ψ3 − ψ1
,

ϕ123 − ϕ2

ϕ23 − ϕ12
=
ψ123 − ψ2

ψ23 − ψ12

(4.1)
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hold. Indeed, if we denote the above ratios by c, c3, a, a1, b, b2 respectively then
the linear system (3.7), (3.8) is obtained and the coefficients admit the inter-
pretation as dilations. Alternatively, we may ‘linearize’ the above relations by
introducing coefficients α, β, γ, α1, β2, γ3 according to

ψ12 − ψ = γ(ϕ12 − ϕ), ψ13 − ψ23 = γ3(ϕ13 − ϕ23)

ψ23 − ψ = α(ϕ23 − ϕ), ψ12 − ψ13 = α1(ϕ12 − ϕ13)

ψ13 − ψ = β(ϕ13 − ϕ), ψ23 − ψ12 = β2(ϕ23 − ϕ12)

(4.2)

and
ψ1 − ψ2 = γ(ϕ1 − ϕ2), ψ123 − ψ3 = γ3(ϕ123 − ϕ3)

ψ2 − ψ3 = α(ϕ2 − ϕ3), ψ123 − ψ1 = α1(ϕ123 − ϕ1)

ψ3 − ψ1 = β(ϕ3 − ϕ1), ψ123 − ψ2 = β2(ϕ123 − ϕ2).

(4.3)

In this case, the coefficients α, . . . , γ3 are but the slopes of the edges of the recip-
rocal quadrangles displayed in Figure 4. It is emphasized that, by construction,
the systems (3.7), (3.8) and (4.2), (4.3) are equivalent.

If we set aside the second system (4.3) then the first system (4.2) is descrip-
tive of a single quadrangle and no reference to reciprocity is made. The relations
(4.2)1,3,5 may be regarded as definitions of ψ12, ψ23 and ψ13. Insertion into the
remaining relations then produces the homogeneous linear system





0 γ3 − α β − γ3

γ − α1 0 α1 − β
β2 − γ α− β2 0









ϕ12 − ϕ
ϕ23 − ϕ
ϕ13 − ϕ



 = 0. (4.4)

Since the quadrangles are assumed to be non-degenerate, the determinant of
the above linear system must vanish. Consequently,

M(α, β2, γ, α1, β, γ3) = −1 (4.5)

constitutes a necessary condition on the slopes for the existence of a quadran-
gle. Conversely, if the coefficients α, . . . , γ3 satisfy the multi-ratio condition
(4.5) and Φ = ϕ + iψ, ϕ23 = ℜ(Φ23) are arbitrarily prescribed then the points
Φ23,Φ13,Φ12,Φ determined by (4.2)1,3,5 and

ϕ12 − ϕ =
β2 − α

β2 − γ
(ϕ23 − ϕ), ϕ13 − ϕ =

γ3 − α

γ3 − β
(ϕ23 − ϕ) (4.6)

constitute the vertices of a reciprocal quadrangle. Moreover, the second linear
system (4.3) gives rise to the necessary and sufficient condition

M(α1, β, γ3, α, β2, γ) = −1 (4.7)

which is equivalent to the multi-ratio condition (4.5). This proves Theorem 3.
It turns out convenient to regard (4.3)1,5 as definitions of ψ1, ψ2 and (4.3)3

as a constraint on ϕi which may be brought into the two equivalent forms

ϕ1 − ϕ2 =
α− β

β − γ
(ϕ2 − ϕ3), ϕ1 − ϕ3 =

α− γ

β − γ
(ϕ2 − ϕ3). (4.8)
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Any of the three equations (4.3)2,4,6 defines ψ123 and the remaining two which
are identical modulo the multi-ratio condition (4.7) serve as a definition of ϕ123.
For future reference, we record the two equivalent representations

ϕ123 − ϕ2 =
γ3 − α

β2 − γ3
(ϕ2 − ϕ3), ϕ123 − ϕ3 =

β2 − α

β2 − γ3
(ϕ2 − ϕ3). (4.9)

4.2 Slope characterization of BKP lattices

Here, as an extension of the preceding, we are concerned with BKP lattices
encapsulating an infinite number of reciprocal quadrangles. The fundamen-
tal system of lattice equations which is required to hold is now represented
by (4.2)1,3,5 and (4.3)1,3,5. The remaining equations are redundant. The com-
patibility conditions which guarantee the existence of the function ψ are then
given by the lattice system (4.5)-(4.9). It is therefore necessary to establish the
consistency of the linear equations (4.6), (4.8) and (4.9). Thus, if we shift (4.8)
in the n3- and n2-directions respectively then we obtain the expressions

ϕ22 − ϕ23 =
(β2 − γ2)(γ − α)

(β2 − γ)(α2 − γ2)
(ϕ23 − ϕ)

ϕ33 − ϕ23 =
(γ3 − β3)(β − α)

(γ3 − β)(α3 − β3)
(ϕ23 − ϕ).

