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This article is an expository survey of our paper [AK], which provides a

new way to think about the construction of moduli spaces of coherent

sheaves on projective schemes and the closely related construction of

theta functions on such moduli spaces.

More precisely, for any projective scheme X , over an algebraically

closed field of arbitrary characteristic, we are interested in the mod-

uli spaces (schemes) Mss
X (P ) of semistable coherent sheaves of OX -

modules, with a fixed Hilbert polynomial P with respect to a very ample

invertible sheaf O(1).

Such moduli spaces were first constructed for vector bundles on smooth

projective curves by Mumford [Mu] and Seshadri [S1], and this was the

context where the key ideas were first developed, namely the notions of

stability, semistability and S-equivalence. Thus Mumford showed that

there was a quasi-projective variety parametrising isomorphism classes

of stable bundles, while Seshadri showed that this is a dense open set

in a projective variety parametrising S-equivalence classes of semistable

bundles.

For modern account of moduli spaces of sheaves and their construction

in higher dimensions, see [HL]. Recall that every semistable sheaf has

a Jordan-Hölder filtration, or S-filtration, with stable factors and two

semistable sheaves are S-equivalent if their associated graded sheaves

are isomorphic, i.e. their S-filtrations have isomorphic stable factors

(counted with multiplicity). The importance of this notion lies in the

fact that, since any semistable sheaf can degenerate to its associated

graded sheaf, S-equivalent sheaves must correspond to the same point

in a moduli space (see e.g. [HL, Lemma 4.1.2]).
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One of the key properties of Mss
X (P ) is then that its (closed) points

correspond precisely to S-equivalence classes of semistable sheaves. In-

deed, one way to think of the construction of Mss
X (P ) is the specification

of a scheme structure on the underlying set of S-equivalence classes with

an appropriate universal property with respect to families of semistable

sheaves, nowadays called ‘corepresenting the moduli functor’ (see Sec-

tion 4 for more details and [Ne, §1.2] or [HL, §4.1] for a full discussion).

Since Mumford and Seshadri’s original work, and subsequent generali-

sations to higher dimensions and arbitrary characteristic by Gieseker [Gi],

Maruyama [Ma], Simpson [Si] and Langer [La], the basic method for the

construction of Mss
X (P ) has proceeded in two steps. First, ‘rigidify’ by

identifying isomorphism classes of sheaves with orbits in a certain Quot-

scheme for a certain action of a reductive group. Second, ‘linearise’ by

finding a projective embedding of the Quot-scheme to obtain a problem

in Geometric Invariant Theory (GIT), as developed for precisely such a

purposes by Mumford [MF] (see also Newstead’s article in this volume).

It is the second step where the essential difficulties and variations of

approach occur.

Once one has an intrinsic definition of semistability for sheaves, the

basic problem is to find a linearisation where semistable sheaves corre-

spond to GIT semistable orbits in (a suitably chosen subscheme of) the

Quot-scheme, and furthermore S-equivalence of sheaves corresponds to

closure equivalence of orbits.

The widely-accepted intrinsic notion of semistability, that generalises

Mumford’s for curves, was formulated by Gieseker and refined by Simp-

son. However, there have been many projective embeddings used to try

to capture this notion geometrically. One of the most natural, first used

by Simpson in this context, is into the Grassmannian originally used by

Grothendieck [Gr] to construct the Quot-scheme.

The fundamental change of view point introduced in [AK] may be

encapsulated by saying that, in Simpson’s version of the construction,

it is possible to linearise before rigidifying. To be more precise, now

to ‘linearise’ means to embed the category of sheaves (subject to some

regularity condition) in a simpler and more ‘linear’ category; in this

case, in the category of Kronecker modules for the vector space H =

H0(O(n)), for suitably large n. In Sections 1 and 2, we will explain in

detail how this is done.

Such a Kronecker module is a linear map α : V0 ⊗H → V1, for finite

dimensional vector spaces Vi, or equivalently a representation of the
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quiver

•
H
−→ •

One may also say that V = V0 ⊕ V1 is a module for the path algebra A

(see Section 2 for details) and we shall use the language of A-modules

and Kronecker modules interchangeably. When we ‘rigidify’ the problem

of classifying Kronecker modules up to isomorphism, by fixing the vector

spaces Vi, we obtain the linear space R = Hom(V0⊗H,V1) with a linear

action of the reductive group G = GL(V0) × GL(V1).

