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Abstract

These notes are intended to accompany a Graduate course on Optimal stopping,
and in places are a bit brief. They follow the book ‘Optimal Stopping and Free-
boundary Problems’ by Peskir and Shiryaev, and more details can generally be
found there.

1 Introduction

1.1 Motivating Examples

Given a stochastic process Xt, an optimal stopping problem is to compute the following:

sup
τ

EF (Xτ ), (1)

where the supremum is taken over some set of stopping times. As well as computing the
supremum, we will also usually be interested in finding a description of the stopping time.
For motivation, we consider three applications where optimal stopping problems arise.

(i) Stochastic analysis. Let Bt be a Brownian motion. Then classical results tell us
that for any (fixed) T ≥ 0,

E
[

sup
0≤s≤T

|Bs|
]

=

√
πT

2

What can we say about the left-hand side if we replace the constant T with a
stopping time τ? To solve this problem, it turns out that we can consider the (class
of) optimal stopping problems:

V (λ) = sup
τ

E
[

sup
0≤s≤τ

|Bs| − λτ
]
. (2)

Where we take the supremum over all stopping times which have Eτ < ∞, and
λ > 0. (Note that in order to fit into the exact form described in (1), we need
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to take e.g. Xt = (Bt, sups≤t |Bs|, t)). Now suppose we can solve this problem for
all λ > 0, then we can use a Lagrangian-style approach to get back to the original
question: for any suitable stopping time τ we have

E
[

sup
0≤s≤τ

|Bs|
]
≤ V (λ) + λEτ

≤ inf
λ>0

(V (λ) + λEτ)

Now, if we suppose that the infimum here is attained, and the supremum in (2) is
also attained at the optimal λ, then we see that the right-hand side is a function
of Eτ , and further, we can attain equality for this bound, so that it is the smallest
possible bound.

(ii) Sequential analysis. Suppose we observe (in continuous time) a statistical process
Xt — perhaps Xt is a measure of the health of patients in a clinical trial. We wish
to know whether a particular drug has a positive impact on the patients. If we
suppose that the process Xt has:

Xt = µt+Bt

where µ is the unknown effect of the treatment. Then to make inference, we might
test the hypotheses:

H0 : µ = µ0, H1 : µ = µ1.

Our goal might be to minimise the average time we take to make a decision subject
to some constraints on the probabilities of making wrong decisions:

P(accept H0|H1 true) ≤ α

P(accept H1|H0 true) ≤ β.

Again, using Lagrangian techniques, we are able to rewrite this as an optimal stop-
ping problem, which we can solve to find the optimal stopping time (together with
a ‘rule’ to decide whether we accept or reject when we stop).

(iii) Mathematical Finance. Let St be the share price of a company. A common type
of option is the American Put option. This contract gives the holder of the option
the right, but not the obligation, to sell the stock for a fixed price K to the writer
of the contract at any time before some fixed horizon T . In particular, suppose the
holder exercises at a stopping time τ , then the discounted1 value of the payoff is:
e−rτ (K − Sτ )+. This is the difference between the amount she receives, and the
actual value of the asset, and we take the positive part, since she will only choose to
exercise the option, and sell the share, if the price she would receive is larger than
the price she would get from selling on the market. If the holder of the contract
chooses the stopping time τ , the fundamental theorem of asset pricing2 says that
the payoff has initial value

EQe−rτ (K − Sτ )+,
1We convert time-t money into time-0 money by multiplying the time-t amount by the discount factor

e−rt, where r is the interest rate.
2If you don’t know what this is, ignore the Q that crops up, and just think of this as pricing by taking

an average of the final payoff.

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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where Q is the risk-neutral measure since the seller would not want to sell this too
cheaply (and in fact, there is a better argument based on hedging that we will see
later), and she doesn’t know what strategy the buyer will use, so she should take
the supremum over all stopping times τ ≤ T :

Price = sup
τ≤T

EQe−rτ (K − Sτ )+.

So pricing the American put option is equivalent to solving an optimal stopping
problem.

1.2 Simple Example

Once a problem of interest has been set up as an optimal stopping problem, we then need
to consider the method of solution. The exact techniques vary depending on the problem,
however there are two important approaches — the martingale approach, and the Markov
approach, and there are a number of common features that any optimal stopping problem
is likely to exhibit.

We will now consider a reasonable simple example where we will be able to explicitly
observe many of the common features.

