
THE MCKAY CORRESPONDENCE AS ANEQUIVALENCE OF DERIVED CATEGORIESTOM BRIDGELAND, ALASTAIR KING, AND MILES REIDTo Andrei Tyurin on his 60th birthdayAbstra
t. Let G be a �nite group of automorphisms of a nonsingularthree dimensional 
omplex varietyM , whose 
anoni
al bundle !M is lo
allytrivial as a G-sheaf. We prove that the Hilbert s
heme Y = G-HilbMparametrisingG-
lusters inM is a 
repant resolution ofX =M=G and thatthere is a derived equivalen
e (Fourier{Mukai transform) between 
oherentsheaves on Y and 
oherent G-sheaves on M . This identi�es the K theoryof Y with the equivariant K theory ofM , and thus generalises the 
lassi
alM
Kay 
orresponden
e. Some higher dimensional extensions are possible.1. Introdu
tionThe 
lassi
al M
Kay 
orresponden
e relates representations of a �nite sub-group G � SL(2; C ) to the 
ohomology of the well-known minimal resolutionof the Kleinian singularity C 2=G. Gonzalez-Sprinberg and Verdier [10℄ inter-preted the M
Kay 
orresponden
e as an isomorphism on K theory, observingthat the representation ring of G is equal to the G-equivariant K theory of C 2 .More pre
isely, they identify a basis of the K theory of the resolution 
onsist-ing of the 
lasses of 
ertain tautologi
al sheaves asso
iated to the irredu
iblerepresentations of G.It is natural to ask what happens when C 2 is repla
ed by an arbitrary non-singular quasiproje
tive 
omplex variety M of dimension n and G by a �nitegroup of automorphisms of M , with the property that the stabiliser subgroupof any point x 2M a
ts on the tangent spa
e TxM as a subgroup of SL(TxM).Thus the 
anoni
al bundle !M is lo
ally trivial as a G-sheaf, in the sense thatevery point of M has a G-invariant open neighbourhood on whi
h there isa nonvanishing G-invariant n-form. This implies that the quotient varietyX =M=G has only Gorenstein singularities.A natural generalisation of the M
Kay 
orresponden
e would then be an iso-morphism between theG-equivariant K theory ofM and the ordinary K theoryof a 
repant resolution Y of X, that is, a resolution of singularities � : Y ! Xsu
h that � �(!X) = !Y . In the 
lassi
al M
Kay 
ase, the minimal resolution1991 Mathemati
s Subje
t Classi�
ation. Primary 14E15, 14J30; Se
ondary18E20,18F20,19L47.Key words and phrases. Quotient singularities, M
Kay 
orresponden
e, derived
ategories. 1



2 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDis 
repant, but in higher dimensions 
repant resolutions do not ne
essarilyexist and, even when they do, they are not usually unique. However, it is nowknown that 
repant resolutions of Gorenstein quotient singularities do existin dimension n = 3, through a 
ase by 
ase analysis of the lo
al linear a
tionsby Ito, Markushevi
h and Roan (see Roan [21℄ and referen
es given there). Indimension � 4, even su
h quotient singularities only have 
repant resolutionsin rather spe
ial 
ases.In this paper, we take the point of view that the appropriate way to for-mulate and prove the M
Kay 
orresponden
e on K theory is to lift it to anequivalen
e of derived 
ategories. In itself, this is not a new observation and itturns out that it was a
tually known to Gonzalez-Sprinberg and Verdier (seealso Reid [20, Conje
ture 4.1℄). Furthermore, if the resolution is 
onstru
tedas a moduli spa
e of G-equivariant obje
ts on M , then the 
orresponden
eshould be given by a Fourier-Mukai transform determined by the universalobje
t. This is the natural analogue of the 
lassi
al statement that the tau-tologi
al sheaves are a basis of the K theory. Both points of view are takenby Kapranov and Vasserot [15℄ in proving the derived 
ategory version of the
lassi
al two dimensional M
Kay 
orresponden
e.The new and remarkable feature is that, by using the derived 
ategoryand Fourier-Mukai transforms and, in parti
ular, te
hniques developed in [6℄and [7℄, the pro
ess of proving the equivalen
e of derived 
ategories|whenit works|also yields a proof that the moduli spa
e is a 
repant resolution.More spe
i�
ally, we will give a suÆ
ient 
ondition for a 
ertain natural mod-uli spa
e, namely Nakamura's G-Hilbert s
heme, to be a 
repant resolutionfor whi
h the M
Kay 
orresponden
e holds as an equivalen
e of derived 
ate-gories. This 
ondition is automati
ally satis�ed in dimensions 2 and 3. Thuswe simultaneously prove the existen
e of one 
repant resolution of X =M=Gin three dimensions, without a 
ase by 
ase analysis, and verify the M
Kay
orresponden
e for this resolution. We do not prove the M
Kay 
orrespon-den
e for an arbitrary 
repant resolution although our methods should easilyadapt to more general moduli spa
es of G-sheaves on M , whi
h may providedi�erent 
repant resolutions to the one 
onsidered here.The G-Hilbert s
heme G-HilbM was introdu
ed by Nakamura as a good
andidate for a 
repant resolution of M=G. It parametrises G-
lusters or`s
heme theoreti
 G-orbits' onM : re
all that a 
luster Z �M is a zero dimen-sional subs
heme, and a G-
luster is a G-invariant 
luster whose global se
-tions �(OZ) are isomorphi
 to the regular representation C [G℄ of G. Clearly, aG-
luster has length jGj and a free G-orbit is a G-
luster. There is a Hilbert{Chow morphism � : G-HilbM �! X;whi
h, on 
losed points, sends a G-
luster to the orbit supporting it. Notethat � is a proje
tive morphism, is onto and is birational on one 
omponent.



THE MCKAY CORRESPONDENCE 3When M = C 3 and G � SL(3; C ) is Abelian, Nakamura [18℄ proved thatG-HilbM is irredu
ible and is a 
repant resolution of X (
ompare also Reid[20℄ and Craw and Reid [8℄). He 
onje
tured that the same result holds foran arbitrary �nite subgroup G � SL(3; C ). Ito and Nakajima [12℄ observedthat the 
onstru
tion of Gonzalez-Sprinberg and Verdier [10℄ is the M = C 2
ase of a natural 
orresponden
e between the equivariant K theory of M andthe ordinary K theory of G-HilbM . They proved that this 
orresponden
e isan isomorphism when M = C 3 and G � SL(3; C ) is Abelian by 
onstru
tingan expli
it resolution of the diagonal in Beilinson style. Our approa
h viaFourier{Mukai transforms leaves this resolution of the diagonal impli
it (itappears as the obje
t Q of D(Y � Y ) in Se
tion 6), and seems to give a moredire
t argument. Two of the main 
onsequen
es of the results of this paperare that Nakamura's 
onje
ture is true and that the natural 
orresponden
eon K theory is an isomorphism for all �nite subgroups of SL(3; C ).Sin
e it is not known whether G-HilbM is irredu
ible or even 
onne
tedin general, we a
tually take as our initial 
andidate for a resolution Y theirredu
ible 
omponent of G-HilbM 
ontaining the free G-orbits, that is, the
omponent mapping birationally to X. The aim is to show that Y is a 
repantresolution, and to 
onstru
t an equivalen
e between the derived 
ategoriesD(Y ) of 
oherent sheaves on Y and DG(M) of 
oherent G-sheaves on M . Amore detailed analysis of the equivalen
e shows that Y = G-HilbM when Mhas dimension 3.We now des
ribe the 
orresponden
e and our results in more detail. LetM be a nonsingular quasiproje
tive 
omplex variety of dimension n and letG � Aut(M) be a �nite group of automorphisms ofM su
h that !M is lo
allytrivial as a G-sheaf. Put X =M=G and let Y � G-HilbM be the irredu
ible
omponent 
ontaining the free orbits, as des
ribed above. Write Z for theuniversal 
losed subs
heme Z � Y �M and p and q for its proje
tions to Yand M . There is a 
ommutative diagram of s
hemes
XY MZ��R� ��	 ���	p ��Rq