(4.10)

Moreover, comparison of (4.9) with (4.6) shifted in the n3- and n2-directions
respectively leads to

ϕ223 − ϕ2 =
(γ23 − β2)(γ3 − α)

(γ23 − α2)(β2 − γ3)
(ϕ2 − ϕ3)

ϕ233 − ϕ3 =
(β23 − γ3)(β2 − α)

(β23 − α3)(β2 − γ3)
(ϕ2 − ϕ3).

(4.11)

The relations (4.6) and (4.8)-(4.11) may be cast into the form of a discrete
matrix ‘Frobenius system’, that is it is readily verified that

φi = L(i)φ, φ =









ϕ
ϕ2

ϕ3

ϕ23









, (4.12)

where the matrices L(i), i = 1, 2, 3 depend in a known manner on the slopes
α, β, γ. Accordingly, the existence of the function ϕ is guaranteed if and only if
the slopes satisfy the compatibility conditions φik = φki, that is

L
(i)
k L(k) = L

(k)
i L(i), i 6= k. (4.13)

Apart from the multi-ratio condition (4.5), these imply only three independent
constraints on the slopes. A canonical choice is given by the multi-ratio condi-
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tions
M(α, β2, α2, γ23, α23, β23, α3, γ3) = 1

M(β, γ3, β3, α13, β13, γ13, β1, α1) = 1

M(γ, α1, γ1, β12, γ12, α12, γ2, β2) = 1.

(4.14)

Hence, the following theorem obtains:

Theorem 4 (Slope characterization of BKP lattices). Three functions
α, β, γ may be associated with the slopes of a BKP lattice of reciprocal quadran-
gles if and only if they obey the multi-ratio conditions (4.5) and (4.14).

By virtue of (4.2), (4.3) and (4.12), one may immediately observe that a
slope function determines a BKP lattice uniquely up to a choice of, for instance,
ϕ,ϕ2, ϕ3, ϕ23 and ψ, ψ2.

4.3 Geometric implications. Irregular lattices of slopes on

the plane

It turns out that the multi-ratio conditions governing BKP lattices may be
formulated in a geometrically invariant manner. To this end, let Φ : Z3 → C be a
BKP lattice. Then, by construction, any two parallel edges of a pair of reciprocal
quadrangles constitute the images of the two diagonals of the corresponding face
of the cubic lattice Z3 (cf. Figure 5). It is therefore natural to associate the slope
of the two edges with this face. Accordingly, we may regard the slope functions
α, β, γ as one function σ, say, which is defined on the centres of the faces of
the cubic lattice. The set of centres F ⊂ R

3 does not constitute a proper but
an ‘irregular’ lattice since it is not translationally invariant. The image of F

under σ may be thought of as describing an irregular lattice of slopes on the
plane. Thus, σ may be identified with a map of the form

σ : F → P
1, (4.15)

where P1 is a one-dimensional projective space.
We begin with an arbitrary map of the form (4.15). The set of centres F may

be interpreted as the vertices of octahedra inscribed in the elementary cubes
of the lattice Z

3 as depicted in Figure 7. We consider a non-planar hexagon
(P1, P2, P3, P4, P5, P6) formed by six edges of an octahedron with vertices Pi in
such a way that any two adjacent edges of the hexagon belong to a triangular
face of the octahedron (cf. Figure 7) and impose the multi-ratio condition

M(σ1, σ2, σ3, σ4, σ5, σ6) = −1, (4.16)

where σi = σ(Pi). Even though there exist four such hexagons, the correspond-
ing multi-ratio conditions M6 = −1 are equivalent. Thus, we may think of these
multi-ratio conditions as one multi-ratio condition

MO = −1 (4.17)
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α β

γ

γ3

α1

β2

Figure 7: An octahedron and the multi-ratio condition MO = −1

Figure 8: A cubo-octahedron and a multi-ratio condition MCO = 1

defined on the octahedron. It is evident that the multi-ratio condition (4.5) is
equivalent to imposing MO = −1 on all octahedra.

