
THE MCKAY CORRESPONDENCE AS ANEQUIVALENCE OF DERIVED CATEGORIESTOM BRIDGELAND, ALASTAIR KING, AND MILES REIDTo Andrei Tyurin on his 60th birthdayAbstrat. Let G be a �nite group of automorphisms of a nonsingularthree dimensional omplex varietyM , whose anonial bundle !M is loallytrivial as a G-sheaf. We prove that the Hilbert sheme Y = G-HilbMparametrisingG-lusters inM is a repant resolution ofX =M=G and thatthere is a derived equivalene (Fourier{Mukai transform) between oherentsheaves on Y and oherent G-sheaves on M . This identi�es the K theoryof Y with the equivariant K theory ofM , and thus generalises the lassialMKay orrespondene. Some higher dimensional extensions are possible.1. IntrodutionThe lassial MKay orrespondene relates representations of a �nite sub-group G � SL(2; C ) to the ohomology of the well-known minimal resolutionof the Kleinian singularity C 2=G. Gonzalez-Sprinberg and Verdier [10℄ inter-preted the MKay orrespondene as an isomorphism on K theory, observingthat the representation ring of G is equal to the G-equivariant K theory of C 2 .More preisely, they identify a basis of the K theory of the resolution onsist-ing of the lasses of ertain tautologial sheaves assoiated to the irreduiblerepresentations of G.It is natural to ask what happens when C 2 is replaed by an arbitrary non-singular quasiprojetive omplex variety M of dimension n and G by a �nitegroup of automorphisms of M , with the property that the stabiliser subgroupof any point x 2M ats on the tangent spae TxM as a subgroup of SL(TxM).Thus the anonial bundle !M is loally trivial as a G-sheaf, in the sense thatevery point of M has a G-invariant open neighbourhood on whih there isa nonvanishing G-invariant n-form. This implies that the quotient varietyX =M=G has only Gorenstein singularities.A natural generalisation of the MKay orrespondene would then be an iso-morphism between theG-equivariant K theory ofM and the ordinary K theoryof a repant resolution Y of X, that is, a resolution of singularities � : Y ! Xsuh that � �(!X) = !Y . In the lassial MKay ase, the minimal resolution1991 Mathematis Subjet Classi�ation. Primary 14E15, 14J30; Seondary18E20,18F20,19L47.Key words and phrases. Quotient singularities, MKay orrespondene, derivedategories. 1



2 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDis repant, but in higher dimensions repant resolutions do not neessarilyexist and, even when they do, they are not usually unique. However, it is nowknown that repant resolutions of Gorenstein quotient singularities do existin dimension n = 3, through a ase by ase analysis of the loal linear ationsby Ito, Markushevih and Roan (see Roan [21℄ and referenes given there). Indimension � 4, even suh quotient singularities only have repant resolutionsin rather speial ases.In this paper, we take the point of view that the appropriate way to for-mulate and prove the MKay orrespondene on K theory is to lift it to anequivalene of derived ategories. In itself, this is not a new observation and itturns out that it was atually known to Gonzalez-Sprinberg and Verdier (seealso Reid [20, Conjeture 4.1℄). Furthermore, if the resolution is onstrutedas a moduli spae of G-equivariant objets on M , then the orrespondeneshould be given by a Fourier-Mukai transform determined by the universalobjet. This is the natural analogue of the lassial statement that the tau-tologial sheaves are a basis of the K theory. Both points of view are takenby Kapranov and Vasserot [15℄ in proving the derived ategory version of thelassial two dimensional MKay orrespondene.The new and remarkable feature is that, by using the derived ategoryand Fourier-Mukai transforms and, in partiular, tehniques developed in [6℄and [7℄, the proess of proving the equivalene of derived ategories|whenit works|also yields a proof that the moduli spae is a repant resolution.More spei�ally, we will give a suÆient ondition for a ertain natural mod-uli spae, namely Nakamura's G-Hilbert sheme, to be a repant resolutionfor whih the MKay orrespondene holds as an equivalene of derived ate-gories. This ondition is automatially satis�ed in dimensions 2 and 3. Thuswe simultaneously prove the existene of one repant resolution of X =M=Gin three dimensions, without a ase by ase analysis, and verify the MKayorrespondene for this resolution. We do not prove the MKay orrespon-dene for an arbitrary repant resolution although our methods should easilyadapt to more general moduli spaes of G-sheaves on M , whih may providedi�erent repant resolutions to the one onsidered here.The G-Hilbert sheme G-HilbM was introdued by Nakamura as a goodandidate for a repant resolution of M=G. It parametrises G-lusters or`sheme theoreti G-orbits' onM : reall that a luster Z �M is a zero dimen-sional subsheme, and a G-luster is a G-invariant luster whose global se-tions �(OZ) are isomorphi to the regular representation C [G℄ of G. Clearly, aG-luster has length jGj and a free G-orbit is a G-luster. There is a Hilbert{Chow morphism � : G-HilbM �! X;whih, on losed points, sends a G-luster to the orbit supporting it. Notethat � is a projetive morphism, is onto and is birational on one omponent.



THE MCKAY CORRESPONDENCE 3When M = C 3 and G � SL(3; C ) is Abelian, Nakamura [18℄ proved thatG-HilbM is irreduible and is a repant resolution of X (ompare also Reid[20℄ and Craw and Reid [8℄). He onjetured that the same result holds foran arbitrary �nite subgroup G � SL(3; C ). Ito and Nakajima [12℄ observedthat the onstrution of Gonzalez-Sprinberg and Verdier [10℄ is the M = C 2ase of a natural orrespondene between the equivariant K theory of M andthe ordinary K theory of G-HilbM . They proved that this orrespondene isan isomorphism when M = C 3 and G � SL(3; C ) is Abelian by onstrutingan expliit resolution of the diagonal in Beilinson style. Our approah viaFourier{Mukai transforms leaves this resolution of the diagonal impliit (itappears as the objet Q of D(Y � Y ) in Setion 6), and seems to give a morediret argument. Two of the main onsequenes of the results of this paperare that Nakamura's onjeture is true and that the natural orrespondeneon K theory is an isomorphism for all �nite subgroups of SL(3; C ).Sine it is not known whether G-HilbM is irreduible or even onnetedin general, we atually take as our initial andidate for a resolution Y theirreduible omponent of G-HilbM ontaining the free G-orbits, that is, theomponent mapping birationally to X. The aim is to show that Y is a repantresolution, and to onstrut an equivalene between the derived ategoriesD(Y ) of oherent sheaves on Y and DG(M) of oherent G-sheaves on M . Amore detailed analysis of the equivalene shows that Y = G-HilbM when Mhas dimension 3.We now desribe the orrespondene and our results in more detail. LetM be a nonsingular quasiprojetive omplex variety of dimension n and letG � Aut(M) be a �nite group of automorphisms ofM suh that !M is loallytrivial as a G-sheaf. Put X =M=G and let Y � G-HilbM be the irreduibleomponent ontaining the free orbits, as desribed above. Write Z for theuniversal losed subsheme Z � Y �M and p and q for its projetions to Yand M . There is a ommutative diagram of shemes
XY MZ��R� ��	 ���	p ��Rq