in whi
h q and � are birational, p and � are �nite, and p is 
at. Let G a
ttrivially on Y and X, so that all morphisms in the diagram are equivariant.De�ne the fun
tor � = Rq� Æ p� : D(Y ) �! DG(M);where a sheaf E on Y is viewed as a G-sheaf by giving it the trivial a
tion.Note that p� is already exa
t, so we do not need to write Lp�. Our main resultis the following.



4 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDTheorem 1.1. Suppose that the �bre produ
tY �X Y = n(y1; y2) 2 Y � Y ��� �(y1) = �(y2)o � Y � Yhas dimension � n + 1. Then Y is a 
repant resolution of X and � is anequivalen
e of 
ategories.When n � 3 the 
ondition of the theorem always holds be
ause the ex
ep-tional lo
us of Y ! X has dimension � 2. In this 
ase we 
an also show thatG-HilbM is irredu
ible, so we obtainTheorem 1.2. Suppose n � 3. Then G-HilbM is irredu
ible and is a 
repantresolution of X, and � is an equivalen
e of 
ategories.The 
ondition of Theorem 1.1 also holds whenever G preserves a 
omplexsymple
ti
 form on M and Y is a 
repant resolution of X, be
ause su
h aresolution is symple
ti
 and hen
e semismall (see Verbitsky [24℄, Theorem 2.8and 
ompare Kaledin [14℄).Corollary 1.3. Suppose M is a 
omplex symple
ti
 variety and G a
ts bysymple
ti
 automorphisms. Assume that Y is a 
repant resolution of X. Then� is an equivalen
e of 
ategories.Note that the 
ondition of Theorem 1.1 
ertainly fails in dimension � 4whenever Y ! X has an ex
eptional divisor over a point. This is to beexpe
ted sin
e there are many examples of �nite subgroups G � SL(4; C )for whi
h the quotient singularity C 4=G has no 
repant resolution and alsoexamples where, although 
repant resolutions do exist, G-Hilb �C 4� is notone.Conventions. We work throughout in the 
ategory of s
hemes over C . Apoint of a s
heme always means a 
losed point.A
knowledgements. The �rst author would like to thank the ICTP, Triesteand EPSRC for �nan
ial support whilst this paper was written.2. Category theoryThis se
tion 
ontains some basi
 
ategory theory, most of whi
h is wellknown. The only nontrivial part is Se
tion 2.6 where we state a 
ondition foran exa
t fun
tor between triangulated 
ategories to be an equivalen
e.2.1. Triangulated 
ategories. A triangulated 
ategory is an additive 
at-egory A equipped with a shift automorphism TA : A ! A : a 7! a[1℄ and a
olle
tion of distinguished trianglesa1 f1��! a2 f2��! a3 f3��! a1[1℄of morphisms of A satisfying 
ertain axioms (see Verdier [25℄). We write a[i℄for T iA(a) and HomiA(a1; a2) = HomA(a1; a2[i℄):



THE MCKAY CORRESPONDENCE 5A triangulated 
ategory A is trivial if every obje
t is a zero obje
t.The prin
ipal example of a triangulated 
ategory is the derived 
ategoryD(A) of an Abelian 
ategory A. An obje
t of D(A) is a bounded 
omplexof obje
ts of A up to quasi-isomorphism, the shift fun
tor moves a 
omplexto the left by one pla
e and a distinguished triangle is the mapping 
oneof a morphism of 
omplexes. In this 
ase, for obje
ts a1; a2 2 A, one hasHomiD(A)(a1; a2) = ExtiA(a1; a2).A fun
tor F : A ! B between triangulated 
ategories is exa
t if it 
om-mutes with the shift automorphisms and takes distinguished triangles of A todistinguished triangles of B. For example, derived fun
tors between derived
ategories are exa
t.2.2. Adjoint fun
tors. Let F : A ! B and G : B ! A be fun
tors. Anadjun
tion for (G;F ) is a bifun
torial isomorphismHomA(G�;�) �= HomB(�; F�):In this 
ase, we say that G is left adjoint to F or that F is right adjoint toG. When it exists, a left or right adjoint to a given fun
tor is unique up toisomorphism of fun
tors. The adjoint of a 
omposite fun
tor is the 
ompositeof the adjoints. An adjun
tion determines and is determined by two naturaltransformations " : GÆF ! idA and � : idB ! F ÆG that 
ome from applyingthe adjun
tion to 1Fa and 1Gb respe
tively (see Ma
 Lane [16, IV.1℄ for moredetails).The basi
 adjun
tions we use in this paper are des
ribed in Se
tion 3.1below.2.3. Fully faithful fun
tors and equivalen
es. A fun
tor F : A ! B isfully faithful if for any pair of obje
ts a1, a2 of A, the mapF : HomA(a1; a2)! HomB(Fa1; Fa2)is an isomorphism. One should think of F as an `inje
tive' fun
tor. This ismore 
lear when F has a left adjointG : B ! A (or a right adjointH : B ! A),in whi
h 
ase F is fully faithful if and only if the natural transformationG Æ F ! idA (or idA ! H Æ F ) is an isomorphism.A fun
tor F is an equivalen
e if there is an `inverse' fun
tor G : B ! A su
hthat G Æ F �= idA and F Æ G �= idB. In this 
ase G is both a left and rightadjoint to F (see Ma
 Lane [16, IV.4℄). In pra
ti
e, we show that F is anequivalen
e by writing down an adjoint (a priori, one-sided) and proving thatit is an inverse. One simple example of this is the following.Lemma 2.1. Let A and B be triangulated 
ategories and F : A ! B a fullyfaithful exa
t fun
tor with a right adjoint H : B ! A. Then F is an equiva-len
e if and only if H
 �= 0 implies 
 �= 0 for all obje
ts 
 2 B.