A notable property of the category of Kronecker modules is that there

is a unique intrinsic notion of semistability, which corresponds to the

unique GIT problem associated to the action of G on R, which thus con-

structs the moduli space Mss
A of semistable A-modules (see Section 4 for

details). This construction should be considered to be straightforward

and transparent, including the correspondence between S-equivalence of

A-modules and closure equivalence of orbits in the GIT problem. Indeed

it is a simple case of a more general, but equally transparent, theory of

moduli of representations of quivers [Ki].

Note that, in the case dim V0 = dimV1 = 1, a (non-zero) Kronecker

module is in effect a point in the projective space P(H∗) in whichX itself

is embedded by the linear system H . Indeed, the categorical embedding

of sheaves in Kronecker modules, when restricted to point sheaves on

X gives precisely this embedding.

From the new view point, the basic problem for this ‘categorical

linearisation’ is to show that semistability of sheaves corresponds to

semistability of A-modules and that S-filtrations and S-equivalence are

preserved. As we will see in Section 3, this helps to clarify the proce-

dure and identify the delicate parts of the problem. We can then, in

Section 4, use the construction and properties of Mss
A to deduce the

corresponding construction and properties of Mss
X .

One corollary is that we obtain an ‘embedding’ of moduli spaces

ϕ : Mss
X → Mss

A .

More precisely, this is a scheme-theoretic embedding in characteristic

zero and at stable points in charactistic p. Well-understood subtleties

with quotients mean that we only know that it is a set-theoretic embed-

ding at strictly semistable points in charactistic p.

Up to this technical detail, we can then import known definitions and

properties of determinantal semi-invariants of quivers, i.e. the natural
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homogeneous coordinates on Mss
A , to define and study the correspond-

ing coordinates, or ‘theta functions’, on Mss
X (see Section 5 for details).

In this way, we are able to strenghten, and generalise to arbirary X ,

results of Faltings [Fa] for smooth curves.

1 Simpson’s construction revisited

To explain precisely how our shift in view point occurs, we recall in

more detail Simpson’s version of the construction of moduli of sheaves.

For the first (rigidification) step, one chooses an integer n0 ≫ 0 such

that any semistable sheaf E with Hilbert polynomial P is n0-regular

in the sense of Castelnuovo-Mumford (see e.g. [HL, §1.7] for details),

which in particular guarantees that the natural evaluation map

ǫE : H0(E(n0)) ⊗O(−n0) → E (1.1)

is surjective and dimH0(E(n0)) = P (n0). Thus, after the choice of an

isomorphismH0(E(n0)) ∼= V0, where V0 is some fixed P (n0)-dimensional

vector space, we may identify E with a point in the Quot-scheme para-

metrising quotients of V0⊗O(−n0) with Hilbert polynomial P . Chang-

ing the choice of isomorphism is given by the natural action of the

reductive group SL(V0) on the Quot-scheme.

For the second (linearisation) step, one chooses n1 ≫ n0 so that

applying the functor H0(−⊗O(n1)) to (1.1) yields a surjective map

αE : H0(E(n0)) ⊗H → H0(E(n1)) (1.2)

where H = H0(O(n1 − n0)) and dimH0(E(n1)) = P (n1). More pre-

cisely, this construction is applied after choosing the isomorphism

H0(E(n0)) ∼= V0

and thus αE determines a point in the Grassmannian of P (n1)-dimensional

quotients of V0 ⊗H . Note that the kernel βE : U →֒ V0 ⊗H of αE de-

termines E, and indeed the corresponding point in the Quot-scheme, as

the cokernel of the corresponding map

U ⊗O(−n1)
βE

−→ V0 ⊗O(−n0) → E → 0. (1.3)

This is how to see that the map from the Quot-scheme to the Grass-

mannian is an embedding.

Now we may observe that, by not choosing the rigidifying isomor-

phism H0(E(n0)) ∼= V0, one may interpret Simpson’s method as a sin-
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gle functorial procedure whereby the sheaf E determines the Kronecker

module αE , from which the sheaf E may in turn be recovered.