in whih q and � are birational, p and � are �nite, and p is at. Let G attrivially on Y and X, so that all morphisms in the diagram are equivariant.De�ne the funtor � = Rq� Æ p� : D(Y ) �! DG(M);where a sheaf E on Y is viewed as a G-sheaf by giving it the trivial ation.Note that p� is already exat, so we do not need to write Lp�. Our main resultis the following.



4 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDTheorem 1.1. Suppose that the �bre produtY �X Y = n(y1; y2) 2 Y � Y ��� �(y1) = �(y2)o � Y � Yhas dimension � n + 1. Then Y is a repant resolution of X and � is anequivalene of ategories.When n � 3 the ondition of the theorem always holds beause the exep-tional lous of Y ! X has dimension � 2. In this ase we an also show thatG-HilbM is irreduible, so we obtainTheorem 1.2. Suppose n � 3. Then G-HilbM is irreduible and is a repantresolution of X, and � is an equivalene of ategories.The ondition of Theorem 1.1 also holds whenever G preserves a omplexsympleti form on M and Y is a repant resolution of X, beause suh aresolution is sympleti and hene semismall (see Verbitsky [24℄, Theorem 2.8and ompare Kaledin [14℄).Corollary 1.3. Suppose M is a omplex sympleti variety and G ats bysympleti automorphisms. Assume that Y is a repant resolution of X. Then� is an equivalene of ategories.Note that the ondition of Theorem 1.1 ertainly fails in dimension � 4whenever Y ! X has an exeptional divisor over a point. This is to beexpeted sine there are many examples of �nite subgroups G � SL(4; C )for whih the quotient singularity C 4=G has no repant resolution and alsoexamples where, although repant resolutions do exist, G-Hilb �C 4� is notone.Conventions. We work throughout in the ategory of shemes over C . Apoint of a sheme always means a losed point.Aknowledgements. The �rst author would like to thank the ICTP, Triesteand EPSRC for �nanial support whilst this paper was written.2. Category theoryThis setion ontains some basi ategory theory, most of whih is wellknown. The only nontrivial part is Setion 2.6 where we state a ondition foran exat funtor between triangulated ategories to be an equivalene.2.1. Triangulated ategories. A triangulated ategory is an additive at-egory A equipped with a shift automorphism TA : A ! A : a 7! a[1℄ and aolletion of distinguished trianglesa1 f1��! a2 f2��! a3 f3��! a1[1℄of morphisms of A satisfying ertain axioms (see Verdier [25℄). We write a[i℄for T iA(a) and HomiA(a1; a2) = HomA(a1; a2[i℄):



THE MCKAY CORRESPONDENCE 5A triangulated ategory A is trivial if every objet is a zero objet.The prinipal example of a triangulated ategory is the derived ategoryD(A) of an Abelian ategory A. An objet of D(A) is a bounded omplexof objets of A up to quasi-isomorphism, the shift funtor moves a omplexto the left by one plae and a distinguished triangle is the mapping oneof a morphism of omplexes. In this ase, for objets a1; a2 2 A, one hasHomiD(A)(a1; a2) = ExtiA(a1; a2).A funtor F : A ! B between triangulated ategories is exat if it om-mutes with the shift automorphisms and takes distinguished triangles of A todistinguished triangles of B. For example, derived funtors between derivedategories are exat.2.2. Adjoint funtors. Let F : A ! B and G : B ! A be funtors. Anadjuntion for (G;F ) is a bifuntorial isomorphismHomA(G�;�) �= HomB(�; F�):In this ase, we say that G is left adjoint to F or that F is right adjoint toG. When it exists, a left or right adjoint to a given funtor is unique up toisomorphism of funtors. The adjoint of a omposite funtor is the ompositeof the adjoints. An adjuntion determines and is determined by two naturaltransformations " : GÆF ! idA and � : idB ! F ÆG that ome from applyingthe adjuntion to 1Fa and 1Gb respetively (see Ma Lane [16, IV.1℄ for moredetails).The basi adjuntions we use in this paper are desribed in Setion 3.1below.2.3. Fully faithful funtors and equivalenes. A funtor F : A ! B isfully faithful if for any pair of objets a1, a2 of A, the mapF : HomA(a1; a2)! HomB(Fa1; Fa2)is an isomorphism. One should think of F as an `injetive' funtor. This ismore lear when F has a left adjointG : B ! A (or a right adjointH : B ! A),in whih ase F is fully faithful if and only if the natural transformationG Æ F ! idA (or idA ! H Æ F ) is an isomorphism.A funtor F is an equivalene if there is an `inverse' funtor G : B ! A suhthat G Æ F �= idA and F Æ G �= idB. In this ase G is both a left and rightadjoint to F (see Ma Lane [16, IV.4℄). In pratie, we show that F is anequivalene by writing down an adjoint (a priori, one-sided) and proving thatit is an inverse. One simple example of this is the following.Lemma 2.1. Let A and B be triangulated ategories and F : A ! B a fullyfaithful exat funtor with a right adjoint H : B ! A. Then F is an equiva-lene if and only if H �= 0 implies  �= 0 for all objets  2 B.



