MA10209 Algebra 1A : Exercises 5

Hand in answers to (H) questions on Moodle by 6pm on Tue 3 Nov. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

1 (W). Determine which of the following congruences have solutions and, if so, describe the complete set of solutions.

(i)
$$5x \equiv 9 \pmod{12}$$
, (ii) $15x \equiv 6 \pmod{21}$

2 (H). Determine which of the following congruences have solutions and, if so, describe the complete set of solutions.

(i) $140x \equiv 98 \pmod{84}$, (ii) $28x \equiv 124 \pmod{116}$.

 $\mathbf{3}$ (W). Solve the following system of congruences.

 $x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}, \quad 3x \equiv 5 \pmod{7}.$

4 (H). Solve the following systems of congruences.

(i) $x \equiv 1 \pmod{7}$, $x \equiv 4 \pmod{9}$, $x \equiv -2 \pmod{5}$.

- (ii) $4x \equiv 6 \pmod{13}$, $3x \equiv 2 \pmod{8}$.
- **5** (W). For $m, n \in \mathbb{Z}^+$, recall that $m \mid z$ and $n \mid z \Leftrightarrow \operatorname{lcm}(m, n) \mid z$, for $z \in \mathbb{Z}$.

Setting $k = \operatorname{lcm}(m, n)$, deduce that the map $\pi \colon \mathbb{Z}_k \to \mathbb{Z}_m \times \mathbb{Z}_n \colon [x]_k \mapsto ([x]_m, [x]_n)$ is well-defined and injective. Show that π is surjective if and only if m and n are coprime.

6 (H). Determine which of the following systems have solutions and, if so, describe the complete set of solutions. Proceed as in the coprime case, but be aware that at a certain point you may find an obstruction to the existence of solutions.

(i)
$$x \equiv 7 \pmod{15}$$
, $x \equiv 5 \pmod{9}$,

(ii)
$$x \equiv 4 \pmod{15}$$
, $x \equiv 7 \pmod{9}$.

7 (W). Show that no positive integer of the form 4m + 3 is the sum of two squares. [Hint: what are the squares mod 4?]

8 (H). Show that there are infinitely many positive integers which are not the sum of three squares. [Hint: what are the squares mod 8?] Investigate whether a similar argument, working mod 16, could give a similar result about four squares.

- **9** (A). Let p be a prime and set $S = \{1, \dots, p-1\}$.
 - (i) For $k \in S$, show that there is a unique $k' \in S$ such that $k \cdot k' \equiv 1 \pmod{p}$.
 - (ii) Show that k = k' if and only if k = 1 or k = p 1.
 - (iii) Deduce that $(p-1)! \equiv -1 \pmod{p}$.
 - (iv) Find an example that shows that this result may not hold if p is not prime.

ADK 27 Oct 2020