6 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDProof. By assumption � : idA ! H Æ F is an isomorphism, so F is an equiva-len
e if and only if " : F ÆH ! idB is an isomorphism. Thus the `only if' partof the lemma is immediate, sin
e 
 �= FH
.For the `if' part, take any obje
t b 2 B and embed the natural adjun
tionmap "b in a triangle(1) 
! FHb "b��! b! 
[1℄:If we apply H to this triangle, then H("b) is an isomorphism, be
ause �Hb isan isomorphism and H("b)Æ�Hb = 1Hb ([16, IV.1, Theorem 1℄). Hen
e H
 �= 0and so 
 �= 0 by hypothesis. Thus "b is an isomorphism, as required. �One may understand this lemma in a broader 
ontext as follows. Thetriangle (1) shows that, when F is fully faithful with right adjoint H, there isa `semi-orthogonal' de
omposition B = (ImF;KerH), whereImF = fb 2 B : b �= Fa for some a 2 Ag;KerH = f
 2 B : H
 �= 0g:Sin
e F is fully faithful, the fa
t that b �= Fa for some obje
t a 2 A ne
essarilymeans that b �= FHb, so only zero obje
ts are in both sub
ategories. The semi-orthogonality 
ondition also requires that HomB(b; 
) = 0 for all b 2 ImF and
 2 KerH, whi
h is immediate from the adjun
tion. The lemma then has thevery reasonable interpretation that if KerH is trivial, then ImF = B and Fis an equivalen
e. Note that if G is a left adjoint for F , then there is a similarsemi-orthogonal de
omposition on the other side B = (KerG; ImF ) and a
orresponding version of the lemma. For more details on semi-orthogonalde
ompositions see Bondal [4℄.2.4. Spanning 
lasses and orthogonal de
omposition. A spanning 
lassfor a triangulated 
ategory A is a sub
lass 
 of the obje
ts of A su
h that forany obje
t a 2 AHomiA(a; !) = 0 for all ! 2 
; i 2 Z implies a �= 0and HomiA(!; a) = 0 for all ! 2 
; i 2 Z implies a �= 0:The following easy lemma is [6, Example 2.2℄.Lemma 2.2. The set of skys
raper sheaves fOx : x 2 Xg on a nonsingularproje
tive variety X is a spanning 
lass for D(X).A triangulated 
ategory A is de
omposable as an orthogonal dire
t sum oftwo full sub
ategories A1 and A2 if every obje
t of A is isomorphi
 to a dire
tsum a1 � a2 with aj 2 Aj, and ifHomiA(a1; a2) = HomiA(a2; a1) = 0for any pair of obje
ts aj 2 Aj and all integers i. The 
ategory A is inde-
omposable if for any su
h de
omposition one of the two sub
ategories Ai is



THE MCKAY CORRESPONDENCE 7trivial. For example, if X is a s
heme, D(X) is inde
omposable pre
isely whenX is 
onne
ted. For more details see Bridgeland [6℄.2.5. Serre fun
tors. The properties of Serre duality on a nonsingular pro-je
tive variety were abstra
ted by Bondal and Kapranov [5℄ into the notion ofa Serre fun
tor on a triangulated 
ategory. Let A be a triangulated 
ategoryin whi
h all the Hom sets are �nite dimensional ve
tor spa
es. A Serre fun
torfor A is an exa
t equivalen
e S : A! A indu
ing bifun
torial isomorphismsHomA(a; b)! HomA(b; S(a))_ for all a; b 2 Athat satisfy a simple 
ompatibility 
ondition (see [5℄). When a Serre fun
torexists, it is unique up to isomorphism of fun
tors. We say that A has trivialSerre fun
tor if for some integer i the shift fun
tor [i℄ is a Serre fun
tor for A.The main example is the bounded derived 
ategory of 
oherent sheavesD(X) on a nonsingular proje
tive variety X, having the Serre fun
torSX(�) = (�
 !X)[dimX℄:Thus D(X) has trivial Serre fun
tor if and only if the 
anoni
al bundle of Xis trivial.2.6. A 
riterion for equivalen
e. Let F : A ! B be an exa
t fun
tor be-tween triangulated 
ategories with Serre fun
tors SA and SB. Assume that Fhas a left adjoint G : B ! A. Then F also has a right adjointH = SAÆGÆS�1B .Theorem 2.3. With assumptions as above, suppose also that there is a span-ning 
lass 
 for A su
h thatF : HomiA(!1; !2)! HomiB(F!1; F!2)is an isomorphism for all i 2 Z and all !1; !2 2 
. Then F is fully faithful.Proof. See [6, Theorem 2.3℄. �Theorem 2.4. Suppose further that A is nontrivial, that B is inde
omposableand that FSA(!) �= SBF (!) for all ! 2 
. Then F is an equivalen
e of
ategories.Proof. Consider an obje
t b 2 B. For any ! 2 
 and i 2 Z we have isomor-phisms HomiA(!;Gb) = HomiA(Gb; SA!)_ = HomiB(b; FSA!)_= HomiB(b; SBF!)_ = HomiB(F!; b) = HomiA(!;Hb);using Serre duality and the adjun
tions for (G;F ) and (F;H). Sin
e 
 is aspanning 
lass we 
an 
on
lude that Gb �= 0 pre
isely when Hb �= 0. Thenthe result follows from [6, Theorem 3.3℄. �The proof of Theorem 3.3 in [6℄ may be understood as follows. If KerH �KerG, then the semiorthogonal de
omposition des
ribed at the end of Se
-tion 2.3 be
omes an orthogonal de
omposition. Hen
e KerH must be trivial,



8 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDbe
ause B is inde
omposable and A, and hen
e ImF , is nontrivial. ThusImF = B and F is an equivalen
e.3. Derived 
ategories of sheavesThis se
tion is 
on
erned with various general properties of 
omplexes ofOX-modules on a s
heme X. Note that all our s
hemes are of �nite typeover C . Given a s
heme X, de�ne Dq
(X) to be the (unbounded) derived
ategory of the Abelian 
ategory Q
oh(X) of quasi
oherent sheaves on X.Also de�ne D(X) to be the full sub
ategory of Dq
(X) 
onsisting of 
omplexeswith bounded and 
oherent 
ohomology.3.1. Geometri
 adjun
tions. Here we des
ribe three standard adjun
tionsthat arise in algebrai
 geometry and are used frequently in what follows. Forthe �rst example, let X be a s
heme and E 2 D(X) an obje
t of �nite homo-logi
al dimension. Then the derived dualE_ = RHomOX (E;OX)also has �nite homologi
al dimension, and the fun
tor � L
 E is both left andright adjoint to the fun
tor � L
 E_.For the se
ond example take a morphism of s
hemes f : X ! Y . Thefun
tor Rf� : Dq
(X) �! Dq
(Y )has the left adjoint Lf � : Dq
(Y ) �! Dq
(X):If f is proper then Rf� takes D(X) into D(Y ). If f has �nite Tor dimension(for example if f is 
at, or Y is nonsingular) then Lf � takes D(Y ) into D(X).The third example is Grothendie
k duality. Again take a morphism ofs
hemes f : X ! Y . The fun
tor Rf� has a right adjointf ! : Dq
(Y ) �! Dq
(X)and moreover, if f is proper and of �nite Tor dimension, there is an isomor-phism of fun
tors(2) f !(�) �= Lf �(�) L
 f !(OY ):Neeman [19℄ has re
ently given a 
ompletely formal proof of these statementsin terms of the Brown representability theorem.Let X be a nonsingular proje
tive variety of dimension n and write f : X !Y = Spe
(C ) for the proje
tion to a point. In this 
ase f !(OY ) = !X [n℄. Theabove statement of Grothendie
k duality implies that the fun
tor(3) SX(�) = (�
 !X)[n℄is a Serre fun
tor on D(X).