6 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDProof. By assumption � : idA ! H Æ F is an isomorphism, so F is an equiva-lene if and only if " : F ÆH ! idB is an isomorphism. Thus the `only if' partof the lemma is immediate, sine  �= FH.For the `if' part, take any objet b 2 B and embed the natural adjuntionmap "b in a triangle(1) ! FHb "b��! b! [1℄:If we apply H to this triangle, then H("b) is an isomorphism, beause �Hb isan isomorphism and H("b)Æ�Hb = 1Hb ([16, IV.1, Theorem 1℄). Hene H �= 0and so  �= 0 by hypothesis. Thus "b is an isomorphism, as required. �One may understand this lemma in a broader ontext as follows. Thetriangle (1) shows that, when F is fully faithful with right adjoint H, there isa `semi-orthogonal' deomposition B = (ImF;KerH), whereImF = fb 2 B : b �= Fa for some a 2 Ag;KerH = f 2 B : H �= 0g:Sine F is fully faithful, the fat that b �= Fa for some objet a 2 A neessarilymeans that b �= FHb, so only zero objets are in both subategories. The semi-orthogonality ondition also requires that HomB(b; ) = 0 for all b 2 ImF and 2 KerH, whih is immediate from the adjuntion. The lemma then has thevery reasonable interpretation that if KerH is trivial, then ImF = B and Fis an equivalene. Note that if G is a left adjoint for F , then there is a similarsemi-orthogonal deomposition on the other side B = (KerG; ImF ) and aorresponding version of the lemma. For more details on semi-orthogonaldeompositions see Bondal [4℄.2.4. Spanning lasses and orthogonal deomposition. A spanning lassfor a triangulated ategory A is a sublass 
 of the objets of A suh that forany objet a 2 AHomiA(a; !) = 0 for all ! 2 
; i 2 Z implies a �= 0and HomiA(!; a) = 0 for all ! 2 
; i 2 Z implies a �= 0:The following easy lemma is [6, Example 2.2℄.Lemma 2.2. The set of skysraper sheaves fOx : x 2 Xg on a nonsingularprojetive variety X is a spanning lass for D(X).A triangulated ategory A is deomposable as an orthogonal diret sum oftwo full subategories A1 and A2 if every objet of A is isomorphi to a diretsum a1 � a2 with aj 2 Aj, and ifHomiA(a1; a2) = HomiA(a2; a1) = 0for any pair of objets aj 2 Aj and all integers i. The ategory A is inde-omposable if for any suh deomposition one of the two subategories Ai is



THE MCKAY CORRESPONDENCE 7trivial. For example, if X is a sheme, D(X) is indeomposable preisely whenX is onneted. For more details see Bridgeland [6℄.2.5. Serre funtors. The properties of Serre duality on a nonsingular pro-jetive variety were abstrated by Bondal and Kapranov [5℄ into the notion ofa Serre funtor on a triangulated ategory. Let A be a triangulated ategoryin whih all the Hom sets are �nite dimensional vetor spaes. A Serre funtorfor A is an exat equivalene S : A! A induing bifuntorial isomorphismsHomA(a; b)! HomA(b; S(a))_ for all a; b 2 Athat satisfy a simple ompatibility ondition (see [5℄). When a Serre funtorexists, it is unique up to isomorphism of funtors. We say that A has trivialSerre funtor if for some integer i the shift funtor [i℄ is a Serre funtor for A.The main example is the bounded derived ategory of oherent sheavesD(X) on a nonsingular projetive variety X, having the Serre funtorSX(�) = (�
 !X)[dimX℄:Thus D(X) has trivial Serre funtor if and only if the anonial bundle of Xis trivial.2.6. A riterion for equivalene. Let F : A ! B be an exat funtor be-tween triangulated ategories with Serre funtors SA and SB. Assume that Fhas a left adjoint G : B ! A. Then F also has a right adjointH = SAÆGÆS�1B .Theorem 2.3. With assumptions as above, suppose also that there is a span-ning lass 
 for A suh thatF : HomiA(!1; !2)! HomiB(F!1; F!2)is an isomorphism for all i 2 Z and all !1; !2 2 
. Then F is fully faithful.Proof. See [6, Theorem 2.3℄. �Theorem 2.4. Suppose further that A is nontrivial, that B is indeomposableand that FSA(!) �= SBF (!) for all ! 2 
. Then F is an equivalene ofategories.Proof. Consider an objet b 2 B. For any ! 2 
 and i 2 Z we have isomor-phisms HomiA(!;Gb) = HomiA(Gb; SA!)_ = HomiB(b; FSA!)_= HomiB(b; SBF!)_ = HomiB(F!; b) = HomiA(!;Hb);using Serre duality and the adjuntions for (G;F ) and (F;H). Sine 
 is aspanning lass we an onlude that Gb �= 0 preisely when Hb �= 0. Thenthe result follows from [6, Theorem 3.3℄. �The proof of Theorem 3.3 in [6℄ may be understood as follows. If KerH �KerG, then the semiorthogonal deomposition desribed at the end of Se-tion 2.3 beomes an orthogonal deomposition. Hene KerH must be trivial,



8 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDbeause B is indeomposable and A, and hene ImF , is nontrivial. ThusImF = B and F is an equivalene.3. Derived ategories of sheavesThis setion is onerned with various general properties of omplexes ofOX-modules on a sheme X. Note that all our shemes are of �nite typeover C . Given a sheme X, de�ne Dq(X) to be the (unbounded) derivedategory of the Abelian ategory Qoh(X) of quasioherent sheaves on X.Also de�ne D(X) to be the full subategory of Dq(X) onsisting of omplexeswith bounded and oherent ohomology.3.1. Geometri adjuntions. Here we desribe three standard adjuntionsthat arise in algebrai geometry and are used frequently in what follows. Forthe �rst example, let X be a sheme and E 2 D(X) an objet of �nite homo-logial dimension. Then the derived dualE_ = RHomOX (E;OX)also has �nite homologial dimension, and the funtor � L
 E is both left andright adjoint to the funtor � L
 E_.For the seond example take a morphism of shemes f : X ! Y . Thefuntor Rf� : Dq(X) �! Dq(Y )has the left adjoint Lf � : Dq(Y ) �! Dq(X):If f is proper then Rf� takes D(X) into D(Y ). If f has �nite Tor dimension(for example if f is at, or Y is nonsingular) then Lf � takes D(Y ) into D(X).The third example is Grothendiek duality. Again take a morphism ofshemes f : X ! Y . The funtor Rf� has a right adjointf ! : Dq(Y ) �! Dq(X)and moreover, if f is proper and of �nite Tor dimension, there is an isomor-phism of funtors(2) f !(�) �= Lf �(�) L
 f !(OY ):Neeman [19℄ has reently given a ompletely formal proof of these statementsin terms of the Brown representability theorem.Let X be a nonsingular projetive variety of dimension n and write f : X !Y = Spe(C ) for the projetion to a point. In this ase f !(OY ) = !X [n℄. Theabove statement of Grothendiek duality implies that the funtor(3) SX(�) = (�
 !X)[n℄is a Serre funtor on D(X).



