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ABSTRACT. Let G be a finite group of automorphisms of a nonsingular
three dimensional complex variety M, whose canonical bundle w; is locally
trivial as a G-sheaf. We prove that the Hilbert scheme Y = G-Hilb M
parametrising G-clusters in M is a crepant resolution of X = M /G and that
there is a derived equivalence (Fourier Mukai transform) between coherent
sheaves on Y and coherent G-sheaves on M. This identifies the K theory
of Y with the equivariant K theory of M, and thus generalises the classical
McKay correspondence. Some higher dimensional extensions are possible.

1. INTRODUCTION

The classical McKay correspondence relates representations of a finite sub-
group G C SL(2,C) to the cohomology of the well-known minimal resolution
of the Kleinian singularity C?/G. Gonzalez-Sprinberg and Verdier [10] inter-
preted the McKay correspondence as an isomorphism on K theory, observing
that the representation ring of G is equal to the G-equivariant K theory of C2.
More precisely, they identify a basis of the K theory of the resolution consist-
ing of the classes of certain tautological sheaves associated to the irreducible
representations of G.

It is natural to ask what happens when C? is replaced by an arbitrary non-
singular quasiprojective complex variety M of dimension n and G by a finite
group of automorphisms of M, with the property that the stabiliser subgroup
of any point # € M acts on the tangent space T,, M as a subgroup of SL(T,M).
Thus the canonical bundle w), is locally trivial as a G-sheaf, in the sense that
every point of M has a G-invariant open neighbourhood on which there is
a nonvanishing G-invariant n-form. This implies that the quotient variety
X = M/G has only Gorenstein singularities.

A natural generalisation of the McKay correspondence would then be an iso-
morphism between the G-equivariant K theory of M and the ordinary K theory
of a crepant resolution Y of X, that is, a resolution of singularities 7: ¥ — X
such that 7*(wx) = wy. In the classical McKay case, the minimal resolution
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is crepant, but in higher dimensions crepant resolutions do not necessarily
exist and, even when they do, they are not usually unique. However, it is now
known that crepant resolutions of Gorenstein quotient singularities do exist
in dimension n = 3, through a case by case analysis of the local linear actions
by Tto, Markushevich and Roan (see Roan [21] and references given there). In
dimension > 4, even such quotient singularities only have crepant resolutions
in rather special cases.

In this paper, we take the point of view that the appropriate way to for-
mulate and prove the McKay correspondence on K theory is to lift it to an
equivalence of derived categories. In itself, this is not a new observation and it
turns out that it was actually known to Gonzalez-Sprinberg and Verdier (see
also Reid [20, Conjecture 4.1]). Furthermore, if the resolution is constructed
as a moduli space of G-equivariant objects on M, then the correspondence
should be given by a Fourier-Mukai transform determined by the universal
object. This is the natural analogue of the classical statement that the tau-
tological sheaves are a basis of the K theory. Both points of view are taken
by Kapranov and Vasserot [15] in proving the derived category version of the
classical two dimensional McKay correspondence.

The new and remarkable feature is that, by using the derived category
and Fourier-Mukai transforms and, in particular, techniques developed in [6]
and [7], the process of proving the equivalence of derived categories when
it works also yields a proof that the moduli space is a crepant resolution.
More specifically, we will give a sufficient condition for a certain natural mod-
uli space, namely Nakamura’s G-Hilbert scheme, to be a crepant resolution
for which the McKay correspondence holds as an equivalence of derived cate-
gories. This condition is automatically satisfied in dimensions 2 and 3. Thus
we simultaneously prove the existence of one crepant resolution of X = M/G
in three dimensions, without a case by case analysis, and verify the McKay
correspondence for this resolution. We do not prove the McKay correspon-
dence for an arbitrary crepant resolution although our methods should easily
adapt to more general moduli spaces of G-sheaves on M, which may provide
different crepant resolutions to the one considered here.

The G-Hilbert scheme G-Hilb M was introduced by Nakamura as a good
candidate for a crepant resolution of M/G. Tt parametrises G-clusters or
‘scheme theoretic G-orbits’ on M: recall that a cluster Z C M is a zero dimen-
sional subscheme, and a G-cluster is a G-invariant cluster whose global sec-
tions ['(Oy) are isomorphic to the regular representation C[G] of G. Clearly, a
G-cluster has length |G| and a free G-orbit is a G-cluster. There is a Hilbert—
Chow morphism

7: G-HilbM — X,

which, on closed points, sends a G-cluster to the orbit supporting it. Note
that 7 is a projective morphism, is onto and is birational on one component.
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When M = C* and G C SL(3,C) is Abelian, Nakamura [18] proved that
G-Hilb M is irreducible and is a crepant resolution of X (compare also Reid
[20] and Craw and Reid [8]). He conjectured that the same result holds for
an arbitrary finite subgroup G C SL(3,C). Tto and Nakajima [12] observed
that the construction of Gonzalez-Sprinberg and Verdier [10] is the M = C?
case of a natural correspondence between the equivariant K theory of M and
the ordinary K theory of G-Hilb M. They proved that this correspondence is
an isomorphism when M = C* and G C SL(3,C) is Abelian by constructing
an explicit resolution of the diagonal in Beilinson style. Our approach via
Fourier-Mukai transforms leaves this resolution of the diagonal implicit (it
appears as the object @ of D(Y x Y') in Section 6), and seems to give a more
direct argument. Two of the main consequences of the results of this paper
are that Nakamura's conjecture is true and that the natural correspondence
on K theory is an isomorphism for all finite subgroups of SL(3, C).

Since it is not known whether G-Hilb M is irreducible or even connected
in general, we actually take as our initial candidate for a resolution Y the
irreducible component of G-Hilb M containing the free G-orbits, that is, the
component mapping birationally to X. The aim is to show that Y is a crepant
resolution, and to construct an equivalence between the derived categories
D(Y) of coherent sheaves on Y and D%(M) of coherent G-sheaves on M. A
more detailed analysis of the equivalence shows that Y = G-Hilb M when M
has dimension 3.