THE MCKAY CORRESPONDENCE 93.2. Duality for quasiproje
tive s
hemes. In order to apply Grothendie
kduality on quasiproje
tive s
hemes, we need to restri
t attention to sheaveswith 
ompa
t support. The support of an obje
t E 2 D(X) is the lo
us of Xwhere E is not exa
t, that is, the union of the supports of the 
ohomologysheaves of E. It is always a 
losed subset of X.Given a s
heme X, de�ne the 
ategory D
(X) to be the full sub
ategoryof D(X) 
onsisting of 
omplexes whose support is proper. Note that when Xitself is proper, D
(X) is just the usual derived 
ategory D(X).If X is a quasi-proje
tive variety and i : X ,! X is some proje
tive 
losure,then the fun
tor i� embeds D
(X) as a full triangulated sub
ategory of D(X).By resolution of singularities, if X is non-singular we 
an assume that X istoo. Then the Serre fun
tor on D(X) restri
ts to give a Serre fun
tor onD(X). Thus if X is a nonsingular quasiproje
tive variety of dimension n, the
ategory D
(X) has a Serre fun
tor given by (3).The argument used to prove Lemma 2.2 is easily generalised to give thestatement that the set of skys
raper sheaves fOx : x 2 Xg on a non-singularquasi-proje
tive variety X is a spanning 
lass for D
(X).3.3. Crepant resolutions. Let X be a variety and f : Y ! X a resolutionof singularities. Given a point x 2 X de�ne Dx(Y ) to be the full sub
ategoryof D
(Y ) 
onsisting of obje
ts whose support is 
ontained in the �bre f�1(x).We have the following 
ategori
al 
riterion for f to be 
repant.Lemma 3.1. Assume that X has rational singularities, that is, Rf�OY = OX .Suppose Dx(Y ) has trivial Serre fun
tor for ea
h x 2 X, Then X is Gorensteinand f : Y ! X is a 
repant resolution.Proof. The Serre fun
tor on Dx(Y ) is the restri
tion of the Serre fun
tor onD
(Y ). Hen
e, by Se
tion 3.2, the 
ondition implies that for ea
h x 2 Xthe restri
tion of the fun
tor (� 
 !Y ) to the 
ategory Dx(Y ) is isomorphi
to the identity. Sin
e Dx(Y ) 
ontains the stru
ture sheaves of all fattenedneighbourhoods of the �bre f�1(x) this implies that the restri
tion of !Y toea
h formal �bre of f is trivial. To get the result, we must show that !X isa line bundle and that f �!X = !Y . Sin
e !X = f�!Y , this is a
hieved by thefollowing lemma. �Lemma 3.2. Assume that X has rational singularities. Then a line bundleL on Y is the pullba
k f �M of some line bundle M on X if and only if therestri
tion of L to ea
h formal �bre of f is trivial. Moreover, when this holds,M = f�L.Proof. For ea
h point x 2 X, the formal �bre of f over x is the �bre produ
tY �X Spe
( bOX;x):The restri
tion of the pullba
k of a line bundle fromX to ea
h of these s
hemesis trivial be
ause a line bundle has trivial formal stalks at points.



10 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDFor the 
onverse suppose that the restri
tion of L to ea
h of these formal�bres is trivial. The theorem on formal fun
tions shows that the 
ompletion ofthe stalks of the sheaves Rif�OY andRif�L at any point x 2 X are isomorphi
for ea
h i. Sin
e X has rational singularities it follows that Rif�L = 0 for alli > 0, and M = f�L is a line bundle on X.Sin
e f �M is torsion free, the natural adjun
tion map � : f �f�L ! L isinje
tive, so there is a short exa
t sequen
e(4) 0! f �f�L ���! L! Q! 0:By the proje
tion formula and the fa
t that X has rational singularities,Rif�(f �M) =M 
Rif�OY = 0 for all i > 0:The fa
t that � is the unit of the adjun
tion for (f �; f�) implies that f�� hasa left inverse, and in parti
ular is surje
tive. Applying f� to (4) we 
on
ludethat f�Q = 0.Using the theorem on formal fun
tions again, we 
an dedu
e thatf�(Q
 L�1) = 0:In parti
ular, Q 
 L�1 has no non-zero global se
tions. Tensoring (4) withL�1 gives a 
ontradi
tion unless Q = 0. Hen
e � is an isomorphism and weare done. �4. G-sheavesThroughout this se
tion G is a �nite group a
ting on a s
heme X (on theleft) by automorphisms. As in the last se
tion, all s
hemes are of �nite typeover C . We list some results we need 
on
erning the 
ategory of sheaves onX equipped with a 
ompatible G a
tion, or `G-sheaves' for short. Sin
e Gis �nite, most of the proofs are trivial and are left to the reader. The mainpoint is that natural 
onstru
tions involving sheaves on X are 
anoni
al, so
ommute with automorphisms of X.4.1. Sheaves and fun
tors. A G-sheaf E on X is a quasi
oherent sheaf ofOX-modules together with a lift of the G a
tion to E. More pre
isely, for ea
hg 2 G, there is a lift �Eg : E ! g�E satisfying �E1 = idE and �Ehg = g� ��Eh �Æ�Eg .If E and F are G-sheaves, then there is a (right) a
tion of G on HomX(E; F )given by �g = ��Fg ��1 Æ g�� Æ�Eg and the spa
es G-HomX(E; F ) of G-invariantmaps give the morphisms in the Abelian 
ategories Q
ohG(X) and CohG(X)of G-sheaves.The 
ategory Q
ohG(X) has enough inje
tives (Grothendie
k [9, Proposi-tion 5.1.2℄) so we may take G-equivariant inje
tive resolutions. Sin
e G is�nite, if X is a quasiproje
tive s
heme there is an ample invertible G-sheafon X and so we may also take G-equivariant lo
ally free resolutions. Thefun
tors G-ExtiX(�;�) are the G-invariant parts of ExtiX(�;�) and are thederived fun
tors of G-HomX(�;�). Thus if X is nonsingular of dimension n,
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oh(X) has global dimension n, then the 
ategory Q
ohG(X) alsohas global dimension n.The lo
al fun
torsHom and 
 are de�ned in the obvious way on Q
ohG(X),as are pullba
k f � and pushforward f� for any G-equivariant morphism ofs
hemes f : X ! Y . Thus, for example, �f�Eg = f ��Eg . Natural isomorphismssu
h as HomX(f �E; F ) �= HomY (E; f�F ) are 
anoni
al, that is, 
ommute withisomorphisms of the base, and hen
e areG-equivariant. Therefore they restri
tto natural isomorphismsG-HomX(f �E; F ) �= G-HomY (E; f�F ):In other words, f � and f� are also adjoint fun
tors between the 
ategoriesQ
ohG(X) and Q
ohG(Y ).Similarly, the natural isomorphisms impli
it in the proje
tion formula, 
atbase 
hange, et
. are 
anoni
al and hen
e G-equivariant.It seems worthwhile to single out the following point:Lemma 4.1. Let E and F be G-sheaves on X. Then, as a representation ofG, we have a dire
t sum de
ompositionHomX(E; F ) = kMi=0 G-HomX(E 
 �i; F )
 �iover the irredu
ible representations f�0; � � � ; �kg.Proof. The result amounts to showing thatG-Hom(�i;HomX(E; F )) = G-HomX(E 
 �i; F ):Let f : X ! Y = Spe
(C ) be proje
tion to a point, with G a
ting trivially onY so that the map is equivariant. Then Q
ohG(Y ) is just the 
ategory of C [G℄-modules. Note that HomX(E; F ) = f�HomOX(E; F ) and f ��i = OX 
 �i, sothat the adjun
tion between f � and f� givesG-HomY (�i; f�HomOX (E; F )) = G-HomX(OX 
 �i;HomOX (E; F ))= G-HomX(E 
 �i; F );as required. �4.2. Trivial a
tions. If the group G a
ts trivially on X, then any G-sheaf Ede
omposes as a dire
t sum E =Mi Ei 
 �iover the irredu
ible representations f�0; �1; : : : ; �kg of G (where �0 = 1 isthe trivial representation). The sheaves Ei are just ordinary sheaves on X.Furthermore, G-HomX(Ei 
 �i; Ej 
 �j) = 0 for i 6= j. Thus the 
ategoryQ
ohG(X) de
omposes as a dire
t sum LiQ
ohi(X) and ea
h summand isequivalent to Q
oh(X).