THE MCKAY CORRESPONDENCE 93.2. Duality for quasiprojetive shemes. In order to apply Grothendiekduality on quasiprojetive shemes, we need to restrit attention to sheaveswith ompat support. The support of an objet E 2 D(X) is the lous of Xwhere E is not exat, that is, the union of the supports of the ohomologysheaves of E. It is always a losed subset of X.Given a sheme X, de�ne the ategory D(X) to be the full subategoryof D(X) onsisting of omplexes whose support is proper. Note that when Xitself is proper, D(X) is just the usual derived ategory D(X).If X is a quasi-projetive variety and i : X ,! X is some projetive losure,then the funtor i� embeds D(X) as a full triangulated subategory of D(X).By resolution of singularities, if X is non-singular we an assume that X istoo. Then the Serre funtor on D(X) restrits to give a Serre funtor onD(X). Thus if X is a nonsingular quasiprojetive variety of dimension n, theategory D(X) has a Serre funtor given by (3).The argument used to prove Lemma 2.2 is easily generalised to give thestatement that the set of skysraper sheaves fOx : x 2 Xg on a non-singularquasi-projetive variety X is a spanning lass for D(X).3.3. Crepant resolutions. Let X be a variety and f : Y ! X a resolutionof singularities. Given a point x 2 X de�ne Dx(Y ) to be the full subategoryof D(Y ) onsisting of objets whose support is ontained in the �bre f�1(x).We have the following ategorial riterion for f to be repant.Lemma 3.1. Assume that X has rational singularities, that is, Rf�OY = OX .Suppose Dx(Y ) has trivial Serre funtor for eah x 2 X, Then X is Gorensteinand f : Y ! X is a repant resolution.Proof. The Serre funtor on Dx(Y ) is the restrition of the Serre funtor onD(Y ). Hene, by Setion 3.2, the ondition implies that for eah x 2 Xthe restrition of the funtor (� 
 !Y ) to the ategory Dx(Y ) is isomorphito the identity. Sine Dx(Y ) ontains the struture sheaves of all fattenedneighbourhoods of the �bre f�1(x) this implies that the restrition of !Y toeah formal �bre of f is trivial. To get the result, we must show that !X isa line bundle and that f �!X = !Y . Sine !X = f�!Y , this is ahieved by thefollowing lemma. �Lemma 3.2. Assume that X has rational singularities. Then a line bundleL on Y is the pullbak f �M of some line bundle M on X if and only if therestrition of L to eah formal �bre of f is trivial. Moreover, when this holds,M = f�L.Proof. For eah point x 2 X, the formal �bre of f over x is the �bre produtY �X Spe( bOX;x):The restrition of the pullbak of a line bundle fromX to eah of these shemesis trivial beause a line bundle has trivial formal stalks at points.



10 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDFor the onverse suppose that the restrition of L to eah of these formal�bres is trivial. The theorem on formal funtions shows that the ompletion ofthe stalks of the sheaves Rif�OY andRif�L at any point x 2 X are isomorphifor eah i. Sine X has rational singularities it follows that Rif�L = 0 for alli > 0, and M = f�L is a line bundle on X.Sine f �M is torsion free, the natural adjuntion map � : f �f�L ! L isinjetive, so there is a short exat sequene(4) 0! f �f�L ���! L! Q! 0:By the projetion formula and the fat that X has rational singularities,Rif�(f �M) =M 
Rif�OY = 0 for all i > 0:The fat that � is the unit of the adjuntion for (f �; f�) implies that f�� hasa left inverse, and in partiular is surjetive. Applying f� to (4) we onludethat f�Q = 0.Using the theorem on formal funtions again, we an dedue thatf�(Q
 L�1) = 0:In partiular, Q 
 L�1 has no non-zero global setions. Tensoring (4) withL�1 gives a ontradition unless Q = 0. Hene � is an isomorphism and weare done. �4. G-sheavesThroughout this setion G is a �nite group ating on a sheme X (on theleft) by automorphisms. As in the last setion, all shemes are of �nite typeover C . We list some results we need onerning the ategory of sheaves onX equipped with a ompatible G ation, or `G-sheaves' for short. Sine Gis �nite, most of the proofs are trivial and are left to the reader. The mainpoint is that natural onstrutions involving sheaves on X are anonial, soommute with automorphisms of X.4.1. Sheaves and funtors. A G-sheaf E on X is a quasioherent sheaf ofOX-modules together with a lift of the G ation to E. More preisely, for eahg 2 G, there is a lift �Eg : E ! g�E satisfying �E1 = idE and �Ehg = g� ��Eh �Æ�Eg .If E and F are G-sheaves, then there is a (right) ation of G on HomX(E; F )given by �g = ��Fg ��1 Æ g�� Æ�Eg and the spaes G-HomX(E; F ) of G-invariantmaps give the morphisms in the Abelian ategories QohG(X) and CohG(X)of G-sheaves.The ategory QohG(X) has enough injetives (Grothendiek [9, Proposi-tion 5.1.2℄) so we may take G-equivariant injetive resolutions. Sine G is�nite, if X is a quasiprojetive sheme there is an ample invertible G-sheafon X and so we may also take G-equivariant loally free resolutions. Thefuntors G-ExtiX(�;�) are the G-invariant parts of ExtiX(�;�) and are thederived funtors of G-HomX(�;�). Thus if X is nonsingular of dimension n,