We now describe the correspondence and our results in more detail. Let
M be a nonsingular quasiprojective complex variety of dimension n and let
G C Aut(M) be a finite group of automorphisms of M such that wy, is locally
trivial as a G-sheaf. Put X = M/G and let Y C G-Hilb M be the irreducible
component containing the free orbits, as described above. Write Z for the
universal closed subscheme Z C Y x M and p and ¢ for its projections to Y
and M. There is a commutative diagram of schemes

Yp'/ \\?M
N

in which ¢ and 7 are birational, p and 7 are finite, and p is flat. Let G act
trivially on Y and X, so that all morphisms in the diagram are equivariant.
Define the functor

® =Rg,op*: DY) — D% (M),

where a sheaf E on Y is viewed as a G-sheaf by giving it the trivial action.
Note that p* is already exact, so we do not need to write Lp*. Our main result
is the following.
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Theorem 1.1. Suppose that the fibre product
Y xx Y = {(yl,yg) eY XY | 1() :T(y2>} CYxY

has dimension < n+ 1. Then Y 1is a crepant resolution of X and ® is an
equivalence of categories.

When n < 3 the condition of the theorem always holds because the excep-
tional locus of Y — X has dimension < 2. In this case we can also show that
G-Hilb M is irreducible, so we obtain

Theorem 1.2. Suppose n < 3. Then G-Hilb M is irreducible and is a crepant
resolution of X, and ® is an equivalence of categories.

The condition of Theorem 1.1 also holds whenever G preserves a complex
symplectic form on M and Y is a crepant resolution of X, because such a
resolution is symplectic and hence semismall (see Verbitsky [24], Theorem 2.8
and compare Kaledin [14]).

Corollary 1.3. Suppose M is a complex symplectic variety and G acts by
symplectic automorphisms. Assume that'Y is a crepant resolution of X. Then
® is an equivalence of categories.

Note that the condition of Theorem 1.1 certainly fails in dimension > 4
whenever Y — X has an exceptional divisor over a point. This is to be
expected since there are many examples of finite subgroups G C SL(4,C)
for which the quotient singularity C*/G has no crepant resolution and also
examples where, although crepant resolutions do exist, G-Hilb (C4) is not
one.

Conventions. We work throughout in the category of schemes over C. A
point of a scheme always means a closed point.

Acknowledgements. The first author would like to thank the ICTP, Trieste
and EPSRC for financial support whilst this paper was written.

2. CATEGORY THEORY

This section contains some basic category theory, most of which is well
known. The only nontrivial part is Section 2.6 where we state a condition for
an exact functor between triangulated categories to be an equivalence.

2.1. Triangulated categories. A triangulated category is an additive cat-
egory A equipped with a shift automorphism T4: A — A: a — a[l] and a
collection of distinguished triangles

aq L)(Lgi)agi)a][”

of morphisms of A satisfying certain axioms (see Verdier [25]). We write ali]
for T%(a) and _
Hom' (a1, as) = Hom 4(ay, as[i]).
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A triangulated category A is trivial if every object is a zero object.

The principal example of a triangulated category is the derived category
D(A) of an Abelian category A. An object of D(A) is a bounded complex
of objects of A up to quasi-isomorphism, the shift functor moves a complex
to the left by one place and a distinguished triangle is the mapping cone
of a morphism of complexes. In this case, for objects a;,ay € A, one has
Hompy 4 (a1, az) = Ext)y (a1, az).

A functor F: A — B between triangulated categories is ezact if it com-
mutes with the shift automorphisms and takes distinguished triangles of A to
distinguished triangles of B. For example, derived functors between derived
categories are exact.

2.2. Adjoint functors. Let F': A — B and G: B — A be functors. An
adjunction for (G, F') is a bifunctorial isomorphism

Hom4(G—, —) = Homg(—, F—).

In this case, we say that G is left adjoint to F' or that F' is right adjoint to
G. When it exists, a left or right adjoint to a given functor is unique up to
isomorphism of functors. The adjoint of a composite functor is the composite
of the adjoints. An adjunction determines and is determined by two natural
transformations e: Go F' — id4 and n: idg — F oG that come from applying
the adjunction to 1z, and 1g, respectively (see Mac Lane [16, IV.1] for more
details).

The basic adjunctions we use in this paper are described in Section 3.1
below.

2.3. Fully faithful functors and equivalences. A functor F: A — B is
fully faithful if for any pair of objects ay, as of A, the map

F: Hom(ay,as) — Hompg(Fay, Fas)

is an isomorphism. One should think of F' as an ‘injective’ functor. This is
more clear when F has a left adjoint G: B — A (or aright adjoint H: B — A),
in which case F' is fully faithful if and only if the natural transformation
GoF —idy (oridgy — H o F) is an isomorphism.

A functor F'is an equivalence if there is an ‘inverse’ functor G: B — A such
that Go F' =2 id4 and F o G = idg. In this case G is both a left and right
adjoint to F' (see Mac Lane [16, IV.4]). In practice, we show that F' is an
equivalence by writing down an adjoint (a priori, one-sided) and proving that
it is an inverse. One simple example of this is the following.

Lemma 2.1. Let A and B be triangulated categories and F: A — B a fully
faithful exact functor with a right adjoint H: B — A. Then F is an equiva-
lence if and only if Hc = 0 implies ¢ =2 0 for all objects ¢ € B.
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Proof. By assumption 7: id4 — H o F' is an isomorphism, so F' is an equiva-
lence if and only if e: F o H — idg is an isomorphism. Thus the ‘only if’ part
of the lemma is immediate, since ¢ = F Hc.

For the ‘if” part, take any object b € B and embed the natural adjunction
map €, in a triangle

(1) ¢c— FHb 5 b— c[1].

If we apply H to this triangle, then H(g,) is an isomorphism, because gy, is
an isomorphism and H (g,) ongy, = 1y ([16, IV.1, Theorem 1]). Hence He = 0
and so ¢ = 0 by hypothesis. Thus g, is an isomorphism, as required. O

One may understand this lemma in a broader context as follows. The
triangle (1) shows that, when F'is fully faithful with right adjoint H, there is
a ‘semi-orthogonal” decomposition B = (Im F, Ker H), where

ImF ={be€ B:b= Fa for some a € A},
KerH={ce B: Hc=0}.