The eight octahedra inscribed in any eight adjacent elementary cubes of Z3

are linked to a cubo-octahedron as indicated in Figure 8 so that the set F is
naturally associated with the ‘tiling’ of Euclidean space by octahedra and cubo-
octahedra. Any of the six square faces of a cubo-octahedron is attached to four
triangular faces (cf. Figure 8). The edges of the triangles which are not shared
by a square form a non-planar octagon (P1, P2, P3, P4, P5, P6, P7, P8) on which
we may define the multi-ratio condition

M(σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8) = 1. (4.18)

A straight-forward calculation reveals that any three of the six multi-ratio con-
ditions M8 = 1 associated with a cubo-octahedron are independent and the
remaining three are algebraic consequences. If we denote the multi-ratios de-
fined on a cubo-octahedron by

MCO = 1 (4.19)

then the multi-ratio conditions (4.14) represent MCO = 1 imposed on all cubo-
octahedra. Consequently, Theorem 4 may be reformulated as:
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Theorem 5 (Geometrically invariant characterization of BKP lattices).
A map σ : F → P1 corresponds to a BKP lattice if and only if the multi-ratio
conditions MO = −1 and MCO = 1 defined on the octahedra and cubo-octahedra
of the irregular lattice F are satisfied.

It is worth pointing out that the octahedra inscribed in the elementary cubes
of a cubic lattice form a subset of the octahedra encapsulated in an fcc lattice.
In fact, the results summarized in Section 3 imply that the condition MO = −1
imposed on the octahedra of an fcc lattice constitutes nothing but the real
dSKP equation. Thus, the discrete BKP equation is obtained by considering
only the octahedra which belong to the cubic lattice and imposing the additional
constraints MCO = 1. This observation seems reminiscent of the construction of
the BKP hierarchy which is obtained from the KP hierarchy by ‘freezing’ every
second flow and imposing symmetry constraints on the remaining flows [14].

We conclude with the remark that, in a similar manner, the cross-ratio M4

may be related to non-planar quadrilaterals on tetrahedra. Indeed, if we consider
a map of the form

Φ : Z
3 → C (4.20)

and regard Z3 as the usual composition of two fcc lattices (cf. Figure 5) then
we may associate a cross-ratio with a quadrilateral (P1, P2, P3, P4) formed by
the vertices Pi of a tetrahedron contained in an elementary cube. If we de-
note by Pi+4 the vertices of the second tetrahedon which are diagonally oppo-
site Pi then another quadrilateral defined on the second tetrahedron is given by
(P5, P6, P7, P8). The cross-ratio relation (2.6) is then expressed as

M(Φ1,Φ2,Φ3,Φ4) = M(Φ5,Φ6,Φ7,Φ8), (4.21)

where again Φi = Φ(Pi). This one equation implies any of the other equations
obtained by a different choice of the (labelled) quadrilateral (P1, P2, P3, P4).

5 Cauchy problems. Connections with conju-

gate lattices and the discrete Darboux system

The multi-ratio conditions MO = −1 and MCO = 1 must be compatible since
they represent integrable BKP lattices. However, their canonical representation
(4.5), (4.14) constitutes an overdetermined set of equations for the slope func-
tions α, β, γ. Hence, it may be suspected that the well-determined system (4.14)
by itself is an integrable system and (4.5) represents an admissible constraint
which is ‘in involution’. Here, we show that this is indeed the case and discuss
the implications of this observation.

5.1 The discrete Darboux system

In terms of the new dependent variables

χ(1) = α1, χ(2) = β2, χ(3) = γ3, (5.1)
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the multi-ratio conditions (4.14) are conveniently expressed as
(

χ
(k)
i − χ(i)

χ
(k)
i − χ

(i)
k

)

l

(

χ
(k)
i − χ

(i)
k

χ
(k)
i − χ(i)

)

=

(

χ
(l)
i − χ(i)

χ
(l)
i − χ

(i)
l

)

k

(

χ
(l)
i − χ

(i)
l

χ
(l)
i − χ(i)

)

, (5.2)

where here and in the remainder of this paper i, k, l ∈ {1, 2, 3} are assumed to
be distinct. These may be satisfied identically by introducing potentials H(i)

according to

H
(i)
k

H(i)
=
χ

(k)
i − χ(i)

χ
(k)
i − χ

(i)
k

. (5.3)

The latter are now interpreted as linear equations for χ(i) and brought into the
form

∆kχ
(i) = ρ(ik)(χ

(k)
i − χ

(i)
k ), (5.4)

where ∆k denote difference operators defined by ∆kf = fk − f and

ρ(ik) =
∆kH

(i)

H(i)
. (5.5)

Note that the systems (5.2) and (5.4) are completely equivalent. The linear
system (5.4) is readily shown to be compatible if and only if the coefficients H(i)

obey the nonlinear discrete equations

∆ikH
(l) =

∆kH
(i)
l

H
(i)
l

∆iH
(l) +

∆iH
(k)
l

H
(k)
l

∆kH
(l) (5.6)

with ∆ik = ∆i∆k. These constitute a well-known integrable discretization of the
Darboux equations defining conjugate coordinates in R3 [4, 13]. Accordingly, the
multi-ratio conditions (4.14) represent a Möbius invariant avatar of the discrete
Darboux system.