THE MCKAY CORRESPONDENCE 11so that Qoh(X) has global dimension n, then the ategory QohG(X) alsohas global dimension n.The loal funtorsHom and 
 are de�ned in the obvious way on QohG(X),as are pullbak f � and pushforward f� for any G-equivariant morphism ofshemes f : X ! Y . Thus, for example, �f�Eg = f ��Eg . Natural isomorphismssuh as HomX(f �E; F ) �= HomY (E; f�F ) are anonial, that is, ommute withisomorphisms of the base, and hene areG-equivariant. Therefore they restritto natural isomorphismsG-HomX(f �E; F ) �= G-HomY (E; f�F ):In other words, f � and f� are also adjoint funtors between the ategoriesQohG(X) and QohG(Y ).Similarly, the natural isomorphisms impliit in the projetion formula, atbase hange, et. are anonial and hene G-equivariant.It seems worthwhile to single out the following point:Lemma 4.1. Let E and F be G-sheaves on X. Then, as a representation ofG, we have a diret sum deompositionHomX(E; F ) = kMi=0 G-HomX(E 
 �i; F )
 �iover the irreduible representations f�0; � � � ; �kg.Proof. The result amounts to showing thatG-Hom(�i;HomX(E; F )) = G-HomX(E 
 �i; F ):Let f : X ! Y = Spe(C ) be projetion to a point, with G ating trivially onY so that the map is equivariant. Then QohG(Y ) is just the ategory of C [G℄-modules. Note that HomX(E; F ) = f�HomOX(E; F ) and f ��i = OX 
 �i, sothat the adjuntion between f � and f� givesG-HomY (�i; f�HomOX (E; F )) = G-HomX(OX 
 �i;HomOX (E; F ))= G-HomX(E 
 �i; F );as required. �4.2. Trivial ations. If the group G ats trivially on X, then any G-sheaf Edeomposes as a diret sum E =Mi Ei 
 �iover the irreduible representations f�0; �1; : : : ; �kg of G (where �0 = 1 isthe trivial representation). The sheaves Ei are just ordinary sheaves on X.Furthermore, G-HomX(Ei 
 �i; Ej 
 �j) = 0 for i 6= j. Thus the ategoryQohG(X) deomposes as a diret sum LiQohi(X) and eah summand isequivalent to Qoh(X).



12 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDIn partiular, every G-sheaf E has a �xed part [E℄G and the funtor[�℄G : QohG(X)! Qoh(X)is the left and right adjoint to the funtor�
 �0 : Qoh(X)! QohG(X);that is, `let G at trivially'. Both funtors are exat.4.3. Derived ategories. The G-equivariant derived ategory DG(X) is de-�ned to be the full subategory of the (unbounded) derived ategory of QohG(X)onsisting of omplexes with bounded and oherent ohomology.The usual derived funtors RHom, L
, Lf � and Rf� may be de�ned on theequivariant derived ategory, and, as for sheaves, the standard properties ofadjuntions, projetion formula and at base hange then hold beause theimpliit natural isomorphisms are suÆiently anonial.One way to obtain an equivariant Grothendiek duality is to refer to Nee-man's results [19℄. Let f : X ! Y be an equivariant morphism of shemes.The only thing to hek is that equivariant pushdown Rf� ommutes withsmall oproduts. This is proved exatly as in [19℄. Then the funtor Rf� hasa right adjoint f !, and (2) holds when f is proper and of �nite Tor dimension.As in the non-equivariant ase this implies that if X is a nonsingular quasi-projetive variety of dimension n, the full subategory DG (X) � DG(X) on-sisting of objets with ompat supports has a Serre funtorSX(�) = (�
 !X)[n℄;where !X is the anonial bundle of X with its indued G-struture.4.4. Indeomposability. If G ats trivially on X then the results of Se-tion 4.2 show that DG(X) deomposes as a diret sum of orthogonal subat-egories indexed by the irreduible representations of G. More generally it iseasy to see that DG(X) is deomposable unless G ats faithfully. We need theonverse of this statement.Lemma 4.2. Suppose a �nite group G ats faithfully on a quasiprojetivevariety X. Then DG(X) is indeomposable.Proof. Suppose that DG(X) deomposes as an orthogonal diret sum of twosubategories A1 and A2. Any indeomposable objet of DG(X) lies in eitherA1 or A2 and HomDG(X)(a1; a2) = 0 for all a1 2 A1; a2 2 A2:Sine the ation of G is faithful, the general orbit is free. Let D = G � x be afree orbit. Then OD is indeomposable as a G-sheaf. Suppose without loss ofgenerality that OD lies in A1.Let �i be an irreduible representation of G. The sheaf OX 
 �i is inde-omposable in DG(X) and there exists an equivariant map OX 
 �i ! OD so



THE MCKAY CORRESPONDENCE 13OX
�i also lies inA1. Any indeomposable G-sheaf E supported in dimension0 has a setion, so by Lemma 4.1 there is an equivariant map OX 
 �i ! E,and thus E lies in A1.Finally given an indeomposable G-sheaf F , take an orbit G � x ontainedin Supp(F ) and let i : G � x ,! X be the inlusion. Then i�i�(F ) is supportedin dimension 0 and there is an equivariant map F ! i�i�(F ), so F also lies inA1. Now A2 is orthogonal to all sheaves, hene is trivial. �5. The intersetion theoremOur proof that G-HilbM is nonsingular follows an idea developed in Bridge-land and Maioia [7℄ for moduli spaes over K3 �brations, and uses the fol-lowing famous and diÆult result of ommutative algebra:Theorem 5.1 (Intersetion theorem). Let (A;m) be a loal C -algebra of di-mension d. Suppose that0!Ms !Ms�1 ! � � � !M0 ! 0is a omplex of �nitely generated free A-modules with eah homology moduleHi(M�) an A-module of �nite length. Then s � d. Moreover, if s = d andH0(M�) �= A=m, then Hi(M�) = 0 for all i 6= 0,and A is regular.The basi idea is as follows. Serre's riterion states that any �nite lengthA-module has homologial dimension � d and that A is regular preisely ifthere is a �nite length A-module whih has homologial dimension exatlyd. The intersetion theorem gives orresponding statements for omplexes ofA-modules with �nite length homology. As a rough slogan, \regularity is aproperty of the derived ategory". For the main part of the proof, see Roberts[22℄, [23℄; for the �nal lause, see [7℄.We may rephrase the intersetion theorem using the language of supportand homologial dimension. If X is a sheme and E an objet in D(X), thenit is easy to hek [7℄ that, for any point x 2 X,x 2 SuppE () HomiD(X)(E;Ox) 6= 0 for some i 2 Z.The homologial dimension of a nonzero objet E 2 D(X), written homdimE,is the smallest nonnegative integer s suh that E is isomorphi in D(X) to aomplex of loally free sheaves on X of length s (that is, having s+ 1 terms).If no suh integer exists we put homdimE =1. One an prove [7℄ that if Xis quasiprojetive, and n is a nonnegative integer, then homdimE � n if andonly if there is an integer j suh that for all points x 2 XHomiD(X)(E;Ox) = 0 unless j � i � j + n:The two parts of Theorem 5.1 now beome the following (f. [7℄).



