MA10209 Algebra 1A : Exercises 9

Hand in answers to (H) questions on Moodle by 6pm on Tue 1 Dec. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

- 1 (W). In each case, determine whether the subset H is a subgroup of the group G.
 - (i) $G = \mathbb{Q}$, under addition, $H = \{m/n : m, n \in \mathbb{Z}, 0 < n < 10\}$.
 - (ii) $G = C_n$, the *n*-th roots of unity, *H* is the subset of primitive *n*-th roots.

(iii)
$$G = GL_2(\mathbb{F})$$
, under matrix multiplication, $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{F} \right\}$.

- **2** (H). Let G be a group, and suppose that $H \leq G$ and $K \leq G$.
 - (i) Prove that $H \cap K \leq G$.
 - (ii) Prove that $H \cup K \leq G$ only if either $H \leq K$ or $K \leq H$.
- (iii) The centre of a group G is the subset $Z(G) = \{a \in G : ag = ga \text{ for all } g \in G\}$. Show that $Z(G) \leq G$.
- **3** (W). (i) Show that the additive groups \mathbb{Z}_n and the multiplicative groups C_n are cyclic. Which elements are generators?
 - (ii) Write down the Cayley table for \mathbb{Z}_8^* . Is this a cyclic group?
- 4 (H). (i) Write down the Cayley tables for Z₅^{*} and Z₁₂^{*}. Which of these are cyclic groups? If so, which elements are generators.
 - (ii) Show that a group of order 4 cannot have an element of order 3. [Hint: if it did, then, calling the elements e, a, a^2, b with $a^3 = e$, deduce a contradiction using the cancellation law.]
 - (iii) Suppose $G = \{e, a, b, c\}$ is a non-cyclic group with e the identity element. Show that there is only one possible Cayley table for G. Deduce that there are essentially only two groups of order 4.

5 (W). Let G be a group, with operation \circ and identity e_G and H be a group, with operation \bullet and identity e_H Show that the product $G \times H$ is a group with operation

$$(g_1, h_1) * (g_2, h_2) = (g_1 \circ g_2, h_1 \bullet h_2)$$

and identity (e_G, e_H) .

- **6** (H). (i) Let G be a group, with $x, y \in G$. Prove that x and $y^{-1}xy$ have the same order. Deduce that $\operatorname{ord} xy = \operatorname{ord} yx$.
 - (ii) For (g, h) in the product group $G \times H$, prove that $\operatorname{ord}(g, h) = \operatorname{lcm}(\operatorname{ord} g, \operatorname{ord} h)$, taking care to say how this should be interpreted when either g or h has infinite order.
- 7 (W). Let $\sigma = (2 \ 4)$, $\tau = (3 \ 1 \ 5)$ and $\rho = (3 \ 2 \ 1 \ 4)$ in S_5 .
 - (i) What are the orders of σ , τ and ρ ?
 - (ii) What are the orders of $\sigma\tau$, $\tau\rho$ and $\rho\sigma$? Which pairs commute?
- **8** (H). (i) Write down all the elements of S_3 together with their orders and signs.
 - (ii) Show that S_3 has no subgoup of order 4.
- (iii) Find all the subgroups of order 4 in S_4 . Are any of these subgroups of A_4 ?
- **9** (A). Let G be a group, with identity element e.
 - (i) Suppose that $g^2 = e$ for all $g \in G$. Prove that G is an abelian group
 - (ii) Suppose the H is a non-empty subset of G that satisfies $ab^{-1} \in H$ for all $a, b \in H$. Prove that H is a subgroup of G.
 - (iii) Suppose that G has even order. Prove that G contains an element of order 2. [Hint: consider the subsets $\{x, x^{-1}\}$, for $x \in G$.]

ADK 24 Nov 2020