LetXn be a simple symmetric random walk on a probability space (Ω,F , (Fn)n∈Z+ , (Px)x∈Z),
where Fn is the natural filtration of Xn, and Px(X0 = x) = 1. Let f(·) be a function on
Z with f(n) = 0 if n ≥ N or n ≤ −N , for some N . Then the optimal stopping problem
we will consider is to find:

sup
τ∈MH±N

E0f(Xτ )

where MH±N is the set of stopping times which are earlier than the hitting time H±N =
inf{n ≥ 0 : |Xn| ≥ N}. Note that some kind of constraint along these lines is necessary
to make the problem non-trivial, since otherwise we can use the recurrence of the process
to wait until the process hits the point at which the function f(·) is maximised — similar
restrictions are common throughout optimal stopping, although often arise more naturally
from the setup.

For two stopping times τ1, τ2, introduce the class of stopping times (generalising the
above):

Mτ2
τ1

= { stopping times τ : τ1 ≤ τ ≤ τ2} (3)

where we will often omit τ1 if this is intended to be τ1 ≡ 0. Then we may use the Markov
property of Xn to deduce3that

sup
τ∈M

H±N
n

E0 [f(Xτ )|Fn]

3There is a technical issue here: namely that the set of stopping times over which we take the supremum
may be uncountable, and therefore the resulting ‘sup,’ which is a function from Ω → R, may not be
measurable, and therefore may not be a random variable. We will introduce the correct notion to resolve
this issue later, but for the moment, we interpret this statement informally.

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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must be a function of Xn only (i.e. independent of Fn except through Xn), so, on the set
{n ≤ H±N}, we get:

sup
τ∈M

H±N
n

E0 [f(Xτ )|Fn] = V ∗(Xn, n)

for some function V ∗(·, ·), and in principle, we believe that the function should only
depend on the spatial, and not the time parameter, so that we introduce as well:

V (y) = V ∗(y, 0) = sup
τ∈MH±N

Eyf(Xτ ). (4)

Note that we must have4 V (y) ≤ V ∗(y, n).

Our aim is now to find V (0) (and the connected optimal strategy), but in fact it will be
easiest to do this by characterising the whole function V (·). The function V (·) will be
called the value function.

In general, we can characterise V (·) as follows:

Theorem 1.1. The value function, V (·), is the smallest concave function on {−N, . . . , N}
which is larger than f(·). Moreover:

(i) V (X
H±N
n ) is a supermartingale;

(ii) there exists a stopping time τ ∗ which attains the supremum in (4);

(iii) the stopped process V (X
H±N
n∧τ∗ ) is a martingale;

(iv) V satisfies the ‘Bellman equation:’

V (x) = max{f(x),ExV (X1)}; (5)

(v) V (x) = V ∗(x, n) for all n ≥ 0.

(vi) V (Xn) is the smallest supermartingale dominating f(Xn) (i.e. V (Xn) ≥ f(Xn)).

Proof. We first note that the smallest concave function dominating f does indeed exist:
let G be the set of concave functions which are larger than f , and set

g(x) = inf
h∈G

h(x).

The set G is non-empty, since h(x) ≡ M is in G for M greater than maxn∈{−N,...,N} f(n),
so g is finite. Suppose g is not concave. Then we can find x < y < z such that

g(y) <
z − y
z − x

g(x) +
y − x
z − x

g(z)

4Any difference between V (y) and V ∗(y, n) must come from the fact that there is a stopping time
which uses the extra randomness in Fn (which contains no information about the future of the process);
if we have a stopping time which is optimal without the randomness, we can always construct a stopping
time at Fn which has the same expected payoff.

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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and therefore, there is some h ∈ G for which:

h(y) <
z − y
z − x

g(x) +
y − x
z − x

g(z)

<
z − y
z − x

h(x) +
y − x
z − x

h(z),

contradicting the concavity of h.

Now we consider the function V (·). Clearly, from the definition (4), we must have V (x) ≥
f(x) (just take τ ≡ n). Moreover, V (·) must be concave. We introduce the following
notation: let Px (and Ex) denote the probability measure with X0 = x, and define the
stopping time

Ha,b = inf{n ≥ 0 : Xn = a or Xn = b}
then we get

V (y) = sup
τ∈MH±N

Eyf(Xτ )

≥ sup
τ∈M

H±N
Hx,z

Eyf(Xτ )

≥ sup
τ∈MH±N

Eyf(XHx,z+τ◦θHx,z )

where θT is the usual shift operator. So

V (y) ≥ sup
τ∈MH±N

[
Ey
[
f(XHx,z+τ◦θHx,z )|XHx,z = x

] z − y
z − x

+ Ey
[
f(XHx,z+τ◦θHx,z )|XHx,z = z

] y − x
z − x

]
≥ z − y
z − x

sup
τ∈MH±N

Exf(Xτ ) +
y − x
z − x

sup
τ∈MH±N

Ezf(Xτ )

≥ z − y
z − x

V (x) +
y − x
z − x

V (z)

which gives the required concavity, and so we have V ∈ G.