Since Fis fully faithful, the fact that b = Fa for some object a € A necessarily
means that b =2 F'Hb, so only zero objects are in both subcategories. The semi-
orthogonality condition also requires that Homp(b, ¢) = 0 for all b € Im F' and
c € Ker H, which is immediate from the adjunction. The lemma then has the
very reasonable interpretation that if Ker H is trivial, then Im F' = B and F
is an equivalence. Note that if GG is a left adjoint for F', then there is a similar
semi-orthogonal decomposition on the other side B = (Ker G,Im F') and a
corresponding version of the lemma. For more details on semi-orthogonal
decompositions see Bondal [4].

2.4. Spanning classes and orthogonal decomposition. A spanning class
for a triangulated category A is a subclass €2 of the objects of A such that for
any object a € A

Hom'y(a,w) =0 forallw € Q,i € Z implies a =0
and .
Hom'’y(w,a) =0 forallw e Q,i€Z implies a = 0.
The following easy lemma is [6, Example 2.2].

Lemma 2.2. The set of skyscraper sheaves {O,: x € X} on a nonsingular
projective variety X is a spanning class for D(X).

A triangulated category A is decomposable as an orthogonal direct sum of
two full subcategories A; and Aj if every object of A is isomorphic to a direct
sum a; @ ay with a; € A;, and if

Hom'y (a1, as) = Hom'y(az,a;) =0

for any pair of objects a; € A; and all integers i. The category A is inde-
composable if for any such decomposition one of the two subcategories A; is
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trivial. For example, if X is a scheme, D(X) is indecomposable precisely when
X is connected. For more details see Bridgeland [6].

2.5. Serre functors. The properties of Serre duality on a nonsingular pro-
jective variety were abstracted by Bondal and Kapranov [5] into the notion of
a Serre functor on a triangulated category. Let A be a triangulated category
in which all the Hom sets are finite dimensional vector spaces. A Serre functor
for A is an exact equivalence S: A — A inducing bifunctorial isomorphisms

Hom4(a, b) — Hom(b, S(a))” for all a,b € A

that satisfy a simple compatibility condition (see [5]). When a Serre functor
exists, it is unique up to isomorphism of functors. We say that A has trivial
Serre functor if for some integer ¢ the shift functor [i] is a Serre functor for A.
The main example is the bounded derived category of coherent sheaves
D(X) on a nonsingular projective variety X, having the Serre functor
Sx(—) = (— ®wy)[dim X].

Thus D(X) has trivial Serre functor if and only if the canonical bundle of X
is trivial.

2.6. A criterion for equivalence. Let F': A — B be an exact functor be-
tween triangulated categories with Serre functors S4 and Sg. Assume that F
has a left adjoint G: B — A. Then F also has a right adjoint H = S 0GoS,".

Theorem 2.3. With assumptions as above, suppose also that there is a span-
ning class Q for A such that

F: Hom'y(w,ws) — Hompy(Fuw;, Fw,)
18 an 1somorphism for all v € 7 and all wi,ws € Q. Then F is fully faithful.

Proof. See [6, Theorem 2.3]. O

Theorem 2.4. Suppose further that A is nontrivial, that B is indecomposable
and that FSa(w) = SgF(w) for all w € Q. Then F is an equivalence of
categories.

Proof. Consider an object b € B. For any w € 2 and 7 € Z we have isomor-
phisms

Hom'y(w, Gb) = Hom', (Gb, Sqw)¥ = Homj (b, F'S4w)¥

= Hom (b, SsFw)" = Homy(Fw,b) = Hom'y(w, Hb),
using Serre duality and the adjunctions for (G, F) and (F, H). Since Q is a

spanning class we can conclude that Gb = 0 precisely when Hb =2 0. Then
the result follows from [6, Theorem 3.3]. O

The proof of Theorem 3.3 in [6] may be understood as follows. If Ker H C
Ker G, then the semiorthogonal decomposition described at the end of Sec-
tion 2.3 becomes an orthogonal decomposition. Hence Ker H must be trivial,
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because B is indecomposable and A, and hence Im F', is nontrivial. Thus
Im F' = B and F is an equivalence.

3. DERIVED CATEGORIES OF SHEAVES

This section is concerned with various general properties of complexes of
Ox-modules on a scheme X. Note that all our schemes are of finite type
over C. Given a scheme X, define D(X) to be the (unbounded) derived
category of the Abelian category Qcoh(X) of quasicoherent sheaves on X.
Also define D(X) to be the full subcategory of D (X') consisting of complexes
with bounded and coherent cohomology.

3.1. Geometric adjunctions. Here we describe three standard adjunctions
that arise in algebraic geometry and are used frequently in what follows. For
the first example, let X be a scheme and E € D(X) an object of finite homo-
logical dimension. Then the derived dual

EY =RHomo, (E,Ox)

L
also has finite homological dimension, and the functor — ® FE' is both left and

right adjoint to the functor — (§I§> EY.
For the second example take a morphism of schemes f: X — Y. The
functor
Rf,: D*(X) — D*(Y)
has the left adjoint
Lf*: D¥(Y) — D*(X).
If f is proper then Rf, takes D(X) into D(Y'). If f has finite Tor dimension
(for example if f is flat, or Y is nonsingular) then Lf* takes D(Y') into D(X).
The third example is Grothendieck duality. Again take a morphism of
schemes f: X — Y. The functor Rf, has a right adjoint

f'r DY) — DI(X)

and moreover, if f is proper and of finite Tor dimension, there is an isomor-
phism of functors

2) F(=) = L (=) & F1(Oy).

Neeman [19] has recently given a completely formal proof of these statements
in terms of the Brown representability theorem.

