MA10209 Algebra 1A : Exercises 6

Hand in answers to (H) questions on Moodle by 6pm on Tue 10 Nov. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional,

- **1** (W). Suppose that $\alpha \in \mathbb{C}$ is a non-zero complex number.
 - (i) Find the two square roots of α .
 - (ii) In particular, what are they when $\alpha = \pm i$?
 - (iii) Factorise the polynomial $x^4 + 1$ over \mathbb{C} and over \mathbb{R} .
- **2** (H). Suppose that $\alpha \in \mathbb{C}$ is a non-zero complex number.
 - (i) Find the three cube roots of α .
 - (ii) In particular, what are they when $\alpha = -1$ and when $\alpha = 8$?
 - (iii) Factorise the polynomials $x^3 + 1$ and $x^3 8$ over \mathbb{C} and over \mathbb{R} .
- **3** (W). (i) For $z \in \mathbb{C}$, show that $z = \overline{z}$ if and only if $z \in \mathbb{R}$.
 - (ii) For any polynomial $f(x) = a_n x^n + \cdots + a_1 x + a_0$, with all coefficients $a_j \in \mathbb{R}$, show that, for $\alpha \in \mathbb{C}$, if $f(\alpha) = 0$, then $f(\overline{\alpha}) = 0$.
 - (iii) Show that, if $\alpha \in \mathbb{C}$, then both $\alpha + \overline{\alpha} \in \mathbb{R}$ and $\alpha \overline{\alpha} \in \mathbb{R}$.
- **4** (H). (i) For any $\alpha \in \mathbb{C}$, find a quadratic polynomial $f(x) = ax^2 + bx + c$, with $a, b, c \in \mathbb{R}$, such that $f(\alpha) = 0$.
 - (ii) For any $a \in \mathbb{R}$ with a > 0, find all $z \in \mathbb{C}$ such that $z^4 + a^4 = 0$.
 - (iii) Hence write $x^4 + a^4$ as a product of two quadratic polynomials with real coefficients.

5 (W). Recall that the **order** of a root of unity ω is the smallest $m \in \mathbb{Z}^+$ such that $\omega^m = 1$, in which case we call ω a **primitive** *m*-th root of unity.

- (i) Write down all the 8th roots of unity.
- (ii) Write down their orders and hence identify the primitive 8th roots of unity.
- (iii) Find the polynomial $\Phi_8(x)$ whose roots are precisely the primitive 8th roots of unity.
- **6** (H). (i) Show that $\omega = e^{2\pi i k/n}$ is a primitive *n*-th root of unity if and only if k is coprime to n.

- (ii) Write down the primitive *n*-th roots of unity, for n = 5 and n = 12.
- (iii) Find polynomials $\Phi_n(z)$ whose roots are precisely the primitive *n*-th roots of unity, for n = 5 and n = 12.

7 (W). Show that, if $\alpha \in \mathbb{C}$ is nonzero and not a root of unity, then its powers α^k , for $k \in \mathbb{Z}$, are all different.

- **8** (H). Let ω be a primitive *n*-th root of unity.
 - (i) Show that its powers ω^k , for $k \in \{1, \ldots, n\}$, are all different
 - (ii) Deduce that they are precisely all the n-th roots of unity.
- **9** (A). Prove that, for any $n \ge 2$,

$$\sum_{k=1}^{n-1} e^{2\pi i k/n} = -1.$$

Can you give a geometric justification for this identity?

ADK 3 Nov 2020