12 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDIn parti
ular, every G-sheaf E has a �xed part [E℄G and the fun
tor[�℄G : Q
ohG(X)! Q
oh(X)is the left and right adjoint to the fun
tor�
 �0 : Q
oh(X)! Q
ohG(X);that is, `let G a
t trivially'. Both fun
tors are exa
t.4.3. Derived 
ategories. The G-equivariant derived 
ategory DG(X) is de-�ned to be the full sub
ategory of the (unbounded) derived 
ategory of Q
ohG(X)
onsisting of 
omplexes with bounded and 
oherent 
ohomology.The usual derived fun
tors RHom, L
, Lf � and Rf� may be de�ned on theequivariant derived 
ategory, and, as for sheaves, the standard properties ofadjun
tions, proje
tion formula and 
at base 
hange then hold be
ause theimpli
it natural isomorphisms are suÆ
iently 
anoni
al.One way to obtain an equivariant Grothendie
k duality is to refer to Nee-man's results [19℄. Let f : X ! Y be an equivariant morphism of s
hemes.The only thing to 
he
k is that equivariant pushdown Rf� 
ommutes withsmall 
oprodu
ts. This is proved exa
tly as in [19℄. Then the fun
tor Rf� hasa right adjoint f !, and (2) holds when f is proper and of �nite Tor dimension.As in the non-equivariant 
ase this implies that if X is a nonsingular quasi-proje
tive variety of dimension n, the full sub
ategory DG
 (X) � DG(X) 
on-sisting of obje
ts with 
ompa
t supports has a Serre fun
torSX(�) = (�
 !X)[n℄;where !X is the 
anoni
al bundle of X with its indu
ed G-stru
ture.4.4. Inde
omposability. If G a
ts trivially on X then the results of Se
-tion 4.2 show that DG(X) de
omposes as a dire
t sum of orthogonal sub
at-egories indexed by the irredu
ible representations of G. More generally it iseasy to see that DG(X) is de
omposable unless G a
ts faithfully. We need the
onverse of this statement.Lemma 4.2. Suppose a �nite group G a
ts faithfully on a quasiproje
tivevariety X. Then DG(X) is inde
omposable.Proof. Suppose that DG(X) de
omposes as an orthogonal dire
t sum of twosub
ategories A1 and A2. Any inde
omposable obje
t of DG(X) lies in eitherA1 or A2 and HomDG(X)(a1; a2) = 0 for all a1 2 A1; a2 2 A2:Sin
e the a
tion of G is faithful, the general orbit is free. Let D = G � x be afree orbit. Then OD is inde
omposable as a G-sheaf. Suppose without loss ofgenerality that OD lies in A1.Let �i be an irredu
ible representation of G. The sheaf OX 
 �i is inde-
omposable in DG(X) and there exists an equivariant map OX 
 �i ! OD so
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�i also lies inA1. Any inde
omposable G-sheaf E supported in dimension0 has a se
tion, so by Lemma 4.1 there is an equivariant map OX 
 �i ! E,and thus E lies in A1.Finally given an inde
omposable G-sheaf F , take an orbit G � x 
ontainedin Supp(F ) and let i : G � x ,! X be the in
lusion. Then i�i�(F ) is supportedin dimension 0 and there is an equivariant map F ! i�i�(F ), so F also lies inA1. Now A2 is orthogonal to all sheaves, hen
e is trivial. �5. The interse
tion theoremOur proof that G-HilbM is nonsingular follows an idea developed in Bridge-land and Ma
io
ia [7℄ for moduli spa
es over K3 �brations, and uses the fol-lowing famous and diÆ
ult result of 
ommutative algebra:Theorem 5.1 (Interse
tion theorem). Let (A;m) be a lo
al C -algebra of di-mension d. Suppose that0!Ms !Ms�1 ! � � � !M0 ! 0is a 
omplex of �nitely generated free A-modules with ea
h homology moduleHi(M�) an A-module of �nite length. Then s � d. Moreover, if s = d andH0(M�) �= A=m, then Hi(M�) = 0 for all i 6= 0,and A is regular.The basi
 idea is as follows. Serre's 
riterion states that any �nite lengthA-module has homologi
al dimension � d and that A is regular pre
isely ifthere is a �nite length A-module whi
h has homologi
al dimension exa
tlyd. The interse
tion theorem gives 
orresponding statements for 
omplexes ofA-modules with �nite length homology. As a rough slogan, \regularity is aproperty of the derived 
ategory". For the main part of the proof, see Roberts[22℄, [23℄; for the �nal 
lause, see [7℄.We may rephrase the interse
tion theorem using the language of supportand homologi
al dimension. If X is a s
heme and E an obje
t in D(X), thenit is easy to 
he
k [7℄ that, for any point x 2 X,x 2 SuppE () HomiD(X)(E;Ox) 6= 0 for some i 2 Z.The homologi
al dimension of a nonzero obje
t E 2 D(X), written homdimE,is the smallest nonnegative integer s su
h that E is isomorphi
 in D(X) to a
omplex of lo
ally free sheaves on X of length s (that is, having s+ 1 terms).If no su
h integer exists we put homdimE =1. One 
an prove [7℄ that if Xis quasiproje
tive, and n is a nonnegative integer, then homdimE � n if andonly if there is an integer j su
h that for all points x 2 XHomiD(X)(E;Ox) = 0 unless j � i � j + n:The two parts of Theorem 5.1 now be
ome the following (
f. [7℄).