Let X be a nonsingular projective variety of dimension n and write f: X —
Y = Spec(C) for the projection to a point. In this case f'(Oy) = wx[n]. The
above statement of Grothendieck duality implies that the functor

(3) Sx(=) = (- ®@wx)[n]

is a Serre functor on D(X).
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3.2. Duality for quasiprojective schemes. In order to apply Grothendieck
duality on quasiprojective schemes, we need to restrict attention to sheaves
with compact support. The support of an object E € D(X) is the locus of X
where E is not exact, that is, the union of the supports of the cohomology
sheaves of E. It is always a closed subset of X.

Given a scheme X, define the category D.(X) to be the full subcategory
of D(X) consisting of complexes whose support is proper. Note that when X
itself is proper, D.(X) is just the usual derived category D(X).

If X is a quasi-projective variety and i: X < X is some projective closure,

then the functor i, embeds D.(X) as a full triangulated subcategory of D(X).

By resolution of singularities, if X is non-singular we can assume that X is
too. Then the Serre functor on D(X) restricts to give a Serre functor on
D(X). Thus if X is a nonsingular quasiprojective variety of dimension n, the
category D.(X) has a Serre functor given by (3).

The argument used to prove Lemma 2.2 is easily generalised to give the
statement that the set of skyscraper sheaves {O,: z € X} on a non-singular

quasi-projective variety X is a spanning class for D.(X).

3.3. Crepant resolutions. Let X be a variety and f: Y — X a resolution
of singularities. Given a point z € X define D,(Y") to be the full subcategory
of D.(Y) consisting of objects whose support is contained in the fibre f~!(z).
We have the following categorical criterion for f to be crepant.

Lemma 3.1. Assume that X has rational singularities, that is, Rf,Oy = Ox.
Suppose D,.(Y') has trivial Serre functor for each x € X, Then X is Gorenstein
and f:Y — X s a crepant resolution.

Proof. The Serre functor on D,(Y') is the restriction of the Serre functor on
D.(Y). Hence, by Section 3.2, the condition implies that for each z € X
the restriction of the functor (— ® wy) to the category D,(Y) is isomorphic
to the identity. Since D,(Y') contains the structure sheaves of all fattened
neighbourhoods of the fibre f~1(x) this implies that the restriction of wy to
each formal fibre of f is trivial. To get the result, we must show that wy is
a line bundle and that f*wy = wy. Since wx = f,wy, this is achieved by the
following lemma. O

Lemma 3.2. Assume that X has rational singularities. Then a line bundle
L on'Y s the pullback f*M of some line bundle M on X if and only if the
restriction of L to each formal fibre of f is trivial. Moreover, when this holds,

M = f.L.
Proof. For each point x € X, the formal fibre of f over x is the fibre product
Y Xy Spec(@xw).

The restriction of the pullback of a line bundle from X to each of these schemes
is trivial because a line bundle has trivial formal stalks at points.
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For the converse suppose that the restriction of L to each of these formal
fibres is trivial. The theorem on formal functions shows that the completion of
the stalks of the sheaves R'f,Oy and R'f, L at any point € X are isomorphic
for each 7. Since X has rational singularities it follows that R'f,L = 0 for all
t>0,and M = f,L is a line bundle on X.

Since f*M is torsion free, the natural adjunction map n: f*f,L — L is
injective, so there is a short exact sequence

(4) 0= f*fLl 5 L—-Q—0.
By the projection formula and the fact that X has rational singularities,
Rf.(f*M)=M@R'f,Oy =0 foralli>0.

The fact that n is the unit of the adjunction for (f*, f.) implies that f.n has
a left inverse, and in particular is surjective. Applying f. to (4) we conclude
that f,Q = 0.

Using the theorem on formal functions again, we can deduce that

f*(Q & L71> = 0.

In particular, @ ® L™' has no non-zero global sections. Tensoring (4) with
L' gives a contradiction unless @ = 0. Hence 7 is an isomorphism and we
are done. O

4. (G-SHEAVES

Throughout this section G is a finite group acting on a scheme X (on the
left) by automorphisms. As in the last section, all schemes are of finite type
over C. We list some results we need concerning the category of sheaves on
X equipped with a compatible G action, or ‘G-sheaves’ for short. Since G
is finite, most of the proofs are trivial and are left to the reader. The main
point is that natural constructions involving sheaves on X are canonical, so
commute with automorphisms of X.

4.1. Sheaves and functors. A G-sheaf E on X is a quasicoherent sheaf of
Ox-modules together with a lift of the G action to E. More precisely, for each
g € G, there is a lift )\gE: E — ¢*E satisfying A\¥ = idp and )\,;Eq =g* ()\;ZE) o)\f.

If E and F are G-sheaves, then there is a (right) action of G on Homy (E, F)
given by 69 = ()\5)71 og*fo )\;E and the spaces G-Hom (E, F') of G-invariant
maps give the morphisms in the Abelian categories Qeoh®(X) and Coh®(X)
of G-sheaves.

The category Qcoh®(X) has enough injectives (Grothendieck [9, Proposi-
tion 5.1.2]) so we may take G-equivariant injective resolutions. Since G is
finite, if X is a quasiprojective scheme there is an ample invertible G-sheaf
on X and so we may also take G-equivariant locally free resolutions. The
functors G-Ext’ (—, —) are the G-invariant parts of Ext’ (—, —) and are the
derived functors of G-Homx (—, —). Thus if X is nonsingular of dimension n,



THE MCKAY CORRESPONDENCE 11

so that Qcoh(X) has global dimension 7, then the category Qcoh”(X) also
has global dimension n.

The local functors Hom and ® are defined in the obvious way on Qcoh®(X),
as are pullback f* and pushforward f, for any G-equivariant morphism of
schemes f: X — Y. Thus, for example, )\g*E = f*)\gE. Natural isomorphisms
such as Homy (f*F, F') = Homy (E, f.F') are canonical, that is, commute with
isomorphisms of the base, and hence are G-equivariant. Therefore they restrict
to natural isomorphisms

G-Homy (f*E, F) = G-Homy (E, f.F).
In other words, f* and f, are also adjoint functors between the categories
Qcoh®(X) and Qcoh®(Y).
Similarly, the natural isomorphisms implicit in the projection formula, flat

base change, etc. are canonical and hence G-equivariant.
It seems worthwhile to single out the following point:

Lemma 4.1. Let F and F' be G-sheaves on X. Then, as a representation of
G, we have a direct sum decomposition

k
Homy (E, F) = @) G-Homx (E ® p;, F) ® p;
i=0
over the irreducible representations {po, - , pr}.