From this point of view, the importance of regularity is also clear.

Applying Serre’s construction to a Veronese embedding of X , we know

that a sheaf E is determined by the graded module

V•(E) =
⊕

k≥0

H0 (E(n0 + nk))

for the algebra Sym•(H), for any n0 and n = n1−n0 > 0. The regularity

of E and of OX determine how large n0 and n must be to guarantee

that the generators and relations of V• are all in degree k = 0, so that

V• (and hence E) is determined by the Kronecker module V0⊗H → V1.

2 The functorial point of view

We may describe the above procedure more formally as follows. Let

T = O(n0) ⊕ O(n1) and let A ⊂ EndX(T ) be the algebra spanned

by the two projections e0, e1 and H = HomX(O(n0),O(n1)). Indeed,

in most cases, when H0(O) consists just of scalars, we actually have

A = EndX(T ). An A-module V is equivalent to a Kronecker module

α : V0 ⊗ H → V1, where Vi = eiV and conversely V = V0 ⊕ V1. The

dimension vector of V is v = (dimV0, dimV1).

Now, the assignment of αE to E is achieved by the functor

Φ: Coh(X) → Mod(A): E 7→ H0(T ⊗ E) = HomX(T∨, E). (2.1)

Moreover, the recovery of E from αE is achieved by the adjoint functor

Φ∨ : Mod(A) → Coh(X): V 7→ T∨ ⊗A V.

Explicitly, T∨⊗AV may be described in terms of the Kronecker module

α : V0 ⊗H → V1 as the pushout of the natural diagram

V0 ⊗H ⊗O(−n1)
1⊗µ

//

α⊗1

��

V0 ⊗O(−n0)

V1 ⊗O(−n1)

When α is surjective, this is equivalent to the procedure as in (1.3). The

fact that this procedure works, when it does, may then be formulated

as follows [AK, Thm 3.4].
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Theorem 2.1 Suppose that OX is n-regular and that T = O(n0)⊕O(n1)

for n1 −n0 ≥ n. Then the functor Φ of (2.1) is fully faithful on the full

subcategory of n0-regular sheaves. In other words, if E is n0-regular,

then the natural map εE : Φ∨Φ(E) → E is an isomorphism.

Note that the natural ‘counit’ map εE in the theorem is the evaluation

map

εE : T∨ ⊗A HomX(T∨, E) → E.

We may paraphrase Theorem 2.1 by saying that Φ gives a functorial

embedding of n0-regular sheaves into A-modules. In fact, regularity is

also crucial to extending this embedding to families of sheaves.

Let M
reg
X (n0;P ) be the moduli functor of n0-regular sheaves on X

with Hilbert polynomial P , that is, the (contravariant) functor that

assigns to any scheme S the set of isomorphism classes of flat families

over S of such sheaves. Similarly, let MA(v) be the moduli functor of

A-modules with dimension vector v. Then regularity also implies that

Φ preserves flat families [AK, Prop. 4.1] and so induces an embedding

of moduli functors, i.e. a natural transformation

[Φ] : M
reg
X (n0;P ) → MA(P (n0), P (n1)) (2.2)

such that [Φ]S is injective for all S. Note in particular that this means

that we only need to look among A-modules of dimension vector

(P (n0), P (n1))

for the images of all n0-regular sheaves of Hilbert polynomial P .

The general machinery of adjunction provides an explicit condition

that determines when an A-module V is in the image of this functorial

embedding. The adjunction also has a natural ‘unit’ map

ηV : V → ΦΦ∨(V ) = HomX(T∨, T∨ ⊗A V ) (2.3)

and V ∼= Φ(E), for some sheaf E for which εE is an isomorphism, if

and only if ηV is an isomorphism, in which case E = Φ∨(V ) is the

appropriate sheaf and whether E is n0-regular may be considered a

property of V .

Now, the set of (isomorphism classes of) Kronecker modules with

dimension vector v = (v0, v1) is in natural bijection with the set of

orbits in the representation space

R = RA(v) = Hom(V0 ⊗H,V1) (2.4)
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for the action of the symmetry group G = GL(V0) × GL(V1) by conju-

gation, where Vi is some fixed vector space of dimension vi. Note that

R carries a tautological G-equivariant family V of A-modules, which is

‘equivariantly locally universal’ in the sense that the induced natural

transformation from the quotient functor R/G→ MA is a local isomor-

phism, i.e. an isomorphism after sheafification [AK, Prop. 4.4]. Here Z

denotes the functor of points of a scheme Z, i.e. Hom(−, Z).