14 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDCorollary 5.2. Let X be a s
heme and E a nonzero obje
t of D(X). Then
odim(SuppE) � homdimE:Corollary 5.3. Let X be a s
heme, and �x a point x 2 X of 
odimension n.Suppose that there is an obje
t E of D(X) su
h that for all points z 2 X, andany integer i,HomiD(X)(E;Oz) = 0 unless z = x and 0 � i � n:Suppose also that H0(E) �= Ox. Then X is nonsingular at x and E �= Ox.6. The proje
tive 
aseThe aim of this se
tion is to prove Theorem 1.1 under the additional as-sumption thatM is proje
tive. The quasiproje
tive 
ase involves some furtherte
hni
al diÆ
ulties that we deal with in the next se
tion. Take notation asin the Introdu
tion. We break the proof up into 7 steps.Step 1. Let �Y : Y �M ! Y and �M : Y �M !M denote the proje
tions.The fun
tor � may be rewritten�(�) �= R�M�(OZ 
 ��Y (�
 �0)):Note that OZ has �nite homologi
al dimension, be
ause Z is 
at over Y andM is nonsingular. Hen
e the derived dual O_Z = RHomOY�M (OZ ;OY�M)also has �nite homologi
al dimension and we may de�ne another fun
tor	: DG(M)! D(Y ), by the formula	(�) = [R�Y�(P L
 ��M(�))℄G;where P = O_Z 
 ��M (!M)[n℄.Now 	 is left adjoint to � be
ause of the three standard adjun
tions de-s
ribed in Se
tion 3.1. The fun
tor ��M is the left adjoint to R�M;�. Thefun
tor � 
OZ has the (left and right) adjoint �
 O_Z . Finally the fun
tor�!Y has the left adjoint R�Y� and�!Y (�) = ��Y (�)
 ��M(!M)[n℄:Step 2. The 
omposite fun
tor 	 Æ � is given byR�2�(Q L
 ��1(�));where �1 and �2 are the proje
tions of Y � Y onto its fa
tors, and Q is someobje
t of D(Y � Y ). This is just 
omposition of 
orresponden
es (see Mukai[17, Proposition 1.3℄).If iy : fyg�Y ,! Y �Y is the 
losed embedding then Li�y(Q) = 	�Oy. Forany pair of points y1; y2, one has O(y1;y2) = iy1;�Oy2 so that(5)HomiD(Y�Y )(Q;O(y1;y2)) = HomiD(Y )(	�Oy1 ;Oy2) = G-ExtiM(OZy1 ;OZy2 );using the adjun
tions for (Li�; i�) and (	;�). Our �rst obje
tive is to showthat Q is supported on the diagonal � � Y � Y , or equivalently that the



THE MCKAY CORRESPONDENCE 15groups in (5) vanish unless y1 = y2. When n = 3 this plays the rôle of theassumption (4.8) of Ito and Nakajima [12℄.Step 3. Let Z1; Z2 �M be G-
lusters. ThenG-HomM(OZ1 ;OZ2) = (C if Z1 = Z2,0 otherwise.To see this note that OZ is generated as an OM module by any nonzero
onstant se
tion. But, sin
e the global se
tions �(OZ) form the regular rep-resentation of G, the 
onstant se
tions are pre
isely the G-invariant se
tions.Hen
e any equivariant morphism maps a generator to a s
alar multiple of agenerator and so is determined by that s
alar.Let y1 and y2 be distin
t points of Y . Serre duality, together with ourassumption that !M is lo
ally trivial as a G-sheaf implies thatG-ExtnM(OZy1 ;OZy2 ) = G-HomM(OZy2 ;OZy1 ) = 0;so that G-ExtpM(OZy1 ;OZy2 ) = 0 unless 1 � p � n� 1.Hen
e Q restri
ted to (Y � Y ) n� has homologi
al dimension � n� 2.Step 4. Now we apply the interse
tion theorem. If y1 and y2 are points ofY su
h that �(y1) 6= �(y2) then the 
orresponding 
lusters Zy1 and Zy2 aredisjoint, so that the groups in (5) vanish. Thus the support of Q j(Y�Y )n� is
ontained in the subs
heme Y �X Y . By assumption this has 
odimension> n� 2 so Corollary 5.2 implies thatQ j(Y�Y )n� �= 0;that is, Q is supported on the diagonal.Step 5. Fix a point y 2 Y , and put E = 	�(Oy). We proved above that E issupported at the point y. We 
laim that H0(E) = Oy. Note that Corollary 5.3then implies that Y is nonsingular at y and E �= Oy.To prove the 
laim, note that there is a 
anoni
al map E ! Oy, so weobtain a triangle C ! E ! Oy ! C[1℄for some obje
t C of D(Y ). Using the adjoint pair (	;�), this gives a longexa
t sequen
e� � � ! Hom0D(Y )(Oy;Oy)! Hom0DG(M)(�Oy;�Oy)! Hom0D(Y )(C;Oy)! Hom1D(Y )(Oy;Oy) "�! Hom1DG(M)(�Oy;�Oy)! � � � :The homomorphism " is the Kodaira{Spen
er map for the family of 
lus-ters fOZy : y 2 Y g (Bridgeland [6, Lemma 4.4℄). This is inje
tive be
auseG-HilbM is a �ne moduli spa
e for G-
lusters on M . It follows thatHomiD(Y )(C;Oy) = 0 for all i � 0.