Proof. The result amounts to showing that
G-Hom(p;, Homx (E, F)) = G-Homx (F ® p;, F').

Let f: X = Y = Spec(C) be projection to a point, with G acting trivially on
Y so that the map is equivariant. Then Qcoh®(Y') is just the category of C[G]-
modules. Note that Homx (E, F) = f, Home, (E, F) and f*p; = Ox ® p;, so
that the adjunction between f* and f, gives

G-Homy (p;, f« Homo, (E, F)) = G-Homx(Ox ® p;, Homo, (E, F))
= G—HOH]X<E®p“F>,

as required. O

4.2. Trivial actions. If the group G acts trivially on X, then any G-sheaf E
decomposes as a direct sum
E = @ E; ® p;

over the irreducible representations {pg, p1,...,pc} of G (where py = 1 is
the trivial representation). The sheaves FE; are just ordinary sheaves on X.
Furthermore, G-Homy (E; ® p;, E; ® p;j) = 0 for i # j. Thus the category
Qcoh“(X) decomposes as a direct sum @, Qcoh’(X) and each summand is
equivalent to Qcoh(X).
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In particular, every G-sheaf E has a fixed part [E]¢ and the functor
[—]¢: Qcoh(X) — Qcoh(X)
is the left and right adjoint to the functor
— ® po: Qeoh(X) — Qeoh”(X),
that is, ‘let G act trivially’. Both functors are exact.

4.3. Derived categories. The G-equivariant derived category D%(X) is de-
fined to be the full subcategory of the (unbounded) derived category of Qcoh®(X)
consisting of complexes with bounded and coherent cohomology.

The usual derived functors R Hom, é{), Lf* and R f, may be defined on the
equivariant derived category, and, as for sheaves, the standard properties of
adjunctions, projection formula and flat base change then hold because the
implicit natural isomorphisms are sufficiently canonical.

One way to obtain an equivariant Grothendieck duality is to refer to Nee-
man’s results [19]. Let f: X — Y be an equivariant morphism of schemes.
The only thing to check is that equivariant pushdown R f, commutes with
small coproducts. This is proved exactly as in [19]. Then the functor R f, has
a right adjoint f', and (2) holds when f is proper and of finite Tor dimension.

As in the non-equivariant case this implies that if X is a nonsingular quasi-
projective variety of dimension n, the full subcategory D%(X) c DY(X) con-
sisting of objects with compact supports has a Serre functor

Sx(—) = (- ®wx)[n],

where wx is the canonical bundle of X with its induced G-structure.

4.4. Indecomposability. If G acts trivially on X then the results of Sec-
tion 4.2 show that D%(X) decomposes as a direct sum of orthogonal subcat-
egories indexed by the irreducible representations of G. More generally it is
easy to see that DY(X) is decomposable unless G acts faithfully. We need the
converse of this statement.

Lemma 4.2. Suppose a finite group G acts faithfully on a quasiprojective
variety X. Then D%(X) is indecomposable.

Proof. Suppose that DG(X) decomposes as an orthogonal direct sum of two
subcategories A; and Ay. Any indecomposable object of D% (X) lies in either
A, or A, and

HomDG(X)(al, as) =0 for all a; € Ay, a9 € As.

Since the action of G is faithful, the general orbit is free. Let D = G - x be a
free orbit. Then Op is indecomposable as a G-sheaf. Suppose without loss of
generality that Op lies in A;.

Let p; be an irreducible representation of G. The sheaf Ox ® p; is inde-
composable in DG(X) and there exists an equivariant map Ox ® p; — Op so
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Ox ®p; also lies in A;. Any indecomposable G-sheaf E supported in dimension
0 has a section, so by Lemma 4.1 there is an equivariant map Ox ® p; — F,
and thus F lies in A;.

Finally given an indecomposable G-sheaf F', take an orbit G - x contained
in Supp(F) and let i: G - x < X be the inclusion. Then i,i*(F') is supported
in dimension 0 and there is an equivariant map F' — i,i*(F), so F also lies in
A;. Now A, is orthogonal to all sheaves, hence is trivial. O

5. THE INTERSECTION THEOREM

Our proof that G-Hilb M is nonsingular follows an idea developed in Bridge-
land and Maciocia [7] for moduli spaces over K3 fibrations, and uses the fol-
lowing famous and difficult result of commutative algebra:

Theorem 5.1 (Intersection theorem). Let (A, m) be a local C-algebra of di-
mension d. Suppose that

0> My —- My, 1 —---— My—0

15 a complex of finitely generated free A-modules with each homology module
H;(M,) an A-module of finite length. Then s > d. Moreover, if s = d and
Hy(M,) =2 A/m, then

H;(M,) =0 for alli# 0,
and A 1s reqular.

The basic idea is as follows. Serre’s criterion states that any finite length
A-module has homological dimension > d and that A is regular precisely if
there is a finite length A-module which has homological dimension exactly
d. The intersection theorem gives corresponding statements for complexes of
A-modules with finite length homology. As a rough slogan, “regularity is a
property of the derived category”. For the main part of the proof, see Roberts
[22], [23]; for the final clause, see [7].

We may rephrase the intersection theorem using the language of support
and homological dimension. If X is a scheme and E an object in D(X), then
it is easy to check [7] that, for any point = € X,

x € Supp £ <— Hom%(x)(E, O,) # 0 for some i € Z.

The homological dimension of a nonzero object E' € D(X), written hom dim E,
is the smallest nonnegative integer s such that E is isomorphic in D(X) to a
complex of locally free sheaves on X of length s (that is, having s+ 1 terms).
If no such integer exists we put hom dim E = co. One can prove [7] that if X
is quasiprojective, and n is a nonnegative integer, then hom dim £ < n if and
only if there is an integer j such that for all points z € X

Hom%(X)(E, O,) =0unless j <i<j+n.