The discrete Darboux system governs conjugate lattices (‘discrete conjugate
coordinates’) in R3 [3, 15]. Thus, consider a three-dimensional quadrilateral
lattice in a three-dimensional Euclidean space, that is a map

r : Z
3 → R

3. (5.7)

Conjugate lattices are defined by the requirement that all elementary quadri-
laterals be planar. In analytical terms, this means that the position vector r of
a conjugate lattice obeys discrete ‘hyperbolic’ equations of the form

∆ikr = ρ(ik)∆ir + ρ(ki)∆kr. (5.8)

Their compatibility conditions lead to the parametrization (5.5) of the coeff-
cients ρ(ik) and to the discrete Darboux system (5.6) for the potentials H(i). It
is then natural to introduce functions χ(i) satisfying (5.4) which play the role
of ‘adjoint eigenfunctions’ [23]. These may again be regarded as one function χ
defined on the face centres F of the cubic lattice Z

3. Thus, the preceding may
be summarized in the following manner:
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Theorem 6 (A Möbius invariant form of the discrete Darboux sys-
tem). The discrete Darboux system (5.6) governing conjugate lattices in R3 is
equivalent to the multi-ratio conditions MCO = 1 imposed on the adjoint eigen-
function χ : F → R.

The geometric significance of the adjoint eigenfunctions is the following. If r
represents a conjugate lattice then the relations

∆ir̃ = χ(i)∆ir (5.9)

are compatible if and only if the coefficients χ(i) are solutions of the linear
system (5.4). In this case, the lattice r̃ constitutes another conjugate lattice
known as a discrete Combescure transform [23] of the conjugate lattice r. Dis-
crete Combescure transforms are defined by the geometric property that their
edges are parallel to those of the original conjugate lattice. In fact, any two lat-
tices which are ‘parallel’, that is are related by (5.9), are necessarily conjugate
lattices and the dilations χ(i) obey the multi-ratio conditions (5.2). Accord-
ingly, it has been established that the slope function σ associated with a BKP
lattice may also be interpreted as a dilation function defining parallel conjugate
lattices.

5.2 A well-posed Cauchy problem

Having shown that the multi-ratio conditions MCO = 1 constitute an integrable
system on their own, we now investigate in what sense the constraint MO = −1 is
admissible. A key observation is that the multi-ratios M6 and M8 are related by
a simple identity. Consider a cubo-octahedron enclosed by six cubo-octahedra
and eight octahedra. The multi-ratios which are associated with the six square
faces of the central cubo-octahedron but are defined on the six neighbouring
cubo-octahedra and the multi-ratios corresponding to the eight octahedra are
algebraically dependent. In terms of the slope functions, this dependency is
expressed as

M(α, β2, α2, γ23, α23, β23, α3, γ3)M(γ13, α11, β12, α112, γ123, α1123, β123, α113)

M(β, γ3, β3, α13, β13, γ13, β1, α1)M(α12, β22, γ23, β223, α123, β1223, γ123, β122)

M(γ, α1, γ1, β12, γ12, α12, γ2, β2)M(β23, γ33, α13, γ133, β123, γ1233, α123, γ233)

= (5.10)

M(α, β2, γ, α1, β, γ3)M(α123, β1223, γ123, α1123, β123, γ1233)

M(β1, α1, γ1, β12, α11, γ13)M(α23, β23, γ233, α123, β223, γ23)

M(γ2, β2, α2, γ23, β22, α12)M(β13, γ13, α113, β123, γ133, α13)

M(α3, γ3, β3, α13, γ33, β23)M(γ12, α12, β122, γ123, α112, β12).