Now, using Φ∨ and its associated flattening stratification (see [AK,

Prop. 4.2] for details), we can determine a locally closed G-invariant

subscheme Q ⊂ R over which E = Φ∨(V) is a flat family of n0-regular

sheaves with Hilbert polynomial P . This family is also equivariantly

locally universal in same sense as above [AK, Thm 4.5]. The functorial

embedding (2.2) of moduli functors can naturally be enhanced to an

embedding of moduli stacks, which is thus modelled on the embedding

of quotient stacks [Q/G] → [R/G].

It is the space Q with G-action that plays the role in our story of the

Quot-scheme with SL(V0)-action, or, more strictly speaking, of the open

set of n0-regular sheaves in the Quot-scheme. Then, the embedding

Q ⊂ R plays the role of the embedding of the Quot scheme in the

Grassmannian.

3 Semistability

We now turn to the essential goal of the ‘categorical linearisation’ of

sheaves by Kronecker modules, namely of demonstrating the relation-

ship between the semistability of a sheaf E and the semistability of the

corresponding A-module Φ(E). It is this which will enable us to use the

moduli spaces Mss
A to construct the moduli spaces Mss

X .

Recall the usual (Gieseker-Simpson) definition of semistability for

sheaves. Note that this notion depends just on the Hilbert polyno-

mial PE of a sheaf E and of its subsheaves. The ‘multiplicity’ rE of E

is the leading coefficient of PE and the dimension of the support of E is

the degree of PE . Then E is ‘pure’ if it has no proper subsheaves with

lower dimensional support.

Definition 3.1 A sheaf E is semistable if E is pure and, for all E′ ⊂ E,

PE′(n)

rE′

≤
PE(n)

rE
for n≫ 0.

For our purposes, this definition has a crucial reformulation, which
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gives a cleaner dependence on the Hilbert polynomial and for which pu-

rity is an automatic consequence (see also [Ru] for another formulation).

Lemma 3.2 A sheaf E is semistable if and only if, for all E′ ⊂ E,

PE′(n0)

PE′(n1)
≤
PE(n0)

PE(n1)
for n1 ≫ n0 ≫ 0.

This formulation is manifestly related to the (essentially unique) no-

tion of semistablity for Kronecker modules.

Definition 3.3 An A-module V is semistable if, for all V ′ ⊂ V ,

dimV ′
0

dimV ′
1

≤
dimV0

dimV1
.

Thus E is semistable if and only if for all E′ ⊂ E, Φ(E′) does not

destabilise Φ(E) for n1 ≫ n0 ≫ 0. Note that this is still some way

from saying the E is semistable if and only if Φ(E) is semistable, but

this would seem to be the result that one could hope for. In fact, we

do not prove this ideal result, and it is quite possible that it is not true,

demonstrating the more subtle role of purity in this problem. What we

do show is the following [AK, Thm 5.10a],

Theorem 3.4 Given P , for n1 ≫ n0 ≫ 0, suppose that E is n0-regular

and pure with Hilbert polynomial P . Then E is semistable if and only

if Φ(E) is semistable.

Note that n0 is, in particular, chosen large enough that all semistable

sheaves with Hilbert polynomial P are n0-regular, and, of course, all

semistable sheaves are pure.

For the proof, we need to show that n0, n1 can be chosen so that

Φ and Φ∨ provide a one-one correspondence between the critical (i.e.

most destabilising) subsheaves of E and the critical submodules of Φ(E)

and furthermore that the numbers n0, n1 in Lemma 3.2 can be chosen

uniformly in P , i.e. independently of E and E′. It is this that makes

the proof very delicate and in particular seems to require purity as an

explicit condition.

This result shows that the Kronecker module Φ(E) is semistable

whenever the sheaf E is semistable and thus the embedding of mod-

uli functors (2.2) restricts to an embedding

[Φ] : M
ss
X (P ) → M

ss
A (P (n0), P (n1)), (3.1)
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where M ss
X (P ) and M ss

A (v) are respectively the moduli functors of

semistable sheaves with Hilbert polynomial P and semistable modules

with dimension vector v.