We note first that we have V (−N) = V (N) = 0, from (4), and the fact that f(N) =
f(−N) = 0. from this, we deduce that any g ∈ G is non-negative. In fact, since for any
g ∈ G, and x ∈ {−N + 1, . . . , N − 1}, concavity implies g(x) ≥ 1

2
(g(x− 1) + g(x+ 1)), we

have
g(Xn) ≥ E· [g(Xn+1)|Fn]

and hence g(X
H±N
n ) is a supermartingale. In particular, for all τ ∈MH±N , we have

g(x) ≥ Exg(Xτ )

≥ Exf(Xτ )

and therefore

g(x) ≥ sup
τ∈MH±N

Exf(Xτ )

≥ V (x),

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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and we conclude that V (·) is the smallest concave function. Note that the above argument

also applies to V (·), since V ∈ G, so we conclude that V (X
H±N
n ) is also a supermartingale.

Now we need to construct the optimal stopping time. Define the sets:

C = {x : V (x) > f(x)}
D = {x : V (x) = f(x)}.

We claim that the function V (·) is linear between points in D(·): recall that the minimum
of any two concave functions is also concave, and suppose that there is a point y of C(·)
at which V (·) is larger than the line between (x, V (x)) and (z, V (z)), where x and z are
the nearest points below and above y in D. Then there exists a point y∗ ∈ {x+ 1, . . . , z}
which maximises f(y∗)−f(x)

y∗−x . Taking the minimum of V and the line between (x, V (x)) and

(y∗, f(y∗)) is then a strictly smaller concave function, which remains larger than V (·).
Hence V (·) is indeed linear between points of D.

Now consider the stopping time τ ∗ = inf{n ≥ 0 : Xn ∈ D}. Clearly, if X0 = y ∈ C, and
x and z are the nearest points below and above y in D, we have

Eyf(Xτ∗) =
z − y
z − x

f(x) +
y − x
z − x

f(z) = V (y).

Alternatively, if y ∈ D, τ ∗ = 0,Py-a.s., and so Eyf(Xτ∗) = f(y).

Hence τ ∗ is optimal in the sense:

V (y) = sup
τ∈MH±N

Eyf(Xτ ) = Eyf(Xτ∗).

Consequently, V (y) = EyV
H±N
τ∗ , and the process V

H±N
n∧τ∗ (which we have already shown is

a non-negative supermartingale) must be a (uniformly integrable) martingale.

Property (iv) now clearly follows — if f(x) ≥ ExV (X1) then τ ∗ = 0, otherwise τ ∗ ≥ 1.

Now consider the function V ∗(x, n). Suppose we have V ∗(Xn, n) > V (Xn) for some n,Xn,

and let τn ∈MH±N
n be a stopping time for which:

E0[f(Xτn)|Fn] > V (Xn).

Using the supermartingale property of V (Xn), we conclude that

V (Xn) ≥ E0[V (Xτn)|Fn] ≥ E0[f(Xτn)|Fn],

which contradicts the choice of τn.

Finally, suppose there exists a supermartingale Yn with Yn ≤ V (Xn), but Yn ≥ f(Xn).
Write τn = inf{m ≥ n : Xm ∈ D}. Then Yn ≥ E[Yτn|Fn] ≥ E[f(Xτn)|Fn] = V (Xn).
Hence V (Xn) is the smallest supermartingale dominating f(·).

Remark 1.2. (i) The sets C and D are called the continuation set and stopping
set respectively. Note the connection between C and D and the concavity of the

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.



Optimal Stopping and Applications — Discrete time Amg Cox 7

value function:

V (x)− 1

2
(V (x+ 1) + V (x− 1)) = 0 x ∈ C (6)

V (x)− 1

2
(V (x+ 1) + V (x− 1)) ≤ 0 x ∈ D. (7)

In particular, V (Xn) is a martingale in C, and a supermartingale on D (strictly so,
if the inequality is strict).