The two parts of Theorem 5.1 now become the following (cf. [7]).
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Corollary 5.2. Let X be a scheme and E a nonzero object of D(X). Then
codim(Supp F) < homdim FE.

Corollary 5.3. Let X be a scheme, and fix a point v € X of codimension n.
Suppose that there is an object E of D(X) such that for all points z € X, and
any integer 1,

Hom%(x)(E, O,)=0 wunless z=1z and 0 < i < n.
Suppose also that HY(E) 2 O,. Then X 1is nonsingular at z and E = O,.

6. THE PROJECTIVE CASE

The aim of this section is to prove Theorem 1.1 under the additional as-
sumption that M is projective. The quasiprojective case involves some further
technical difficulties that we deal with in the next section. Take notation as
in the Introduction. We break the proof up into 7 steps.

STEP 1. Let my: Y X M = Y and my,: Y X M — M denote the projections.
The functor ® may be rewritten

®(—) = Ry, (Oz @ 7y (— @ py)).

Note that Oz has finite homological dimension, because Z is flat over Y and
M is nonsingular. Hence the derived dual 0% = RHomoe, ,,(Oz, Oyxu)
also has finite homological dimension and we may define another functor
¥: DY (M) — D(Y), by the formula

L
T(-) = [Ray. (P @ m ()],
where P = O% ® mh,(war)[n].

Now W is left adjoint to ® because of the three standard adjunctions de-
scribed in Section 3.1. The functor w3, is the left adjoint to Ry -. The
functor — ® Oz has the (left and right) adjoint — ® OY. Finally the functor
7 has the left adjoint Ry, and

my (=) = 75(=) ® 73y (war) ).

STEP 2. The composite functor W o @ is given by

Ry (Q & (),

where 7 and 7y are the projections of Y x Y onto its factors, and Q is some
object of D(Y x Y'). This is just composition of correspondences (see Mukai
[17, Proposition 1.3]).

Ifi,: {y} xY = Y x Y is the closed embedding then Li; (Q) = V@O, For
any pair of points y;, y2, one has O, ,,) = 1y, Oy, so that
(5)

Hom%(wy)(Qa Oyr ) = Hom%(y)(\IJ@(’)yl, Oy,) = G‘EXtZM(OZyl ; OZyg)a

using the adjunctions for (Li*,i,) and (¥, ®). Our first objective is to show
that Q is supported on the diagonal A C Y x Y, or equivalently that the
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groups in (5) vanish unless y; = yo. When n = 3 this plays the role of the
assumption (4.8) of Ito and Nakajima [12].
STEP 3. Let 71,7y C M be G-clusters. Then

(C lf Zl :ZQ,

G-Homp (Oy,,0y,) = {0 otherwise

To see this note that Oy is generated as an Op; module by any nonzero
constant section. But, since the global sections I'(O) form the regular rep-
resentation of G, the constant sections are precisely the G-invariant sections.
Hence any equivariant morphism maps a generator to a scalar multiple of a
generator and so is determined by that scalar.

Let y; and y, be distinct points of Y. Serre duality, together with our
assumption that wy, is locally trivial as a G-sheaf implies that

G—EXtT;\}[(OZy] ’ OZy2> = G-HomM(OZyQ; OZy1 ) =0,

so that
G—Extz]’w((’)zm,ozw) =0 unless1 <p<n—1.

Hence Q restricted to (Y x Y) \ A has homological dimension < n — 2.
STEP 4. Now we apply the intersection theorem. If y; and yy are points of
Y such that 7(y1) # 7(y2) then the corresponding clusters Z,, and Z,, are
disjoint, so that the groups in (5) vanish. Thus the support of Q |y xy)a is
contained in the subscheme Y Xy Y. By assumption this has codimension
> n — 2 so Corollary 5.2 implies that

Qlyxyna =0,

that is, Q is supported on the diagonal.
STEP 5. Fix a point y € Y, and put £ = V®(0O,). We proved above that E is
supported at the point y. We claim that H°(E) = O,. Note that Corollary 5.3
then implies that Y is nonsingular at y and £ = O,,.

To prove the claim, note that there is a canonical map £ — O,, so we
obtain a triangle

C—-E—0,—C[]

for some object C' of D(Y'). Using the adjoint pair (¥, ®), this gives a long
exact sequence

-+ = Homyyy (0, 0,) — Homj ) (9O, ®0,) — Homyy(C, O,)
— Homyyy) (0, 0,) = Hompye ) (90, ®O,) — -+ .

The homomorphism e is the Kodaira—Spencer map for the family of clus-
ters {Oy, : y € Y} (Bridgeland [6, Lemma 4.4]). This is injective because
G-Hilb M is a fine moduli space for G-clusters on M. It follows that

Hom%(y)(C’, 0,) =0 foralli<O0.
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An easy spectral sequence argument (see [6, Example 2.2]), shows that H°(C) =
0. Taking cohomology sheaves of the above triangle gives H°(E) = O,, which
proves the claim.

STEP 6. We have now proved that Y is nonsingular, and that for any pair of
points yy,y2 € Y, the homomorphisms

®: Ext} (O,,,0,,) = G-Ext), (07, , 0y )

Y1

are isomorphisms. By assumption, the action of G on M is such that wy, is
trivial as a G-sheaf on an open neighbourhood of each orbit G - & C M. This
implies that

Oz, @ wy = Oy,

in Coh(M), for each y € Y. Applying Theorem 2.4 shows that ® is an
equivalence of categories.

STEP 7. It remains to show that 7: Y — X is crepant. Take a point x €
X = M/G. The equivalence ® restricts to give an equivalence between the
full subcategories D,(Y) € D(Y) and DY(M) c DY (M) consisting of objects
supported on the fibre 77'(x) and the orbit 7' (x) respectively.

The category DY(M) has trivial Serre functor because wy, is trivial as a
G-sheaf on a neighbourhood of 7=1(x). Thus D,(Y) also has trivial Serre
functor and Lemma 3.1 gives the result.