Accordingly, if any seven multi-ratio conditions MO = −1 associated with the
octahedra are satisfied then the remaining eighth likewise holds provided that
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Figure 9: An eight-face complex

MCO = 1 on the relevant cubo-octahedra. In other words, the multi-ratio con-
dition MO = −1 ‘propagates’ along the diagonals of the lattice. Specifically, if
we choose, for instance, the representatives

M(α1, β2, α12, γ23, α123, β23, α13, γ3) = 1

M(β2, γ3, β23, α13, β123, γ13, β12, α1) = 1

M(γ3, α1, γ13, β12, γ123, α12, γ23, β2) = 1,

(5.11)

which may be regarded as evolution equations in the (1, 1, 1)-direction, then the
constraint

M(α, β2, γ, α1, β, γ3) = −1 (5.12)

is preserved by the evolution (5.11) by virtue of the identity (5.10).
It is now convenient to identify the construction of the slope function σ with

filling the cubic lattice Z
3 with faces. Thus, if σ is known on (the centre of) a

face then we insert this face into the lattice. Accordingly, if σ is known on five
faces of an elementary cube then its value on the remaining face is determined
by the multi-ratio condition MO = −1 and we complete the cube by inserting the
remaining face. Similarly, a multi-ratio condition MCO = 1 may be visualized
by an eight-face complex of the type displayed in Figure 9. Thus, if σ is known
on any seven faces of this complex then the corresponding multi-ratio condition
MCO = 1 determines its value on the remaining face which is then inserted into
the lattice. It is also natural to identify the cubo-octahedra with their centres
which constitute the vertices of the cubic lattice. Hence, whenever a multi-ratio
condition defined on a cubo-octahedron is known to be satisfied then we attach
an arrow to the corresponding central vertex as indicated in Figure 9.

Natural Cauchy data associated with the lattice equations MCO = 1 are
given by

α(n1, n2, 0), α(n1, 0, n3)

β(n1, n2, 0), β(0, n2, n3)

γ(n1, 0, n3), γ(0, n2, n3).

(5.13)

A clipping of the corresponding ‘initial state’ of the lattice in the first octant
is shown in Figure 10(a). The faces of the planes ni = 0 and ni = 1 may then
be inserted iteratively on use of the multi-ratio conditions MCO = 1, that is
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(a) (b)

Figure 10: Cauchy data for MCO = 1

eight-face complexes. The resulting intermediate state of the lattice is depicted
in Figure 10(b). The additional data constructed in this manner read

α(0, n2, n3), α(1, n2, n3)

β(n1, 0, n3), β(n1, 1, n3)

γ(n1, n2, 0), γ(n1, n2, 1).

(5.14)

It is now readily verified that the entire Z3 lattice may be filled with faces by
means of eight-face complexes. Moreover, in the process each vertex becomes
endowed with three arrows corresponding to three multi-ratio conditions per
octahedron. Consequently, the multi-ratio conditions MCO = 1 are satisfied
throughout the lattice.

The preceding construction implies that we may choose Cauchy data of the
form (5.13) and (5.14) as long as these allow for MCO = 1 wherever applicable
on the region Γ bounded by the planes ni = 0 and ni = 1. We now specialize
these data in such a way that, in addition, the multi-ratio condition MO = −1
holds on Γ. Thus, we arbitrarily prescribe the slope function on the boundaries
of three square cylinders subject to the multi-ratio condition associated with
the one central cube enclosed by these cylinders, that is (cf. Figure 11(a))

α(ǫ, n2, 0), α(ǫ, 0, n3)

β(n1, ǫ, 0), β(0, ǫ, n3), ǫ = 0, 1

γ(n1, 0, ǫ), γ(0, n2, ǫ)

(5.15)

and
M(α, β2, γ, α1, β, γ3)|(n1,n2,n3)=(0,0,0) = −1. (5.16)

By virtue of the multi-ratio condition MO = −1, the slope function is then
uniquely determined on the faces inside the square cylinders. Moreover, if we
choose additional data

α(n1 6= ǫ, n2 6= 0, 0), β(0, n2 6= ǫ, n3 6= 0), γ(n1 6= 0, 0, n3 6= ǫ) (5.17)
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(a) (b)

Figure 11: Cauchy data for MCO = 1 and MO = −1

as indicated in Figure 11(b), then iterative application of the multi-ratio condi-
tions MCO = 1 and MO = −1 determines the slope function on Γ. By construc-
tion, all relevant multi-ratio conditions are satisfied on Γ. The data specified
in this manner may now be used as Cauchy data of the form (5.13), (5.14) in
order to construct a unique slope function σ satisfying MCO = 1 throughout
the lattice. Moreover, since the multi-ratio condition MO = −1 propagates in
all diagonal directions, it likewise holds everywhere. Accordingly, the following
theorem obtains:

Theorem 7 (A well-posed Cauchy problem for BKP slope lattices).
Cauchy data of the form (5.15)-(5.17) uniquely determine a slope function σ
obeying MCO = 1 and MO = −1.
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