MA10209 ALGEBRA 1A: EXERCISES 2

Hand in answers to (H) questions on Moodle by 6pm on Tue 13 Oct. Homepage: http://people.bath.ac.uk/masadk/ma209/

(W) = Warmup, (H) = Homework, (A) = Additional

Note: the words "function" and "map" are used interchangeably in these questions.

- **1** (W). Let $F: \mathbb{Q} \to \mathbb{Q}$ be defined by F(x) = 2x. Is F a bijection? If so, write down its two-sided inverse.
- Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 2x. Is f injective, surjective or bijective? If so, write down an appropriate inverse.
- **2** (H). Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 2x.
 - (i) Write down infinitely many functions $g \colon \mathbb{Z} \to \mathbb{Z}$ such that $g \circ f = \mathrm{Id}_{\mathbb{Z}}$.
 - (ii) Show that there is no function $h: \mathbb{Z} \to \mathbb{Z}$ such that $f \circ h = \mathrm{Id}_{\mathbb{Z}}$. (Give a direct argument; don't just quote a result from lectures.)
- **3** (W). Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$ for all $x \in \mathbb{R}$ and let $g: \mathbb{R} \to \mathbb{R}$ be defined by g(x) = 2x + 1 for all $x \in \mathbb{R}$.

Give formulae for the functions $f \circ g$ and $g \circ f$, and also $f^2 = f \circ f$ and g^2 . Which of these functions are bijections? Justify your answers.

4 (H). Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = x^2$ for all $x \in \mathbb{Z}$ and let $g: \mathbb{Z} \to \mathbb{Z}$ be defined by g(x) = x + 2 for all $x \in \mathbb{Z}$.

For $n \in \mathbb{Z}^+$, give formulae for the functions f^n and g^n . Which of these functions are bijections? Justify your answers.

- **5** (W). For each $n \in \mathbb{Z}^+$, let $J_n = \{1, ..., n\}$ be the set which consists of the first n positive integers.
 - (i) How many maps $f: J_n \to J_n$ are there?
 - (ii) How many bijections $f: J_n \to J_n$ are there?
 - (iii) If we set $J_0 = \emptyset$, what are the answers to (i) and (ii) for n = 0?

- **6** (H). Let J_n , for $n \in \mathbb{Z}^+$, be as in the previous exercise.
 - (i) How many maps $f \colon J_n \to J_3$ are there?
 - (ii) How many injections $f: J_n \to J_3$ are there?
 - (iii) How many surjections $f \colon J_n \to J_3$ are there?
 - (iv) If we set $J_0=\varnothing$, what are the answers to (i), (ii) and (iii) for n=0?
- **7** (W). Let $f: A \to B$ and $g: B \to C$ be functions
 - (i) If $g \circ f$ is injective, does it follow that f is injective?
 - (ii) If $g \circ f$ is injective, does it follow that g is injective?

Give a proof or counterexample in each case.

- **8** (H). Let $f: A \to B$ and $g: B \to C$ be functions
 - (i) If $g \circ f$ is surjective, does it follow that f is surjective?
 - (ii) If $g \circ f$ is surjective, does it follow that g is surjective?
 - (iii) If $g \circ f$ is bijective, does it follow that f and g are both bijective?
- (iv) If $g \circ f$ and $f \circ g$ are both bijective, does it follow that f and g are both bijective? Give a proof or counterexample in each case.
- **9** (A). Suppose that S is a finite set and $f: S \to S$ is a map.
 - (i) Suppose f is a bijection. For any $s \in S$, show that $f^k(s) = s$, for some $k \in \mathbb{Z}^+$.
 - (ii) Show that f is a bijection if and only if $f^n = \operatorname{Id}_S$ for some $n \in \mathbb{Z}^+$.

ADK 6 Oct 2020