This completes the proof of Theorem 1.1 in the case that Y is projective.

7. THE QUASIPROJECTIVE CASE

In this section we complete the proof of Theorem 1.1. Once again, take
notation as in the Introduction. The problem with the argument of the last
section is that when M is not projective, Grothendieck duality in the form we
need only applies to objects with compact support. To get round this we first
take a projective closure M of M and define adjoint functors as before. Then
we restrict @ to a functor

®.: D(Y) — DY (M).

The argument of the last section carries through to show that Y is nonsingular
and crepant and that ®. is an equivalence. It remains for us to show that
®: D(Y) — DY (M) is also an equivalence.
STEP 8. The functor ® has a right adjoint

T(=) = [p.og (=) = Ry (wrym & mh(=)°.

As before, the composition T o @ is given by

Ry (Q & (),

where 7 and 7y are the projections of Y x Y onto its factors, and Q is some
object of D(Y x Y).
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Since ®. is an equivalence, Y®O, = O, for any point y € Y, and it follows
that @ is actually the pushforward of a line bundle L on Y to the diagonal in
Y x Y. The functor T o ® is then just twisting by L, and to show that & is
fully faithful we must show that L is trivial.

There is a morphism of functors £: id — T o ®, which for any point y € V'
gives a commutative diagram

o, 29
fl lL@f

where f is nonzero. Since ¢ is an isomorphism on the subcategory D.(Y"), the
maps £(0,) are all isomorphisms, so the section £(Oy ) is an isomorphism.
STEP 9. The fact that ® is an equivalence follows from Lemma 2.1 once we
show that

Y(E)=0 = E=0 forany object £ of DY(M).
Suppose YT(FE) = 0. Using the adjunction for (®,Y),
Hom%G(M)(B, E)=0 foralli,

whenever B = ®(A) for some object A € D(Y'). In particular, this holds for
any B with compact support.

If E is nonzero, let D = G - x be an orbit of G contained in the support of
E. Let i: D — M denote the inclusion, a projective equivariant morphism of
schemes. Then the adjunction morphism 4,i'(E) — E is nonzero, which gives
a contradiction.

This completes the proof of Theorem 1.1. O

8. NAKAMURA’S CONJECTURE

Recall that in Theorem 1.1 we took the space Y to be an irreducible compo-
nent of G-Hilb M. Note that when Y is nonsingular and & is an equivalence,
Y is actually a connected component. This is simply because for any point
y € Y, the bijection

®: Exty(0,,0,) = G-Ext},(0z,,07,)

identifies the tangent space of Y at y with the tangent space of G-Hilb M at
y. In this section we wish to go further and prove that when M has dimension
3, G-Hilb M is in fact connected.

Proof of Nakamura’s conjecture. Suppose by contradiction that there exists
a G-cluster Z C M not contained among the {Z, : y € Y}. Since ® is an
equivalence we can take an object F € D.(Y) such that ®(E) = Oy. The
argument of Section 6, Step 3 shows that for any point y € V'

Hom%(y)(E, 0,) = G-Ext},(07,07) =0 unless 1 <i < 2.
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This implies that F has homological dimension 1, or more precisely, that F is
quasi-isomorphic to a complex of locally free sheaves of the form

(6) 0L, L5 L, —o0.

But Oy is supported on some G-orbit in M, so F is supported on a fibre of
Y, and hence in codimension > 1. It follows that the complex (6) is exact on
the left, so E = coker f[1]. In particular [E] = —[coker f] in the Grothendieck
group K. (Y) of D.(Y).

Let y be a point of the fibre that is the support of . By Lemma 8.1 below,
[02,] = [0z] in K&(M), so that [O,] = [E] in K.(Y), since the equivalence
® gives an isomorphism of Grothendieck groups.

Let Y be a nonsingular projective variety with an open inclusion i: Y < Y.

The functor i,: D(Y) — D(Y) induces a map on K groups, so [coker f] =
—[0,] in K.(Y). But this contradicts Riemann Roch, because if L is a suffi-
ciently ample line bundle on Y, then x(coker f ® L) and x(O, ® L) are both

positive.

Lemma 8.1. If 7, and 75 are two G-clusters on M supported on the same
orbit then the corresponding elements [Oz | and [O,] in the Grothendieck
group K& (M) of DY (M) are equal.

Proof. We need to show that, as G-sheaves, Oy and O, have composition
series with the same simple factors. Suppose that they are both supported on
the G-orbit D = G -z C M and let H be the stabiliser subgroup of z in G.
The restriction functor is an equivalence of categories from finite length G-
sheaves supported on D to finite length H-sheaves supported at x. The reverse
equivalence is the induction functor (— ®cyH] C[G]). Since the restriction of
a G-cluster supported on D is an H-cluster supported at z, it is sufficient to
prove the result for H-clusters supported at z.

If {po, -, pr} are the irreducible representations of H, then we claim that
the simple H-sheaves supported at x are precisely

These sheaves are certainly simple, since they are simple as C[H|-modules.
On the other hand, any H-sheaf E supported at x has a nonzero ordinary
sheaf morphism O, — E. By Lemma 4.1 there must be a nonzero H-sheaf
morphism S; — E, for some 7, and, if F were simple, then this would have to
be an isomorphism.

Thus a composition series as an H-sheaf is also a composition series as a
C[H]-module. Hence all H-clusters supported at z have the same compo-
sition factors as H-sheaves, since as C[H|-modules they are all the regular
representation of H. O
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9. K THEORETIC CONSEQUENCES OF EQUIVALENCE

In this section we put M = C" and assume that the functor @ is an equiva-
lence of categories. This is always the case when n < 3. The main point is that
such an equivalence of derived categories immediately gives an isomorphism
of the corresponding Grothendieck groups.

9.1. Restricting to the exceptional fibres. Let D (C") denote the full
subcategory of DY(C") consisting of objects supported at the origin of C".
Similarly, let Dy(Y") denote the full subcategory of D(Y") consisting of objects
supported on the subscheme 77!(7(0)) of Y.