The other key result [AK, Thm 5.10b-d, Cor. 5.11] is that Φ and Φ∨

provide mutually inverse identifications between the S-filtrations of a

semistable sheaf E (and the associated graded sheaf of stable factors)

and the S-filtrations of Φ(E) (and the associated graded module).

Thus one may see that there is a well-defined and injective map from

S-equivalence classes of semistable sheaves with Hilbert polynomial P

to S-equivalence classes of semistable A-modules with dimension vector

v = (P (n0), P (n1)). In other words, we have at least a set-theoretic

embedding of moduli spaces Mss
X (P ) → Mss

A (v).

4 Moduli spaces

We now consider more carefully how it is that Mss
X and Mss

A are defined

as moduli spaces, that is, as schemes that ‘corepresent’ the correspond-

ing moduli functors. This means that there is a natural transformation

M ss → Mss through which any other natural transformation M ss → Z

uniquely factorises. Note that such a universal property uniquely char-

acterises Mss as a scheme. In particular, we will show how this property

for Mss
X follows from the same property for Mss

A , thereby justifying the

claim that Mss
X is ‘constructed’ using the functor Φ.

Recall that the set of isomorphism classes of A-modules of dimension

vector v is in natural one-one correspondence with the set of G-orbits

in the representation space R = RA(v), as defined in (2.4). Consider

the character χ on G given by

χ(g0, g1) = (det g0)
−k0(det g1)

k1 , (4.1)

where k1/k0 = v0/v1 with k0, k1 coprime. This determines the graded

ring

SI•χ =
⊕

d≥0

SIdχ

of associated semi-invariants, i.e. a polynomial f on R is in SIdχ if and

only if f(gx) = χ(g)df(x) for all g ∈ G and x ∈ R. Then the following

hold [Ki]:

(i) a point x ∈ R is χ-semistable in the sense of GIT, i.e. f(x) 6= 0 for

some f ∈ SIdχ with d > 0, if and only if the corresponding A-module

is semistable, in the sense of Definition 3.3,
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(ii) two points x, y in the open subset Rss of semistable points are

closure equivalent, i.e. Gx and Gy intersect in Rss, if and only if

the corresponding A-modules are S-equivalent.

The general machinery of GIT implies that the projective variety

MA = Proj SI•χ

is a ‘good’ quotient of Rss by G, meaning in particular that Rss →MA

is a categorical quotient, whose fibres are closure equivalence classes.

ThusMA is a scheme whose points correspond to S-equivalence classes

of semistable A-modules and MA corepresents the quotient functor

Rss/G

(this is the definition of categorical quotient). But it follows from the

observations in Section 2 that this quotient functor is locally isomorphic

to the moduli functor M ss
A (v) of semistable A-modules. In other words,

MA is the moduli space Mss
A (v).

Now, also recall that there is a locally closed G-invariant subscheme

Q ⊂ R, which parametrises n0-regular sheaves E with Hilbert polyno-

mial P . Supposing that n0 is large enough that all semistable E with

Hilbert polynomial P are n0-regular, it follows from Theorem 3.4 that

the open subset Q[ss] ⊂ Q, parametrising semistable sheaves, is a locally

closed subscheme of Rss.

Since the moduli functor of semistable sheaves is locally isomorphic

to the quotient functor Q[ss]/G, the problem of ‘construction’ of the

moduli space Mss
X (P ) amounts to firstly showing that Q[ss] has a good

quotient by G and secondly showing that the closure equivalence classes

in Q[ss] are in one-one correspondence with the S-equivalence classes of

sheaves.

For the first, the fact that Q[ss] has a good quotient follows from

the fact that Rss does, provided we also know that, for any G-orbit

O in Q[ss], if O′ is the closed orbit in the closure of O in Rss, then

O′ ⊂ Q[ss] (see [AK, Lemma 6.2]). This follows because we know that,

if O corresponds to Φ(E) for a semistable sheaf E, with associated

graded sheaf E′, then O′ corresponds to the associated graded module

of Φ(E), which is equal to Φ(E′), and thus it is indeed in Q[ss].