(ii) We have made strong use of the Markov property here: the ability to write the value
function as a function of Xn has made things considerably easier; in addition, the
fact that there is no time-horizon helps, otherwise, our martingale would have to be
a function of both time and space, and correspondingly harder to characterise.

In general, we would like to consider situations where the process is not Markov,
and this means we cannot characterise the value function quite so simply. However,
part (vi) suggests the way out — rather than look for functions on the state space of
the Markov process, we will look for the smallest supermartingales which dominates
the payoff. The corresponding supermartingale will be called the Snell envelope.

(iii) The other question is: how might things change in continuous time and space?
A simple way of considering this is to see what happens if we rescale the current
problem by letting the space and time steps get small appropriately, so that in the
limit, we get a Brownian motion. Thinking about (6)–(7), we might expect the
statespace, [−N,N ], to break up into two sets, C and D, such that:

lim
n→∞

(
V (x)− 1

2
(V (x+ 1/n) + V (x− 1/n))

)
n2

= V ′′(x) = 0 x ∈ C

lim
n→∞

(
V (x)− 1

2
(V (x+ 1/n) + V (x− 1/n))

)
n2

= V ′′(x) ≤ 0 x ∈ D

and such that V (x) = f(x) in D.

Thinking a bit more, suppose our process starts at y ∈ [−N,N ] — a possible
approach to finding V (y) is to find the points x ≤ y ≤ z, and the function V such
that:

V ′′(w) = 0, w ∈ (x, z)

V (w) = f(w), w ∈ {x, z}
V ′(w) = f ′(w), w ∈ {x, z}
V ′′(w) ≤ 0, w ∈ [−N,N ]

then this will be sufficient to characterise the value function at y. Such a formula-
tion is analogous to the free-boundary problems that we will see in later lectures
(although these will normally be formulated as PDE problems, rather than differ-
ential equation problems as it is here). Conditions like those on the value and the
gradient on the ‘boundary’ are continuous fit and smooth fit conditions.

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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2 Discrete time

Our approach throughout this section will be to start in the more general case, where we
simply assume that there is some gains process Gn, which is the amount we receive at
time n if we choose to stop, and then later to specify the situation to the Markov case,
where we can say more about the value function and the optimal stopping time.

2.1 Martingale treatment

We begin by assuming simply that (Gn)n≥0 is a sequence of adapted random variables on
a filtered probability space (Ω,F , (Fn)n≥0,P), and interpret Gn as the gain, or reward we
receive for stopping at time n.

Recall the definition ofMτ2
τ1

as the set of stopping times which are less than τ2 and greater
than τ1; we shall omit the lower limit when this is 0, and if we omit the upper limit, we
admit any stopping time which is almost surely finite. Our optimisation will be taken
over some set of stopping times N ⊆M, so the value function is:

V = sup
τ∈N

EGτ .

To keep the problem technically simple, we assume that

sup
τ∈N

E
[
sup
n≤τ
|Gn|

]
<∞. (8)

Note that this can be rather restrictive, but if N =Mτ for some relatively nice τ — like
τ = H±N , or some constant — we are usually OK.

We begin by considering the case where we have some finite horizon to the problem: that
is, N = MN , for a fixed constant N . Clearly, if we arrive at this horizon, we have no
choice but to stop, so that the value function and the gain function are the same at time
N . From here, we can work backwards — if, conditional on the information at time N−1,
we are on average better stopping, we should stop. Otherwise we continue, and hence
we can calculate the value function at N − 1. This is exactly the idea expressed in the
Bellman equation (5). Formally, we can define the candidate for our Snell envelope5 Sn
inductively as follows:

Sn =

{
GN , n = N

max{Gn,E[Sn+1|Fn]}, n = N − 1, N − 2, . . . , 0.
(9)

Then the following result holds:

Theorem 2.1. For each n, Vn = ESn is the value of the optimal stopping problem:

Vn = sup
τ∈MN

n

EGτ , (10)

5The difference between the value function and the Snell envelope is that the value function is a
numerical value, possibly depending on the choice of the state in the Markovian context, whereas the
Snell envelope is a random variable. In the example of the previous section V (·) was the value function,
V (Xn) the Snell envelope.

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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assuming (8) holds. Moreover:

(i) The stopping time
τn = inf{n ≤ k ≤ N : Sk = Gk}

is optimal in (10);

(ii) The process (Sk)0≤k≤N is the smallest supermartingale which dominates (Gk)0≤k≤N ;

(iii) The stopped process (Sk∧τn)n≤k≤N is a martingale.