14 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDCorollary 5.2. Let X be a sheme and E a nonzero objet of D(X). Thenodim(SuppE) � homdimE:Corollary 5.3. Let X be a sheme, and �x a point x 2 X of odimension n.Suppose that there is an objet E of D(X) suh that for all points z 2 X, andany integer i,HomiD(X)(E;Oz) = 0 unless z = x and 0 � i � n:Suppose also that H0(E) �= Ox. Then X is nonsingular at x and E �= Ox.6. The projetive aseThe aim of this setion is to prove Theorem 1.1 under the additional as-sumption thatM is projetive. The quasiprojetive ase involves some furthertehnial diÆulties that we deal with in the next setion. Take notation asin the Introdution. We break the proof up into 7 steps.Step 1. Let �Y : Y �M ! Y and �M : Y �M !M denote the projetions.The funtor � may be rewritten�(�) �= R�M�(OZ 
 ��Y (�
 �0)):Note that OZ has �nite homologial dimension, beause Z is at over Y andM is nonsingular. Hene the derived dual O_Z = RHomOY�M (OZ ;OY�M)also has �nite homologial dimension and we may de�ne another funtor	: DG(M)! D(Y ), by the formula	(�) = [R�Y�(P L
 ��M(�))℄G;where P = O_Z 
 ��M (!M)[n℄.Now 	 is left adjoint to � beause of the three standard adjuntions de-sribed in Setion 3.1. The funtor ��M is the left adjoint to R�M;�. Thefuntor � 
OZ has the (left and right) adjoint �
 O_Z . Finally the funtor�!Y has the left adjoint R�Y� and�!Y (�) = ��Y (�)
 ��M(!M)[n℄:Step 2. The omposite funtor 	 Æ � is given byR�2�(Q L
 ��1(�));where �1 and �2 are the projetions of Y � Y onto its fators, and Q is someobjet of D(Y � Y ). This is just omposition of orrespondenes (see Mukai[17, Proposition 1.3℄).If iy : fyg�Y ,! Y �Y is the losed embedding then Li�y(Q) = 	�Oy. Forany pair of points y1; y2, one has O(y1;y2) = iy1;�Oy2 so that(5)HomiD(Y�Y )(Q;O(y1;y2)) = HomiD(Y )(	�Oy1 ;Oy2) = G-ExtiM(OZy1 ;OZy2 );using the adjuntions for (Li�; i�) and (	;�). Our �rst objetive is to showthat Q is supported on the diagonal � � Y � Y , or equivalently that the



THE MCKAY CORRESPONDENCE 15groups in (5) vanish unless y1 = y2. When n = 3 this plays the rôle of theassumption (4.8) of Ito and Nakajima [12℄.Step 3. Let Z1; Z2 �M be G-lusters. ThenG-HomM(OZ1 ;OZ2) = (C if Z1 = Z2,0 otherwise.To see this note that OZ is generated as an OM module by any nonzeroonstant setion. But, sine the global setions �(OZ) form the regular rep-resentation of G, the onstant setions are preisely the G-invariant setions.Hene any equivariant morphism maps a generator to a salar multiple of agenerator and so is determined by that salar.Let y1 and y2 be distint points of Y . Serre duality, together with ourassumption that !M is loally trivial as a G-sheaf implies thatG-ExtnM(OZy1 ;OZy2 ) = G-HomM(OZy2 ;OZy1 ) = 0;so that G-ExtpM(OZy1 ;OZy2 ) = 0 unless 1 � p � n� 1.Hene Q restrited to (Y � Y ) n� has homologial dimension � n� 2.Step 4. Now we apply the intersetion theorem. If y1 and y2 are points ofY suh that �(y1) 6= �(y2) then the orresponding lusters Zy1 and Zy2 aredisjoint, so that the groups in (5) vanish. Thus the support of Q j(Y�Y )n� isontained in the subsheme Y �X Y . By assumption this has odimension> n� 2 so Corollary 5.2 implies thatQ j(Y�Y )n� �= 0;that is, Q is supported on the diagonal.Step 5. Fix a point y 2 Y , and put E = 	�(Oy). We proved above that E issupported at the point y. We laim that H0(E) = Oy. Note that Corollary 5.3then implies that Y is nonsingular at y and E �= Oy.To prove the laim, note that there is a anonial map E ! Oy, so weobtain a triangle C ! E ! Oy ! C[1℄for some objet C of D(Y ). Using the adjoint pair (	;�), this gives a longexat sequene� � � ! Hom0D(Y )(Oy;Oy)! Hom0DG(M)(�Oy;�Oy)! Hom0D(Y )(C;Oy)! Hom1D(Y )(Oy;Oy) "�! Hom1DG(M)(�Oy;�Oy)! � � � :The homomorphism " is the Kodaira{Spener map for the family of lus-ters fOZy : y 2 Y g (Bridgeland [6, Lemma 4.4℄). This is injetive beauseG-HilbM is a �ne moduli spae for G-lusters on M . It follows thatHomiD(Y )(C;Oy) = 0 for all i � 0.



16 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDAn easy spetral sequene argument (see [6, Example 2.2℄), shows thatH0(C) =0. Taking ohomology sheaves of the above triangle gives H0(E) = Oy, whihproves the laim.Step 6. We have now proved that Y is nonsingular, and that for any pair ofpoints y1; y2 2 Y , the homomorphisms�: ExtiY (Oy1 ;Oy2)! G-ExtiM(OZy1 ;OZy2 )are isomorphisms. By assumption, the ation of G on M is suh that !M istrivial as a G-sheaf on an open neighbourhood of eah orbit G � x �M . Thisimplies that OZy 
 !M �= OZyin CohG(M), for eah y 2 Y . Applying Theorem 2.4 shows that � is anequivalene of ategories.Step 7. It remains to show that � : Y ! X is repant. Take a point x 2X = M=G. The equivalene � restrits to give an equivalene between thefull subategories Dx(Y ) � D(Y ) and DGx (M) � DG(M) onsisting of objetssupported on the �bre ��1(x) and the orbit ��1(x) respetively.The ategory DGx (M) has trivial Serre funtor beause !M is trivial as aG-sheaf on a neighbourhood of ��1(x). Thus Dx(Y ) also has trivial Serrefuntor and Lemma 3.1 gives the result.This ompletes the proof of Theorem 1.1 in the ase that Y is projetive.7. The quasiprojetive aseIn this setion we omplete the proof of Theorem 1.1. One again, takenotation as in the Introdution. The problem with the argument of the lastsetion is that when M is not projetive, Grothendiek duality in the form weneed only applies to objets with ompat support. To get round this we �rsttake a projetive losure M of M and de�ne adjoint funtors as before. Thenwe restrit � to a funtor � : D(Y ) �! DG (M):The argument of the last setion arries through to show that Y is nonsingularand repant and that � is an equivalene. It remains for us to show that�: D(Y )! DG(M) is also an equivalene.Step 8. The funtor � has a right adjoint�(�) = [p� Æ q!(�)℄G = [R�Y �(!Z=M L
 ��M (�))℄G:As before, the omposition � Æ � is given byR�2�(Q L
 ��1(�));where �1 and �2 are the projetions of Y � Y onto its fators, and Q is someobjet of D(Y � Y ).