The second follows for almost the same reason. Two semistable

sheaves E′ and E′′ are S-equivalent if and only if Φ(E′) and Φ(E′′) are

S-equivalent, i.e. the corresponding orbits have the same closed orbit in
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their closure within Rss or equally within Q[ss] and thus correspond to

the same point in the good quotient of Q[ss].

Thus we have constructed the moduli space Mss
X (P ) and it remains

to show that it is a projective variety. Let Z ⊂ R be the closure of Q[ss].

Then the projectivity would follow immediately if we could show a priori

that the inclusion Q[ss] ⊂ Zss is an equality, where Zss = Z ∩ Rss.

However, knowing only this inclusion we can only deduce that Mss
X (P )

is quasi-projective, being a dense open subset of the GIT quotient of Z.

On the other hand, we can show that Mss
X (P ) is proper using Lang-

ton’s method [AK, Prop. 6.5] (cf. [Ma, §5]), a well-known application

of the valuative criterion for properness. Hence we can deduce that

Mss
X (P ) is projective and thus a posteriori that Q[ss] = Zss and there-

fore that Q[ss] is closed in Rss.

In conclusion, we have therefore reproved the existence of a projective

moduli space of semistable sheaves [AK, Thm 6.4, Prop. 6.6].

Theorem 4.1 There is a projective scheme Mss
X (P ) which is the moduli

space of semistable sheaves on X with Hilbert polynomial P , i.e. it

corepresents the moduli functor M ss
X (P ). The closed points of Mss

X are

in one-one correspondence with the S-equivalence classes of semistable

sheaves.

We have also obtained an explicit map ϕ : Mss
X → Mss

A induced by

the inclusion Q[ss] ⊂ Rss (see [AK, Prop. 6.3] for details), which fits

into the commuting diagram of natural transformations,

M ss
X

[Φ]
//

ψX

��

M ss
A

ψA

��

Mss
X

ϕ
// Mss

A

(4.2)

where ψX and ψA are the corepresenting transformations. Note that

the corepresenting property of ψX means that such a map ϕ must exist

and be uniquely determined by [Φ].

Because we know that a semistable sheaf E is stable if and only if the

semistable Kronecker module Φ(E) is stable [AK, Theorem 5.10b], we

see that there is an open subscheme Ms
X(P ) ⊂ Mss

X (P ) corepresenting

the moduli functor M s
X(P ) ⊂ M ss

X (P ) of stable sheaves. Indeed, we

have Ms
X = ϕ−1Ms

A, where Ms
A ⊂ Mss

A is the corresponding (open)

moduli space of stable A-modules.
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Remark 4.2 As already observed at the end of the previous section,

the map ϕ is set-theoretically injective, but, since we now know that

it is induced by the closed embedding Q[ss] ⊂ Rss we also know that

the image of ϕ is a closed subset of Mss
A . Indeed, in characteristic zero,

this further shows that ϕ is a scheme-theoretic embedding. However,

the characteristic zero assumption is crucial to this deduction, and we

cannot obtain the same conclusion in characteristic p > 0, although we

can still prove (see [AK, Prop. 6.7] for details) that the restriction to

Ms
X is a scheme-theoretic embedding.

One point we would like to emphasize is that the spaces Mss
A (v) are

a family of well-behaved (essentially linear) projective varieties, which

naturally generalise projective spaces as potential targets for embedding

moduli spaces. Because they are constucted as GIT quotients of linear

spaces by classical reductive group actions, the spaces Mss
A (v) have

well-controlled singularities (only at strictly semistable points) and well-

understood homogeneous coordinates.

They are also a good test case for developing a theory of ‘non-commu-

tative moduli spaces’ which should in particular carry appropriately

universal families of A-modules. Our functorial construction should

then adapt naturally to construct non-commutative moduli of sheaves.

5 Theta functions

We finish by explaining how the natural homogeneous coordinates on

Mss
A are obtained from Schofield’s general theory of determinantal semi-

invariants of quivers and how the adjunction between Φ and Φ∨ enables

us to restrict them to Mss
X to obtain natural coordinates that we will

call ‘theta functions’.

