A Survey of Brill-Noether Theory on Algebraic Curves

Alastair D. King, University of Liverpool, U.K.

These notes are based on a talk given at the Trento meeting “Vector Bundles in Alge-
braic Geometry” in September 1993. They are intended as a companion to the V.B.A.C.
Problems List.

1. Basic Geography of Special Bundles and Special Linear Series

Notation.
C' : a smooth projective curve, genus g > 2,
O, K : the trivial line bundle (i.e. structure sheaf of C') and the canonical bundle,
FE : a vector bundle over C, with invariants n = rk F, d = deg E.

Definition.

i) The bundle E is ‘special’ if h°(E)h'(E) > 0.

ii) A ‘linear series’ (or ‘linear system’) 9gn.q consists of a vector bundle £ of rank n and
degree d, and a linear subspace A C H°(FE) of dimension r + 1. The linear series is
‘complete’ if A = HO(E) (write | E| for this series) and is ‘special’ if r+1 > d—n(g—1).
When this inequality is satisfied, we will say that (r,n,d) is of ‘special type’.

Note that F' is special iff £ admits a special linear series iff the complete linear series
|E| is special.

It seems to be more appropriate to describe linear series in vector bundles in terms of
the rational invariants y = %, A= ’“;'1'—1 and the auxilliary invariant A’ = A—pu+g¢—1, which
is chosen so that the linear series is special iff A’ > 0. When this inequality is satisfied, we
say that (A, i) is of ‘special type’. Note also that, for |E|, \ = h'(E), by Riemann-Roch.
We can then talk about a linear series as being a g(\, i), without specifying the rank of
the underlying bundle.

Basic Results.

i) By Serre duality, F is special iff EY ® K is special.

ii) Vanishing Lemma: If F is semistable and special then 0 < p < 2g — 2.

iii) Clifford’s Theorem: If E is semistable and special, then A < 1+2p (or A+ X < g+1),
with equality iff £ = O™ or K™ or C is hyperelliptic. Indeed, a line bundle with
h=1+ %d, must be a power of the hyperelliptic line bundle H, for which |H| is the
g4 giving the 2: 1 map C — P,

Conclusion. The ‘special region’ in (A, ) space, where special linear series are forced to
lie by the above basic results, is the same for semistable vector bundles as it is for line
bundles. (See the attached ‘map’.) We should then ask the finer questions of ‘geography’:
i) precisely which (A, u) are ‘populated’ by special linear series, for all C?
ii) for generic C?
iii) how does ‘generic’ depend on the rank?



2. Brill-Noether Varieties

We will describe the varieties (strictly, schemes) W .. of semistable bundles admitting a
In.a» and G, 4, of linear series In.d- ’

We begin with the ‘primitive’ case, i.e. when n and d are coprime. In this case, all
semistable bundles are stable, and they are parametrised by a fine moduli space M, 4(C),
which is a smooth projective variety. Recall that ‘fine’ refers to the fact that there exists
a universal family over M,, 4 x C. (In keeping with the spirit of this survey, it might be
appropriate to denote this moduli space by .J,, since it has all the important properties of
the Jacobian J,.)

Naively, i.e. as a set of points,

na(C) ={E € My a(C) | I°(E) > + 1}

Note that, when (r,n,d) is not of special type, W, , = M, 4.

To get the scheme structure on W) d choose a unlversal bundle &£ over M, 4 x C' and
a fixed ‘very positive’ divisor N, i.e. so that H'(E(N)) = 0, for all E € M,, 5. We then
have an exact sequence

0 — HYE) — HYE(N)) " HY(E|y) — HYE) — 0

in which the middle two terms have dimension independent of E. If we ‘globalise’ this
middle part, we obtain a map ¢ : V° — V! between the vector bundles V° = mp,E(N)
and Vl = TI'M*5|N.

Then, W:;’ 4 1s the determinantal locus where ¢ drops rank by an appropriate amount.
The expected codimension at a ‘typical’ point E (i.e. h°(E) = r + 1) is h°(E)h'(E).
Hence, the expected dimension of W;{}d is the ‘Brill-Noether number’

Pra=1+n(g—1-2N)
From this we see that, in our map, there is a natural region defined by p > 0, where

p =g —1— A)X. In this region one expects the Brill-Noether loci to have dimension at
least 1 Outside, the region there are certain ‘exceptional’ points where A, pu € %Z and

p = ——=. At these points one expects to find isolated special bundles.
The tangent space to W7 ; at a typical point £ is the kernel of

p* :Ext'(E,E) - HYE)*® H'(E)
which is dual to the ‘Petri map’
p: HY(E)® H'(EY ®@ K) — H°(End(F) ® K)

given by multiplication of sections. Thus, W  has the expected dimension at E iff the
Petri map is injective.



To define GZ,d: we pull back ¢ : V? — V1 to the relative Grassmannian
Gr(r + 1, V)" M, 4

and consider the subvariety over which the universal subbundle s : S < 7*V? is contained
in the kernel of 7°¢, i.e. G, ; is the vanishing locus of (7%¢) - s

In the non-primitive case, i.e. (n,d) # 1, the construction described above breaks
down because there are semistable points in the moduli space and there is no universal
bundle. We can still define W , in the open set of stable points (even as a scheme,
because of the existence of a local universal family there) and then take its closure in
the whole moduli space. A better way to define W[ ; would be as the image of the
corresponding determinantal locus in the quot scheme, whose GIT quotient is M,, 4, since
a universal bundle does exist over the quot sheme. With this definition, W .4 may have
more components than with the previous one. Defining G7 , is more dlfﬁcult, and we
return to that later. ’

3. Principal results of Brill-Noether Theory.

First, we recall the central results of Brill-Noether Theory for line bundles, some of which
were ‘known’ classically, but which were give ‘modern’ proofs by Kempf, Kleiman & Laksov,
Fulton & Lazarsfeld, Griffiths & Harris, Gieseker (1972-1982). See [ACGH] for full details.