THE MCKAY CORRESPONDENCE 17Sine � is an equivalene, ��Oy = Oy for any point y 2 Y , and it followsthat Q is atually the pushforward of a line bundle L on Y to the diagonal inY � Y . The funtor � Æ � is then just twisting by L, and to show that � isfully faithful we must show that L is trivial.There is a morphism of funtors " : id! � Æ�, whih for any point y 2 Ygives a ommutative diagram OY "(OY )���! Lf??y ??yL
fOy "(Oy)���! Oywhere f is nonzero. Sine " is an isomorphism on the subategory D(Y ), themaps "(Oy) are all isomorphisms, so the setion "(OY ) is an isomorphism.Step 9. The fat that � is an equivalene follows from Lemma 2.1 one weshow that �(E) �= 0 =) E �= 0 for any objet E of DG(M).Suppose �(E) �= 0. Using the adjuntion for (�;�),HomiDG(M)(B;E) = 0 for all i,whenever B �= �(A) for some objet A 2 D(Y ). In partiular, this holds forany B with ompat support.If E is nonzero, let D = G � x be an orbit of G ontained in the support ofE. Let i : D ,!M denote the inlusion, a projetive equivariant morphism ofshemes. Then the adjuntion morphism i�i!(E)! E is nonzero, whih givesa ontradition.This ompletes the proof of Theorem 1.1. �8. Nakamura's onjetureReall that in Theorem 1.1 we took the spae Y to be an irreduible ompo-nent of G-HilbM . Note that when Y is nonsingular and � is an equivalene,Y is atually a onneted omponent. This is simply beause for any pointy 2 Y , the bijetion�: Ext1Y (Oy;Oy)! G-Ext1M(OZy ;OZy)identi�es the tangent spae of Y at y with the tangent spae of G-HilbM aty. In this setion we wish to go further and prove that when M has dimension3, G-HilbM is in fat onneted.Proof of Nakamura's onjeture. Suppose by ontradition that there existsa G-luster Z � M not ontained among the fZy : y 2 Y g. Sine � is anequivalene we an take an objet E 2 D(Y ) suh that �(E) = OZ . Theargument of Setion 6, Step 3 shows that for any point y 2 YHomiD(Y )(E;Oy) = G-ExtiM(OZ ;OZy) = 0 unless 1 � i � 2:



18 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDThis implies that E has homologial dimension 1, or more preisely, that E isquasi-isomorphi to a omplex of loally free sheaves of the form(6) 0! L2 f��! L1 ! 0:But OZ is supported on some G-orbit in M , so E is supported on a �bre ofY , and hene in odimension � 1. It follows that the omplex (6) is exat onthe left, so E �= oker f [1℄. In partiular [E℄ = �[oker f ℄ in the Grothendiekgroup K(Y ) of D(Y ).Let y be a point of the �bre that is the support of E. By Lemma 8.1 below,[OZy ℄ = [OZ ℄ in KG (M), so that [Oy℄ = [E℄ in K(Y ), sine the equivalene� gives an isomorphism of Grothendiek groups.Let Y be a nonsingular projetive variety with an open inlusion i : Y ,! Y .The funtor i� : D(Y ) ! D(Y ) indues a map on K groups, so [oker f ℄ =�[Oy℄ in K(Y ). But this ontradits Riemann{Roh, beause if L is a suÆ-iently ample line bundle on Y , then �(oker f 
 L) and �(Oy 
 L) are bothpositive.Lemma 8.1. If Z1 and Z2 are two G-lusters on M supported on the sameorbit then the orresponding elements [OZ1 ℄ and [OZ2 ℄ in the Grothendiekgroup KG (M) of DG (M) are equal.Proof. We need to show that, as G-sheaves, OZ1 and OZ2 have ompositionseries with the same simple fators. Suppose that they are both supported onthe G-orbit D = G � x � M and let H be the stabiliser subgroup of x in G.The restrition funtor is an equivalene of ategories from �nite length G-sheaves supported onD to �nite lengthH-sheaves supported at x. The reverseequivalene is the indution funtor ��
C [H℄ C [G℄�. Sine the restrition ofa G-luster supported on D is an H-luster supported at x, it is suÆient toprove the result for H-lusters supported at x.If f�0; � � � ; �kg are the irreduible representations of H, then we laim thatthe simple H-sheaves supported at x are preiselyfSi = Ox 
 �i : 0 � i � kgThese sheaves are ertainly simple, sine they are simple as C [H℄-modules.On the other hand, any H-sheaf E supported at x has a nonzero ordinarysheaf morphism Ox ! E. By Lemma 4.1 there must be a nonzero H-sheafmorphism Si ! E, for some i, and, if E were simple, then this would have tobe an isomorphism.Thus a omposition series as an H-sheaf is also a omposition series as aC [H℄-module. Hene all H-lusters supported at x have the same ompo-sition fators as H-sheaves, sine as C [H℄-modules they are all the regularrepresentation of H. �



THE MCKAY CORRESPONDENCE 199. K theoreti onsequenes of equivaleneIn this setion we put M = C n and assume that the funtor � is an equiva-lene of ategories. This is always the ase when n � 3. The main point is thatsuh an equivalene of derived ategories immediately gives an isomorphismof the orresponding Grothendiek groups.9.1. Restriting to the exeptional �bres. Let DG0 (C n) denote the fullsubategory of DG(C n) onsisting of objets supported at the origin of C n .Similarly, let D0(Y ) denote the full subategory of D(Y ) onsisting of objetssupported on the subsheme ��1(�(0)) of Y .The equivalene � indues an equivalene�0 : D0(Y )! DG0 (C n);so we obtain a diagram D(Y ) ���! DG(C n)x??? x???D0(Y ) ���! DG0 (C n)in whih the vertial arrows are embeddings of ategories.Note that the Euler harateristi gives natural bilinear pairings betweenthe top and bottom ategories on either side; if E and F are objets of DG(C n)and DG0 (C n) respetively, then we an ompute the sums�G(E; F ) =Xi (�1)i dimHomDG(Cn )(E; F [i℄);beause the Hom spaes are �nite dimensional (even over a quasi-projetivevariety) when F has �nite length ohomology sheaves. Similarly, we an om-pute the ordinary Euler harater on the left. The fat that � is an equivaleneof ategories ommuting with the shift funtors immediately gives�G(�(A);�(B)) = �(A;B);for any objets A of D(Y ) and B of D0(Y ).9.2. Equivalene of K groups. Let K(Y ), KG(C n), K0(Y ) and KG0 (C n)be the Grothendiek groups of the orresponding derived ategories. Theequivalenes of ategories from the last setion immediately give isomorphismsof these groups. The following lemma is proved in the same way as in Gonzalez-Sprinberg and Verdier [10, Proposition 1.4℄.Lemma 9.1. The maps that send a representation � of G to the G-sheaves�
OCn and �
O0 on C n give ring isomorphisms of the representation ringR(G) with KG(C n) and KG0 (C n) respetively.



20 TOM BRIDGELAND, ALASTAIR KING, AND MILES REIDWe obtain a diagram of groupsK(Y ) '��! R(G)ix??? x???jK0(Y ) '��! R(G):in whih the horizontal maps are isomorphisms but the vertial maps are not.In fat, if Q is the representation indued by the inlusion G � SL(n; C ), thenthe map j is multipliation byr = nXi=0 (�1)i�iQ 2 R(G):This formula is obtained by onsidering a Koszul resolution of O0 on M , asin [10, Proposition 1.4℄. For example, in the ase n = 2 one has r = 2�Q.The bilinear forms of Setion 9.1 desend to give pairings on the Grothendiekgroups. These forms are nondegenerate beause if f�0; � � � ; �kg are the irre-duible representations of G then the orresponding basesf�i 
OCn gki=0 � KG(C n) and f�i 
O0gki=0 � KG0 (C n)are dual with respet to the pairing �G(�;�). Applying '�1 gives dual basesfRigki=0 � K(Y ) and fSigki=0 � K0(Y )as in Ito and Nakajima [12℄.10. Topologial K theory and physisWith notation as in the Introdution, suppose that M is projetive, andfurther that Y is nonsingular and �: D(Y )! DG(M) is an equivalene. Forexample suppose that n = 2 or 3.10.1. K theory and the orbifold Euler number. Let K�(Y ) denote thetopologial omplex K theory of Y and K�G(M) the G-equivariant topologialK theory of M . There are natural forgetful maps�Y : K(Y )! K0(Y ) and �M : KG(M)! K0G(M):Sine � and its inverse 	 are de�ned as orrespondenes, we may de�ne or-respondenes ' : K�(Y )! K�G(M) and  : K�G(M)! K�(Y )ompatible with the maps �, using the funtors 
, f � and f� (also writtenf!) on topologial K theory, whih extend to equivariant K theory, as usual,beause they are anonial. Note that the de�nition and ompatibility of f�is nontrivial; see [1℄ for more details. But now the fat that � and 	 are



THE MCKAY CORRESPONDENCE 21mutually inverse implies that ' and  are mutually inverse, that is, we havea graded isomorphism(7) K�(Y ) �= K�G(M)Atiyah and Segal [2℄ observed that the physiists' orbifold Euler number ofM=G is the Euler harateristi of K�G(M), that is,e(M;G) = dimK0G(M)
 Q � dimK1G(M)
 Q :On the other hand, sine the Chern harater gives a Z=2 graded isomorphismK�(Y )
 Q �= H�(Y;Q), the Euler harateristi of K�(Y ) is just the ordinaryEuler number e(Y ) of Y . Hene the isomorphism (7) on topologial K theoryprovides a natural explanation for the physiists' Euler number onjeturee(M;G) = e(Y ):This was veri�ed in the ase n = 2 as a onsequene of the original MKayorrespondene (f. [2℄). It was proved in the ase n = 3 by Roan [21℄ in themore general ase of quasiprojetive Gorenstein orbifolds, sine the numerialstatement redues to the loal linear ase M = C 3 , G � SL(3; C ).10.2. An example: the Kummer surfae. One of the �rst interestingases of the isomorphism (7) is when M is an Abelian surfae (topologially,a 4-torus T 4), G = Z=2 ating by the involution �1 and Y is a K3 surfae.In this ase Y is a nonsingular Kummer surfae, having 16 disjoint �2-urvesC1; : : : ; C16 oming from resolving the images inM=G of the 16 G-�xed pointsx1; : : : ; x16 in M . Write V = fx1; : : : ; x16g for this �xed point set.On the Abelian surfae M there are 32 at line G-bundles, arising from ahoie of 2 G-ations on eah of the 16 square roots of OM . Eah suh atline G-bundle L(�) is haraterised by a map � : V ! F2 = f0; 1g suh thatat a �xed point x 2 V the group G ats on the �bre Lx with weight (�1)�(x).Now the set V naturally has the struture of an aÆne 4-spae over F2 andthe maps � that our are preisely the aÆne linear maps, inluding the twoonstant maps orresponding to the two ations on OM .On the other hand, on the K3 surfae Y one may onsider the lattieZV � H2(Y;Z) spanned by C1; : : : ; C16 and the smallest primitive sublat-tie � ontaining ZV . The elements of � give preisely the rational linearombinations of the divisors C1; : : : ; C16 whih are themselves divisors. It iseasy to see that ZV � � � (12Z)V and it an also be shown that the image of� in the quotient (12Z)V =ZV �= FV2 onsists of preisely the aÆne linear mapson V (see Barth, Peters and Van de Ven [3, Chapter VIII, Proposition 5.5℄).We laim that under the orrespondene 	, the at line G-bundle L(�) istaken to the line bundle OY (D(�)), whereD(�) = 12�Xi �(xi)Ci�:
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