Let Pi = Aei, for i = 0, 1, be the two indecomposable projective A-

modules and note that, for any A-module V of dimension vector v, we

have HomA(Pi, V ) = eiV = Vi. Suppose we are given any map

γ : P k1d1 → P k0d0

where k1/k0 = v0/v1, with k0, k1 coprime. Then the linear map

HomA(γ, V ) : V k0d0 → V k1d1

is between vector spaces of the same dimension and hence there is nat-

urally defined an element

θγ(V ) = detHomA(γ, V )



224 L. Álvarez-Cónsul and A. King

in the line λ(V )d, where

λ(V ) = (detV0)
−k0 ⊗ (det V1)

k1 .

If V is a family of A-modules over a scheme S, then naturality means

that λ(V ) is a line bundle over S and θγ(V ) is a global section of λ(V )d.

In particular, if we consider V0 and V1 to be fixed, giving rise to the G-

equivariant family V on the representation space R, and if we trivialise

λ(V), then naturality also means that θγ(V) is a ‘determinantal’ semi-

invariant in SIdχ (cf. (4.1) and after).

Furthermore, one may show (see [AK, Prop. 7.5] for details) that λ(V)

satisfies Kempf’s descent criterion over Rss and so descends to a line

bundle λ(v) on Mss
A (v). Since θγ(V) is an invariant section, it descends

to a global section θγ(v) of λ(v)d. Because Mss
A (v) is constructed by

GIT as Proj SI•χ, we see that λ(v) is ample and the global sections of

λ(v)d may be naturally identified with SIdχ.

The main result about semi-invariants of quivers [DW, SV] is that

the functions θγ span SIdχ. Thus choosing d large enough that λ(v)d is

very ample, we see that it is possible to find finitely many

γ0, . . . , γN : P k1d1 → P k0d0

such that the map

Θγ : Mss
A (v) → P

N : [V ] 7→ (θγ0(V ) : · · · : θγN
(V )) (5.1)

is a scheme-theoretic closed embedding.

We will now see how the ‘embedding’ ϕ : Mss
X (P ) → Mss

A (v) enables

us to deduce similar results for Mss
X (P ). More precisely, suppose that

V = Φ(E) for some sheaf (or family of sheaves) E which is n0-regular

with Hilbert polynomial P . Then the adjunction

HomA(γ,Φ(E)) = HomX(Φ∨(γ), E),

enables us to write θγ(V ) entirely in terms of E. Indeed, if

δ = Φ∨(γ) : O(−n1)
k1d → O(−n0)

k0d,

with k0 and k1 coprime and such that k1/k0 = P (n0)/P (n1), then

HomX(δ, E) : H0(E(n0))
k0d → H0(E(n1))

k1d

is a linear map between vector spaces of the same dimension and we can

define

θδ(E) = detHomX(δ, E),
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as a natural element of the line λ(E)d, where

λ(E) = (detH0(E(n0)))
−k0 ⊗ (detH0(E(n1)))

k1 .

If E = Φ∨(V) is the tautological family of semistable sheaves over Q[ss],

then λ(E) is the restriction of λ(V) and thus it descends to an ample

line bundle λ(P ) = ϕ∗λ(v) on Mss
X (P ). Furthermore, the invariant

sections θδ(E) descend to global sections θδ(P ) = ϕ∗θγ(v) of λ(P )d,

which may be called ‘determinantal’ theta functions. Note that, even

when X is a smooth curve, this determinant line bundle λ(P ) is already

an uncontrollably large power (depending on n0, n1) of the fundamental

determinant line bundle on Mss
X (P ).

A first consequence of the spanning property of determinantal semi-

invariants of Kronecker modules, is that a module V is semistable if

and only if there is a γ such that θγ(V ) 6= 0, that is, Hom(γ, V ) is

an isomorphism. Thus, using Theorem 3.4, we deduce the following

determinantal characterisation of semistable sheaves [AK, Thm 7.2].

Theorem 5.1 Given P , for n1 ≫ n0 ≫ 0, let E be n0-regular and

pure with Hilbert polynomial P . Then E is semistable if and only there

is a map δ : O(−n1)
m1 → O(−n0)

m0 with HomX(δ, E) invertible, i.e.

θδ(E) 6= 0.

Note that the invertibility of HomX(δ, E) and the regularity of E

automatically imply that m1/m0 = P (n0)/P (n1) and so we do not

need to impose that condition explicitly here.