For all curves C,

py > 0= G7 and W] are non-empty,
py > 1= G7 and W] are connected.

The varieties may be reducible, but each component has dimension at least p.

For generic curves C, G7; is smooth of dimension exactly p};, and hence W is irre-
ducible, and, if 7 > d — g, of the same dimension. Furthermore, the singular locus of W]
is exactly W£+1 and there is a formula for the fundamental class of W] in H*(Jy). This
generalises the formula of Castelnuovo, for the number of special linear series in the case
py = 0, namely

!
4 H (g — r]+r+7)

Based on the results for line bundles, the results for vector bundles fall into two classes,
‘expected’ and ‘unexpected’.

Results of Expected Type.

i) [Su] For all curves: if 0 < p < g — 1, then W) .4 1s irreducible of dimension P d-

ii) [Te|] For generic curves: suppose that a,b € Z and that the point (A, A) = (a,b) is
in {p > 0}. Then, for any (A, \') < (a,b), there is a semistable bundle F, of any rank, with
a linear series with invariants (A, \"). Further, if y ¢ Z or the point (a,b) is in {p > 0},
then there exists a stable E with the appropriate linear series.
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Results of Unexpected Type.

i) [GN] In the ‘bottom triangle’ 0 < p < A < 1, all stable bundles, except O lie to the
left of the tangent line to p = 0 at (A, u) = (1,1). Thus, in particular there exist points
with py ; > 1, but with W ; empty, for all curves. This phenomenon can be compared
with Drezet & Le Potier’s ‘fractal mountain range’ which excludes the existence of some
stable bundles on P2, which should exist for purely dimensional reasons [DL].

ii) [BF] There are contexts in which the Petri map has extra symmetry which may
prevent it from being injective. One such is when £ = EV @ K. Such bundles F may
be thought of as generalisations of theta characteristics. For such bundles, the Petri map
is symmetric and hence definitely not injective, when h°(E) > 1. In this case, there is
an alternative Petri map S?H°(F) — HY(S?F) and this gives rise to a different expected
dimension.

When rk E = 2 and det E = K, then one automatically has £ =~ EV ® K. The
expected dimension for WJ . C My g (the subscript K means that the determinant is
fixed to be K) is ’

(r+1)(r+2)

UQ,K:?’(Q—U— 5

It is clearly possible to have o5 o > 0 > p5 5, 5. Hence, there will exist special stable
bundles, for which the ordinary Brill-Noether number is negative, e.g. ¢ =6, r = 4.

[BF] For g <9, Wy f is non-empty iff o5 - > 0.

These moduli spaces have arisen naturally in the context of Fano varieties and curves
in K3 surfaces. On one hand [Mu], for generic C, with g = 10, the locus W26K is empty.
On the other hand [Vo], for C' generic amongst curves in K3 surfaces, with 7g = 25 > 6,
the locus W;}}l is non-empty. Since curves in a K3 surface can be generic from the point
of view of Brill-Noether for line bundles, this provides an example of speciality of curves
being seen only by higher rank bundles.



4. Construction of non-primitive G ;s

When one cannot construct G) , using a relative Grassmannian associated to a universal
family (and even when one can)’, these spaces can be contructed directly as moduli spaces
of linear series. This has been done in [Be], [RV] and [KN].

For any positive o € R, one defines the a-slope of a linear system E,A C H(E) to

be
deg ' + adim A

rk B/

A subsystem F,II of E, A consists of ' C E and II C A N H°(F). One then defines a-
stable, a-semistable and S-equivalence in the usual way and shows that one can construct a
moduli space of (S-equivalence classes of) a-semistable linear systems, containing an open
set of (isomorphism classes of) a-stable systems.

We will denote this moduli space by G ,(a). One can show that, for all but a
discrete set of ‘critical’ values of «, all semistable systems are stable and that, in the
intervals between critical values, the stability condition and hence the moduli space is
independent of a. Furthermore, in the ‘first interval’ 0 < a < first critical value, the
underlying bundle is necessarily semistable. Hence, the correct candidate for G7 , is the
moduli space G;’d(a), for a in this first interval. There is a map GZ;,d — Mnd whose
image is W ;.

[RV] For all curves C and 0 < p < g — 1, the space Gg,d is smooth.

Pa =+ X =

5. Singular Curves.

The construction of the GJ ;s goes through for singular curves, provided one is careful
with the definitions.

Firstly, a curve is any scheme of pure dimension 1 (or locally Cohen-Macaulay), so
curves with embedded points are not allowed, but reducible and non-reduced curves are.
Secondly, one should equip the curve with a fixed ample polarisation O¢ (1), which will
not be uniquely determined if the curve is not integral. For an arbitrary (coherent) sheaf
(of Oc-modules) one can define the rank and degree by using the Hilbert polynomial

X(E(n)) =1k Ex(O(n)) + deg F

These invariants will be integers for locally free sheaves (rk > 0) and for sheaves supported
in dimension 0 (rk = 0), but will be rational with bounded denominator, for general
sheaves. To obtain projective moduli spaces, one must consider not just locally free sheaves
but also sheaves of pure dimension 1 (or locally Cohen-Macaulay, or depth 1) as carrying
linear systems.

One should also be aware that for sufficiently bad curves, i.e. some non-reduced ones
and reducible ones with badly ‘balanced’ polarisations, the structure sheaf O¢ is not stable,
which alters most of the numbers occurring in the various inequalities.
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