MA10209 ALGEBRA 1A : EXERCISES 10

Hand in answers to (H) questions on Moodle by 6pm on Tue 8 Dec. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

1 (W). Show that the following maps are group homomorphisms. In each case, find the kernel and image of the homomorphism.

(i) $U: \mathbb{R} \to \mathbb{C}^*: \theta \mapsto \cos \theta + i \sin \theta$ (iii) $c: \mathbb{C} \to \mathbb{C}: z \mapsto \overline{z}$ (ii) $m: \mathbb{C}^* \to \mathbb{R}^*: z \mapsto |z|$ (iv) $\gamma: \mathbb{C}^* \to \mathbb{C}^*: z \mapsto \overline{z}$

2 (H). Show that the following maps are group homomorphisms. In each case, find the kernel and image of the homomorphism.

- (i) $q: \mathbb{Z} \to \mathbb{Z}_n: x \mapsto [x]$
- (ii) $\alpha \colon \mathbb{Z}_{12} \to \mathbb{Z}_3 \times \mathbb{Z}_4 \colon [x]_{12} \mapsto ([x]_3, [x]_4)$
- **3** (W). Let $\alpha \colon G \to H$ and $\beta \colon H \to K$ be homomorphisms of groups.
 - (i) Show that $\beta \circ \alpha \colon G \to K$ is also a homomorphism.
 - (ii) For $g \in G$ and $n \in \mathbb{Z}$, show that $\alpha(g^n) = \alpha(g)^n$.
- **4** (H). Suppose $\alpha \colon G \to H$ is a homomorphism of groups and $g \in G$ has finite order.
 - (i) Show that $\alpha(g)$ has finite order and that the order of $\alpha(g)$ divides the order of g.
 - (ii) If α is injective, show that the order of $\alpha(g)$ is equal to the order of g.

5 (W). Let G be the group of rotational symmetries of a tetrahedron (the regular solid with four equilateral triangles as faces).

- (i) Describe all elements of G geometrically and say what their orders are. [Hint: |G| = 12.]
- (ii) Labelling the vertices of the tetrahedron with the set $\{1, 2, 3, 4\}$, also write down the elements of G as permutations. Which subgroup of S_4 do you get this way?
- **6** (H). Consider the following subgroups of S_3

$$H = \{ e, (12) \}, \qquad K = \{ e, (123), (132) \}.$$

Compute the subsets gH, Hg, gK and Kg, for each $g \in S_3$, and observe, in each of these four cases, that the cosets do indeed partition the group.

7 (W). Let $G \times X \to X \colon (g, x) \mapsto g \cdot x$ be a group action. Given $x \in X$, the stabiliser of x is

$$Stab(x) = \{g \in G : g \cdot x = x\}.$$

- (i) Show that Stab(x) is a subgroup of G.
- (ii) Show that $g \cdot x = h \cdot x$ if and only if g and h are in the same left coset of Stab(x).

8 (H). A subgroup $H \leq G$ is **normal** if $ghg^{-1} \in H$, for all $h \in H$ and $g \in G$.

- (i) Show that every subgroup of an abelian group is normal.
- (ii) Let $\alpha: G \to H$ be a homomorphism. Show that $\operatorname{Ker} \alpha$ is a normal subgroup of G. [Note: first prove that $\operatorname{Ker} \alpha$ is a subgroup.]
- (iii) Show that $H \leq G$ is normal if and only if gH = Hg, for all $g \in G$.

9 (A). For a group G, there is an action of G on G given by $g \cdot h = ghg^{-1}$, for $g, h \in G$. This is called **conjugation** and the orbits are called the **conjugacy classes** of G.

- (i) Show that this does indeed define an action.
- (ii) This action is not necessarily faithful; what is the kernel of the associated homomorphism $\phi: G \to \text{Sym}(G): g \mapsto \phi_q$, where $\phi_q(h) = ghg^{-1}$?
- (iii) For $G = S_n$, show that the conjugacy classes consist of all permutations with the same cycle shape, that is, whose cycles (including 1-cycles) give partitions of the same shape (see solutions to Ex 3.6).
- (iv) How many conjugacy classes are there in S_4 . What are their sizes?

ADK 1 Dec 2020