16 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDAn easy spe
tral sequen
e argument (see [6, Example 2.2℄), shows thatH0(C) =0. Taking 
ohomology sheaves of the above triangle gives H0(E) = Oy, whi
hproves the 
laim.Step 6. We have now proved that Y is nonsingular, and that for any pair ofpoints y1; y2 2 Y , the homomorphisms�: ExtiY (Oy1 ;Oy2)! G-ExtiM(OZy1 ;OZy2 )are isomorphisms. By assumption, the a
tion of G on M is su
h that !M istrivial as a G-sheaf on an open neighbourhood of ea
h orbit G � x �M . Thisimplies that OZy 
 !M �= OZyin CohG(M), for ea
h y 2 Y . Applying Theorem 2.4 shows that � is anequivalen
e of 
ategories.Step 7. It remains to show that � : Y ! X is 
repant. Take a point x 2X = M=G. The equivalen
e � restri
ts to give an equivalen
e between thefull sub
ategories Dx(Y ) � D(Y ) and DGx (M) � DG(M) 
onsisting of obje
tssupported on the �bre ��1(x) and the orbit ��1(x) respe
tively.The 
ategory DGx (M) has trivial Serre fun
tor be
ause !M is trivial as aG-sheaf on a neighbourhood of ��1(x). Thus Dx(Y ) also has trivial Serrefun
tor and Lemma 3.1 gives the result.This 
ompletes the proof of Theorem 1.1 in the 
ase that Y is proje
tive.7. The quasiproje
tive 
aseIn this se
tion we 
omplete the proof of Theorem 1.1. On
e again, takenotation as in the Introdu
tion. The problem with the argument of the lastse
tion is that when M is not proje
tive, Grothendie
k duality in the form weneed only applies to obje
ts with 
ompa
t support. To get round this we �rsttake a proje
tive 
losure M of M and de�ne adjoint fun
tors as before. Thenwe restri
t � to a fun
tor �
 : D
(Y ) �! DG
 (M):The argument of the last se
tion 
arries through to show that Y is nonsingularand 
repant and that �
 is an equivalen
e. It remains for us to show that�: D(Y )! DG(M) is also an equivalen
e.Step 8. The fun
tor � has a right adjoint�(�) = [p� Æ q!(�)℄G = [R�Y �(!Z=M L
 ��M (�))℄G:As before, the 
omposition � Æ � is given byR�2�(Q L
 ��1(�));where �1 and �2 are the proje
tions of Y � Y onto its fa
tors, and Q is someobje
t of D(Y � Y ).
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e �
 is an equivalen
e, ��Oy = Oy for any point y 2 Y , and it followsthat Q is a
tually the pushforward of a line bundle L on Y to the diagonal inY � Y . The fun
tor � Æ � is then just twisting by L, and to show that � isfully faithful we must show that L is trivial.There is a morphism of fun
tors " : id! � Æ�, whi
h for any point y 2 Ygives a 
ommutative diagram OY "(OY )���! Lf??y ??yL
fOy "(Oy)���! Oywhere f is nonzero. Sin
e " is an isomorphism on the sub
ategory D
(Y ), themaps "(Oy) are all isomorphisms, so the se
tion "(OY ) is an isomorphism.Step 9. The fa
t that � is an equivalen
e follows from Lemma 2.1 on
e weshow that �(E) �= 0 =) E �= 0 for any obje
t E of DG(M).Suppose �(E) �= 0. Using the adjun
tion for (�;�),HomiDG(M)(B;E) = 0 for all i,whenever B �= �(A) for some obje
t A 2 D(Y ). In parti
ular, this holds forany B with 
ompa
t support.If E is nonzero, let D = G � x be an orbit of G 
ontained in the support ofE. Let i : D ,!M denote the in
lusion, a proje
tive equivariant morphism ofs
hemes. Then the adjun
tion morphism i�i!(E)! E is nonzero, whi
h givesa 
ontradi
tion.This 
ompletes the proof of Theorem 1.1. �8. Nakamura's 
onje
tureRe
all that in Theorem 1.1 we took the spa
e Y to be an irredu
ible 
ompo-nent of G-HilbM . Note that when Y is nonsingular and � is an equivalen
e,Y is a
tually a 
onne
ted 
omponent. This is simply be
ause for any pointy 2 Y , the bije
tion�: Ext1Y (Oy;Oy)! G-Ext1M(OZy ;OZy)identi�es the tangent spa
e of Y at y with the tangent spa
e of G-HilbM aty. In this se
tion we wish to go further and prove that when M has dimension3, G-HilbM is in fa
t 
onne
ted.Proof of Nakamura's 
onje
ture. Suppose by 
ontradi
tion that there existsa G-
luster Z � M not 
ontained among the fZy : y 2 Y g. Sin
e � is anequivalen
e we 
an take an obje
t E 2 D
(Y ) su
h that �(E) = OZ . Theargument of Se
tion 6, Step 3 shows that for any point y 2 YHomiD(Y )(E;Oy) = G-ExtiM(OZ ;OZy) = 0 unless 1 � i � 2:



18 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDThis implies that E has homologi
al dimension 1, or more pre
isely, that E isquasi-isomorphi
 to a 
omplex of lo
ally free sheaves of the form(6) 0! L2 f��! L1 ! 0:But OZ is supported on some G-orbit in M , so E is supported on a �bre ofY , and hen
e in 
odimension � 1. It follows that the 
omplex (6) is exa
t onthe left, so E �= 
oker f [1℄. In parti
ular [E℄ = �[
oker f ℄ in the Grothendie
kgroup K
(Y ) of D
(Y ).Let y be a point of the �bre that is the support of E. By Lemma 8.1 below,[OZy ℄ = [OZ ℄ in KG
 (M), so that [Oy℄ = [E℄ in K
(Y ), sin
e the equivalen
e� gives an isomorphism of Grothendie
k groups.Let Y be a nonsingular proje
tive variety with an open in
lusion i : Y ,! Y .The fun
tor i� : D
(Y ) ! D(Y ) indu
es a map on K groups, so [
oker f ℄ =�[Oy℄ in K
(Y ). But this 
ontradi
ts Riemann{Ro
h, be
ause if L is a suÆ-
iently ample line bundle on Y , then �(
oker f 
 L) and �(Oy 
 L) are bothpositive.Lemma 8.1. If Z1 and Z2 are two G-
lusters on M supported on the sameorbit then the 
orresponding elements [OZ1 ℄ and [OZ2 ℄ in the Grothendie
kgroup KG
 (M) of DG
 (M) are equal.Proof. We need to show that, as G-sheaves, OZ1 and OZ2 have 
ompositionseries with the same simple fa
tors. Suppose that they are both supported onthe G-orbit D = G � x � M and let H be the stabiliser subgroup of x in G.The restri
tion fun
tor is an equivalen
e of 
ategories from �nite length G-sheaves supported onD to �nite lengthH-sheaves supported at x. The reverseequivalen
e is the indu
tion fun
tor ��
C [H℄ C [G℄�. Sin
e the restri
tion ofa G-
luster supported on D is an H-
luster supported at x, it is suÆ
ient toprove the result for H-
lusters supported at x.If f�0; � � � ; �kg are the irredu
ible representations of H, then we 
laim thatthe simple H-sheaves supported at x are pre
iselyfSi = Ox 
 �i : 0 � i � kgThese sheaves are 
ertainly simple, sin
e they are simple as C [H℄-modules.On the other hand, any H-sheaf E supported at x has a nonzero ordinarysheaf morphism Ox ! E. By Lemma 4.1 there must be a nonzero H-sheafmorphism Si ! E, for some i, and, if E were simple, then this would have tobe an isomorphism.Thus a 
omposition series as an H-sheaf is also a 
omposition series as aC [H℄-module. Hen
e all H-
lusters supported at x have the same 
ompo-sition fa
tors as H-sheaves, sin
e as C [H℄-modules they are all the regularrepresentation of H. �
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onsequen
es of equivalen
eIn this se
tion we put M = C n and assume that the fun
tor � is an equiva-len
e of 
ategories. This is always the 
ase when n � 3. The main point is thatsu
h an equivalen
e of derived 
ategories immediately gives an isomorphismof the 
orresponding Grothendie
k groups.9.1. Restri
ting to the ex
eptional �bres. Let DG0 (C n) denote the fullsub
ategory of DG(C n) 
onsisting of obje
ts supported at the origin of C n .Similarly, let D0(Y ) denote the full sub
ategory of D(Y ) 
onsisting of obje
tssupported on the subs
heme ��1(�(0)) of Y .The equivalen
e � indu
es an equivalen
e�0 : D0(Y )! DG0 (C n);so we obtain a diagram D(Y ) ���! DG(C n)x??? x???D0(Y ) ���! DG0 (C n)in whi
h the verti
al arrows are embeddings of 
ategories.Note that the Euler 
hara
teristi
 gives natural bilinear pairings betweenthe top and bottom 
ategories on either side; if E and F are obje
ts of DG(C n)and DG0 (C n) respe
tively, then we 
an 
ompute the sums�G(E; F ) =Xi (�1)i dimHomDG(Cn )(E; F [i℄);be
ause the Hom spa
es are �nite dimensional (even over a quasi-proje
tivevariety) when F has �nite length 
ohomology sheaves. Similarly, we 
an 
om-pute the ordinary Euler 
hara
ter on the left. The fa
t that � is an equivalen
eof 
ategories 
ommuting with the shift fun
tors immediately gives�G(�(A);�(B)) = �(A;B);for any obje
ts A of D(Y ) and B of D0(Y ).9.2. Equivalen
e of K groups. Let K(Y ), KG(C n), K0(Y ) and KG0 (C n)be the Grothendie
k groups of the 
orresponding derived 
ategories. Theequivalen
es of 
ategories from the last se
tion immediately give isomorphismsof these groups. The following lemma is proved in the same way as in Gonzalez-Sprinberg and Verdier [10, Proposition 1.4℄.Lemma 9.1. The maps that send a representation � of G to the G-sheaves�
OCn and �
O0 on C n give ring isomorphisms of the representation ringR(G) with KG(C n) and KG0 (C n) respe
tively.



