MA10209 Algebra 1A : Exercises 7

Hand in answers to (H) questions on Moodle by 6pm on Tue 17 Nov. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

1 (W). Using the extended field axioms (F1)-(F9) from lectures, prove that the following hold, for any x, y in a field \mathbb{F} . Say explicitly at each step which axiom you are using.

- (i) If x + y = 0, then y = -x.
- (ii) (-1)x = -x = x(-1).
- (iii) (-x)(-y) = xy.

2 (H). Using the extended field axioms (F1)-(F9) from lectures, prove that the following hold, for any x, y in a field \mathbb{F} . Say explicitly at each step which axiom you are using.

- (i) If xy = 1, then $x \neq 0$ and $y = x^{-1}$.
- (ii) If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$ and $(xy)^{-1} = y^{-1}x^{-1}$.
- (iii) If $x \neq 0$, then $-x \neq 0$ and $(-x)^{-1} = -x^{-1}$.
- **3** (W). (i) For $f, g \in \mathbb{F}[X]$, show that $\deg(f + g) \leq \max(\deg(f), \deg(g))$. When is this a strict inequality?
 - (ii) Use Euclid's Algorithm to find the monic gcd of $X^2 + 5X + 6$ and $2X^2 + 3X 2$.
- 4 (H). Use Euclid's Algorithm to find the monic gcds of
 - (i) $X^3 + 3X^2 + 4X + 2$ and $2X^2 + 7X + 5$,
 - (ii) $X^4 + X^3 + X^2 + X + 1$ and $X^4 + 1$. In this case, say why the result is not unexpected.
- **5** (W). Let $f, g, h \in \mathbb{F}[X]$ with f and g coprime. Show that
 - (i) if $f \mid gh$, then $f \mid h$,
 - (ii) if $f \mid h$ and $g \mid h$, then $fg \mid h$.
- **6** (H). Let $f, g, h \in \mathbb{F}[X]$ with h a greatest common divisor of f and g. Show that
 - (i) f/h and g/h are coprime,
 - (ii) fg/h is a least common multiple of f and g.

- 7 (W). (i) If $\alpha, \beta \in \mathbb{F}$ with $\alpha \neq \beta$, show that $X \alpha$ and $X \beta$ are coprime in $\mathbb{F}[X]$.
 - (ii) Show that a polynomial $f \in \mathbb{F}[X]$ of degree n can have at most n roots in \mathbb{F} .
 - (iii) Deduce that a polynomial $f \in \mathbb{R}[X]$ of degree n can have at most n roots in \mathbb{C} .
 - (iv) Show that a polynomial $f \in \mathbb{F}[X]$ of degree 2 or 3 is irreducible if and only if f has no roots in \mathbb{F} . Is the same true when f has degree 4?
- **8** (H). Which of the following polynomials are irreducible in $\mathbb{F}[X]$?
 - (i) $f = X^2 + X + 1$, $g = X^4 + 1$, when $\mathbb{F} = \mathbb{R}$.
 - (ii) $f = X^2 + X 1$, $g = X^4 + 1$, when $\mathbb{F} = \mathbb{Q}$.
- (iii) $f = X^2 + X + 3$, $g = X^3 + X + 1$, when $\mathbb{F} = \mathbb{Z}_5$.

9 (A). Let \mathbb{F} be the field \mathbb{Z}_7 . Thinking of \mathbb{F}^2 as $\{x + iy : x, y \in \mathbb{F}\}$ we can make \mathbb{F}^2 into a commutative ring, by setting (x + iy) + (a + ib) = (x + a) + i(b + y) and (x + iy)(a + ib) = (xa - yb) + i(xb + ya), just as for the construction of \mathbb{C} from \mathbb{R} .

- (i) Show that, for any $(x, y) \in \mathbb{F}^2$, if $x^2 + y^2 = 0$, then (x, y) = (0, 0).
- (ii) Deduce that \mathbb{F}^2 is a field, with the operations given above.
- (iii) Factorise $X^4 + 1$ into irreducibles in $\mathbb{F}[X]$ and in $\mathbb{F}^2[X]$.

ADK 10 Nov 2020