MA10209 Algebra 1A : Exercises 8

Hand in answers to (H) questions on Moodle by 6pm on Tue 24 Nov. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

1 (W). For $A, B, C \in M_2(\mathbb{F})$, with coefficients $A = (a_{ij})$ etc., show by direct computation that the distributive law A(B+C) = AB + AC holds. Identify which field axioms you are using. [Hint: calculate the ij coefficient of both sides.]

2 (H). For $A, B, C \in M_2(\mathbb{F})$, with coefficients $A = (a_{ij})$ etc., show by direct computation that the associative law (AB)C = A(BC) holds. Identify which field axioms you are using. [Hint: calculate the ij coefficient of both sides.]

3 (W). Show that the area V(v, w) of the parallelogram spanned by vectors $v, w \in \mathbb{R}^2$ is $|v_1w_2 - v_2w_1|$, i.e. show that $V^2 = (v_1w_2 - v_2w_1)^2$. [Hint: recall that $V = |v||w|\sin\theta$, where θ is the angle between v and w, while the scalar product $v \cdot w = |v||w|\cos\theta$.]

4 (H). For $A, B \in M_2(\mathbb{F})$, show by direct computation that the product rule det(AB) = (det A)(det B) holds. Hint: to economise on indices, write

$$A = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}, \qquad B = \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}.$$

5 (W). Consider the subset

$$\mathcal{C} = \left\{ Z(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \subseteq \mathcal{M}_2(\mathbb{R}).$$

Show that C is closed under addition and multiplication in $M_2(\mathbb{R})$ and that multiplication is commutative for elements of C.

- **6** (H). For Z(a, b) and C as in Ex 5.
 - (i) Show that Z(a, b) is invertible unless (a, b) = (0, 0).
 - (ii) Show that C is a field, which can be identified with \mathbb{C} .
 - (iii) Under what condition on (a, b) is Z(a, b) orthogonal?

7 (W). Recall that the Euclidean distance between two points $x, y \in \mathbb{R}^3$ is |x - y|, where $|z|^2 = z^T z$, for any $z \in \mathbb{R}^3$, thought of as a column vector.

(i) If $A \in M_3(\mathbb{R})$ is orthogonal, show that the map $\phi_A \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon x \mapsto Ax$ preserves Euclidean distance, that is, |Ax - Ay| = |x - y|, for all $x, y \in \mathbb{R}^3$. (ii) If $v \in \mathbb{R}^3$ show that the translation map $\tau_v \colon \mathbb{R}^3 \to \mathbb{R}^3 \colon x \mapsto x + v$ preserves Euclidean distance.

8 (H). A Euclidean transformation $\psi_{A,v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ is given by $\psi_{A,v}(x) = Ax + v$, for some orthogonal $A \in M_3(\mathbb{R})$ and $v \in \mathbb{R}^3$.

- (i) Show that a Euclidean transformation $\psi_{A,v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ preserves Euclidean distance.
- (ii) Show that the set of all Euclidean transformations is closed under composition, that the identity map $\mathrm{Id}_{\mathbb{R}^3}$ is a Euclidean transformation and that the inverse of a Euclidean transformation.
- **9** (A). Let \mathbb{F} be the two element field $\mathbb{Z}_2 = \{0, 1\}$.
 - (i) Determine the set S of all the invertible matrices in $M_2(\mathbb{F})$.
 - (ii) Find $A, B \in S$ with the property that $AB \neq BA$.
 - (iii) Find all $C \in S$ with the property that $C^2 = I$, but $C \neq I$.
 - (iv) Find all $D \in S$ with the property that $D^3 = I$, but $D \neq I$.

ADK 17 Nov 2020