20 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDWe obtain a diagram of groupsK(Y ) '��! R(G)ix??? x???jK0(Y ) '��! R(G):in whi
h the horizontal maps are isomorphisms but the verti
al maps are not.In fa
t, if Q is the representation indu
ed by the in
lusion G � SL(n; C ), thenthe map j is multipli
ation byr = nXi=0 (�1)i�iQ 2 R(G):This formula is obtained by 
onsidering a Koszul resolution of O0 on M , asin [10, Proposition 1.4℄. For example, in the 
ase n = 2 one has r = 2�Q.The bilinear forms of Se
tion 9.1 des
end to give pairings on the Grothendie
kgroups. These forms are nondegenerate be
ause if f�0; � � � ; �kg are the irre-du
ible representations of G then the 
orresponding basesf�i 
OCn gki=0 � KG(C n) and f�i 
O0gki=0 � KG0 (C n)are dual with respe
t to the pairing �G(�;�). Applying '�1 gives dual basesfRigki=0 � K(Y ) and fSigki=0 � K0(Y )as in Ito and Nakajima [12℄.10. Topologi
al K theory and physi
sWith notation as in the Introdu
tion, suppose that M is proje
tive, andfurther that Y is nonsingular and �: D(Y )! DG(M) is an equivalen
e. Forexample suppose that n = 2 or 3.10.1. K theory and the orbifold Euler number. Let K�(Y ) denote thetopologi
al 
omplex K theory of Y and K�G(M) the G-equivariant topologi
alK theory of M . There are natural forgetful maps�Y : K(Y )! K0(Y ) and �M : KG(M)! K0G(M):Sin
e � and its inverse 	 are de�ned as 
orresponden
es, we may de�ne 
or-responden
es ' : K�(Y )! K�G(M) and  : K�G(M)! K�(Y )
ompatible with the maps �, using the fun
tors 
, f � and f� (also writtenf!) on topologi
al K theory, whi
h extend to equivariant K theory, as usual,be
ause they are 
anoni
al. Note that the de�nition and 
ompatibility of f�is nontrivial; see [1℄ for more details. But now the fa
t that � and 	 are



THE MCKAY CORRESPONDENCE 21mutually inverse implies that ' and  are mutually inverse, that is, we havea graded isomorphism(7) K�(Y ) �= K�G(M)Atiyah and Segal [2℄ observed that the physi
ists' orbifold Euler number ofM=G is the Euler 
hara
teristi
 of K�G(M), that is,e(M;G) = dimK0G(M)
 Q � dimK1G(M)
 Q :On the other hand, sin
e the Chern 
hara
ter gives a Z=2 graded isomorphismK�(Y )
 Q �= H�(Y;Q), the Euler 
hara
teristi
 of K�(Y ) is just the ordinaryEuler number e(Y ) of Y . Hen
e the isomorphism (7) on topologi
al K theoryprovides a natural explanation for the physi
ists' Euler number 
onje
turee(M;G) = e(Y ):This was veri�ed in the 
ase n = 2 as a 
onsequen
e of the original M
Kay
orresponden
e (
f. [2℄). It was proved in the 
ase n = 3 by Roan [21℄ in themore general 
ase of quasiproje
tive Gorenstein orbifolds, sin
e the numeri
alstatement redu
es to the lo
al linear 
ase M = C 3 , G � SL(3; C ).10.2. An example: the Kummer surfa
e. One of the �rst interesting
ases of the isomorphism (7) is when M is an Abelian surfa
e (topologi
ally,a 4-torus T 4), G = Z=2 a
ting by the involution �1 and Y is a K3 surfa
e.In this 
ase Y is a nonsingular Kummer surfa
e, having 16 disjoint �2-
urvesC1; : : : ; C16 
oming from resolving the images inM=G of the 16 G-�xed pointsx1; : : : ; x16 in M . Write V = fx1; : : : ; x16g for this �xed point set.On the Abelian surfa
e M there are 32 
at line G-bundles, arising from a
hoi
e of 2 G-a
tions on ea
h of the 16 square roots of OM . Ea
h su
h 
atline G-bundle L(�) is 
hara
terised by a map � : V ! F2 = f0; 1g su
h thatat a �xed point x 2 V the group G a
ts on the �bre Lx with weight (�1)�(x).Now the set V naturally has the stru
ture of an aÆne 4-spa
e over F2 andthe maps � that o

ur are pre
isely the aÆne linear maps, in
luding the two
onstant maps 
orresponding to the two a
tions on OM .On the other hand, on the K3 surfa
e Y one may 
onsider the latti
eZV � H2(Y;Z) spanned by C1; : : : ; C16 and the smallest primitive sublat-ti
e � 
ontaining ZV . The elements of � give pre
isely the rational linear
ombinations of the divisors C1; : : : ; C16 whi
h are themselves divisors. It iseasy to see that ZV � � � (12Z)V and it 
an also be shown that the image of� in the quotient (12Z)V =ZV �= FV2 
onsists of pre
isely the aÆne linear mapson V (see Barth, Peters and Van de Ven [3, Chapter VIII, Proposition 5.5℄).We 
laim that under the 
orresponden
e 	, the 
at line G-bundle L(�) istaken to the line bundle OY (D(�)), whereD(�) = 12�Xi �(xi)Ci�:
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he
k the 
laim note that OM is taken to OY , and that, in the lo
al linearM
Kay 
orresponden
e for C 2=(Z=2), the irredu
ible representation of weight�1 is taken to the line bundle O(12C), dual to the �2-
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