If we now combine Theorem 3.4 with the full force of the spanning

property, i.e. the projective embedding (5.1), we obtain the following

embedding theorem [AK, Thm 7.10], modulo the technical detail of

Remark 4.2.

Theorem 5.2 There exist m0 and m1, satisfying m1/m0 = P (n0)/P (n1),

and finitely many

δ0, . . . , δN : O(−n1)
m1 → O(−n0)

m0 ,

such that the map

Θδ : M
ss
X (P ) → P

N : [E] 7→ (θδ0(E) : · · · : θδN
(E))

is a set-theoretic closed embedding. This embedding is scheme-theoretic

in characteristic zero, while in characteristic p > 0 it is scheme-theoretic

on the stable locus.
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These two theorems may be compared to two results of a similar

flavour proved by Faltings [Fa] (see also [S2]) for vector bundles on a

smooth projective curveC. Firstly, Faltings showed that a vector bundle

E is semistable if and only if there exists a non-zero bundle F such that

HomC(F,E) = 0 = Ext1C(F,E). (5.2)

This condition easily implies that E is semistable [S2, Lemma 8.3], so

the main point is to show that, for any semistable E, such an F exists.

Note that the condition (5.2) is equivalent to the condition that

θF (E) 6= 0, for a suitably defined theta function θF (see [Fa, §1], [S2,

§2] or [AK, §7.4] for details). Such theta functions have a broader ‘do-

main of definition’ than our theta functions θδ, in the sense that θF (E)

is a well-defined section of a line bundle on the base of any family of

sheaves E with χ(F,E) = 0, whereas the definition of θδ(E) requires

that the family also be n0-regular. On the other hand, note that the

construction of θF requires crucially that X , or at least the support of

F , is a smooth curve, whereas θδ requires no such restriction.

Secondly, Faltings showed that it is possible to find finitely many

bundles F0, . . . , FN which can be used to give a morphism

ΘF : Mss
C (P ) → P

N : [E] 7→ (θF0
(E) : · · · : θFN

(E))

which is the normalisation of its image. Esteves [Es] improved this

to show that one could arrange that ΘF is injective on points and, in

characteristic zero, a scheme-theoretic embedding on the stable locus.

To see more closely the relation to Theorems 5.1 and 5.2, note that,

for any X , because O(n1 −n0) is very ample and m1 > m0, the generic

map δ : O(−n1)
m1 → O(−n0)

m0 is injective as a map of sheaves and

thus provides an acyclic resolution of its cokernel F , with respect to the

functor HomX(−, E) for any n0-regular sheaf E.

Note further that the condition that HomX(δ, E) is invertible is an

open condition on δ, for a fixed n0-regular E. Hence, if this condition

holds for some δ, then it also holds for some injective δ, in which case

it is equivalent to the condition, for F = coker δ, that ExtiX(F,E) = 0

for i = 0, 1 and hence indeed for all i ≥ 0, because the others vanish

automatically by the nature of F and the regularity of E.

Thus, over a smooth curve, Theorem 5.1 reproves the first result of

Faltings. Furthermore, we may also suppose that all δi in Theorem 5.2

are injective and then, over any family of semistable (and hence n0-

regular) sheaves on a smooth curve, θδi
= θFi

, for Fi = coker δi. Thus,

Theorem 5.2 further strengthens Faltings second result.
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In fact, we can also use our methods to show that theta functions θδ
span sufficiently high powers of the line bundle λ(P ) on Mss

X . Hence,

in the curve case, theta functions θF span sufficiently high powers of

the fundamental line bundle, although this result is now superceded by

the proof of the strange duality conjecture by Marian and Oprea [MO],

which shows that theta functions θF span all powers of the fundamental

line bundle.

Thus, by restricting our attention to regular sheaves, we have been

able to define theta functions θδ, which satisfy the natural generalisa-

tions of Faltings results in higher dimensions, where there are theoretical

obstructions to defining θF (E) for general sheaves E and F . Note that

the line bundles O(−ni) for ni ≥ n are effectively projective objects with

respect to n-regular sheaves and thus it is in keeping with Schofield’s

philosophy that maps between them should provide the natural source

of ‘homogeneous functions of moduli of sheaves’.
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