The equivalence ® induces an equivalence

®: Dy(Y) — DF(C"),
so we obtain a diagram

P

DY) - DYcC)

]
Do(Y) — D§(C)

in which the vertical arrows are embeddings of categories.

Note that the Euler characteristic gives natural bilinear pairings between
the top and bottom categories on either side; if ¥ and F are objects of D(C")
and DS (C™) respectively, then we can compute the sums

X(E, F) = (1) dim Hom e e (F, FIi]),
because the Hom spaces are finite dimensional (even over a quasi-projective
variety) when F has finite length cohomology sheaves. Similarly, we can com-
pute the ordinary Euler character on the left. The fact that ® is an equivalence
of categories commuting with the shift functors immediately gives

X“(®(4), ®(B)) = x(A. B),
for any objects A of D(Y) and B of Dy(Y).

9.2. Equivalence of K groups. Let K(Y), K%(C"), Ky(Y) and K{(C")
be the Grothendieck groups of the corresponding derived categories. The
equivalences of categories from the last section immediately give isomorphisms
of these groups. The following lemma is proved in the same way as in Gonzalez-
Sprinberg and Verdier [10, Proposition 1.4].

Lemma 9.1. The maps that send a representation p of G to the G-sheaves

p® Ocn and p @ Oy on C* give ring isomorphisms of the representation ring
R(G) with K¢(C") and K§(C") respectively.
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We obtain a diagram of groups

KY) % R(G)

K,(Y) % R(G).

in which the horizontal maps are isomorphisms but the vertical maps are not.
In fact, if @ is the representation induced by the inclusion G C SL(n, C), then
the map j is multiplication by

r= ZH)WQ € R(G).

This formula is obtained by considering a Koszul resolution of Oy on M, as
in [10, Proposition 1.4]. For example, in the case n =2 one has r = 2 — Q.

The bilinear forms of Section 9.1 descend to give pairings on the Grothendieck
groups. These forms are nondegenerate because if {pg, -, pr} are the irre-
ducible representations of G then the corresponding bases

{0 ® O}y CKY(C") and  {p: ® O}y C Ky (C")
are dual with respect to the pairing x“(—, —). Applying ¢ ! gives dual bases
{Ri}ieo C K(Y) and {Si}i, C Ko(Y)

as in Tto and Nakajima [12].

10. ToPOLOGICAL K THEORY AND PHYSICS

With notation as in the Introduction, suppose that M is projective, and
further that Y is nonsingular and ®: D(Y) — DY(M) is an equivalence. For
example suppose that n = 2 or 3.

10.1. K theory and the orbifold Euler number. Let K£*(Y') denote the
topological complex K theory of Y and K}, (M) the G-equivariant topological
K theory of M. There are natural forgetful maps

ay: K(Y) = K°(Y) and  ay: KE(M) — KL (M).

Since @ and its inverse ¥ are defined as correspondences, we may define cor-
respondences

o: K'(Y) = Kg(M) and  ¢: Ki(M) — K*(Y)

compatible with the maps «, using the functors ®, f* and f, (also written
fi) on topological K theory, which extend to equivariant K theory, as usual,
because they are canonical. Note that the definition and compatibility of f,
is nontrivial; see [1] for more details. But now the fact that ® and U are
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mutually inverse implies that ¢ and v are mutually inverse, that is, we have
a graded isomorphism

(7) KHY) = K5 (M)

Atiyah and Segal [2] observed that the physicists’ orbifold Euler number of
M/G is the Euler characteristic of KF (M), that is,

e(M,G) =dim Kg(M) ® Q — dim K;(M) @ Q.

On the other hand, since the Chern character gives a Z/2 graded isomorphism
K*(Y)®Q = H*(Y,Q), the Euler characteristic of *(Y') is just the ordinary
Euler number e(Y") of Y. Hence the isomorphism (7) on topological K theory
provides a natural explanation for the physicists’ Euler number conjecture

e(M,G) =e(Y).

This was verified in the case n = 2 as a consequence of the original McKay
correspondence (cf. [2]). It was proved in the case n = 3 by Roan [21] in the
more general case of quasiprojective Gorenstein orbifolds, since the numerical
statement reduces to the local linear case M = C*, G C SL(3, C).

10.2. An example: the Kummer surface. One of the first interesting
cases of the isomorphism (7) is when M is an Abelian surface (topologically,
a 4-torus T*), G = 7Z/2 acting by the involution —1 and Y is a K3 surface.
In this case Y is a nonsingular Kummer surface, having 16 disjoint —2-curves
C1y, ..., Cig coming from resolving the images in M /G of the 16 G-fixed points
T1y,...,T16 in M. Write V = {.Z'l, ... ,.’ElG} for this fixed pOil’lt set.

On the Abelian surface M there are 32 flat line G-bundles, arising from a
choice of 2 G-actions on each of the 16 square roots of Oy,. Each such flat
line G-bundle L(p) is characterised by a map p: V' — Fy, = {0,1} such that
at a fixed point x € V the group G acts on the fibre L, with weight (—1)°®).
Now the set V naturally has the structure of an affine 4-space over Fy and
the maps p that occur are precisely the affine linear maps, including the two
constant maps corresponding to the two actions on Q.

On the other hand, on the K3 surface Y one may consider the lattice
ZV C H?*(Y,Z) spanned by Cy,...,Cis and the smallest primitive sublat-
tice A containing Z". The elements of A give precisely the rational linear
combinations of the divisors C4,...,Cig which are themselves divisors. It is
easy to see that ZV C A C (3Z)" and it can also be shown that the image of
A in the quotient (37)Y/ZY = Fy consists of precisely the affine linear maps
on V (see Barth, Peters and Van de Ven [3, Chapter VIII, Proposition 5.5]).

We claim that under the correspondence W, the flat line G-bundle L(p) is
taken to the line bundle Oy (D(p)), where

Dip) = 5 (3 ple)C).
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To check the claim note that O, is taken to Oy, and that, in the local linear
McKay correspondence for C?/(Z/2), the irreducible representation of weight
—1 is taken to the line bundle O(3C), dual to the —2-curve C resolving the
singularity.
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