Proof. Note that condition (8) ensures that all the stochastic processes mentioned are
integrable.

We begin by showing that:

Sn ≥ E[Gτ |Fn], for τ ∈MN
n , (11)

Sn = E[Gτn|Fn]. (12)

We proceed backwards inductively from n = N . Clearly both statements are true for
n = N . The inductive step follows from the definition of Sn: suppose the statement is
true for n and take τ ∈MN

n−1, then

E[Gτ |Fn−1] = Gn−11{τ=n−1} + E[Gτ∨n|Fn−1]1{τ≥n}
≤ Sn−11{τ=n−1} + E[E[Gτ∨n|Fn]|Fn−1]1{τ≥n}.

Now, τ ∨ n ∈MN
n , so E[Gτ∨n|Fn] ≤ Sn, and by the definition of Sn−1,

E[Gτ |Fn−1] ≤ Sn−11{τ=n−1} + E[Sn|Fn−1]1{τ≥n}
≤ Sn−11{τ=n−1} + Sn−11{τ≥n}

≤ Sn−1.

If we now replace τ above with τn, and note that τn−1 = τn and Sn−1 = E[Sn|Fn−1] on
the set {τn−1 ≥ n}, all the inequalities above can be seen to be equalities, and thus:

Sn−1 = E[Gτn|Fn−1].

Taking expectations in (11) and (12), we conclude that ESn ≥ EGτ for any τ ∈MN
n , and

further that ESn = EGτn . Hence (10) holds, and τn is optimal for this equation.

The supermartingale and dominance properties follow from (12). To show Sn is the small-
est supermartingale dominating Sn, consider an alternative supermartingale Un which also
dominates Gn. Then clearly, SN = GN ≤ UN , and it follows from (9) that if Sn ≤ Un,
then also Sn−1 ≤ Un−1

The martingale property finally follows from the fact that (Sk∧τn)n≤k≤N) is a supermartin-
gale with ESn∧τn = ESN∧τn .

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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We now want to try and move to the infinite-horizon case, but there is a technical issue:
ideally, we should have been able to write the value function as

Sn = sup
τ∈MN

n

E[Gτ |Fn],

however the set of stopping times inMN
n will typically be uncountable, so that the right-

hand side may not be measurable! To get round this, we need to introduce the concept
of an essential supremum.

Theorem 2.2. Let {Zα;α ∈ I} be a collection of random variables in a probability space
(Ω,F ,P), with I an arbitrary index set. Then there exists a unique (up to P-null sets)
random variable Z∗ : Ω→ R̄ = R ∪ {−∞,∞} such that:

(i) P(Zα ≤ Z∗) = 1, ∀α ∈ I,

(ii) if Y : Ω→ R̄ is another random variable satisfying (i), then

P(Z∗ ≤ Y ) = 1.

We call Z∗ the essential supremum of {Zα;α ∈ I}, and write

Z∗ = esssup
α∈I

Zα.

Moreover, there exists a countable subset J of I, such that

Z∗ = sup
α∈J

Zα.

Sketch of Proof. Mapping by a suitable f : R̄ → [−1, 1], we may assume all Zα are
bounded. Let C be the set of countable subsets of I. Then

a = sup
C∈C

E
[
sup
α∈C

Zα

]
= sup

n≥1
E
[

sup
α∈Cn

Zα

]
for some suitable sequence Cn ⊆ C. However,

⋃
n≥1Cn is a countable set, so we may

define the random variable
Z∗ = sup⋃

n Cn

Zn.

From here, it is relatively easy to check that Z∗ has the required properties.

We’re now able to define the Snell envelope for the infinite horizon problem.

Suppose we want to solve a problem of the form:

sup
τ∈M

EGτ

then our candidate Snell envelope at time n is:

Sn = esssup
τ∈Mn

E [Gτ |Fn] , (13)

with the associated optimal strategy

τn = inf{k ≥ n : Sk = Gk}. (14)

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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Theorem 2.3. Suppose (8) holds with N =M, and let Sn, τn be as defined in (13) and
(14). Fix n, and suppose that P(τn <∞) = 1. Then Vn = ESn is the value of the optimal
stopping problem:

Vn = sup
τ∈Mn

EGτ . (15)

Moreover,

(i) The stopping time τn is optimal in (15);

(ii) The process (Sk)k≥n is the smallest supermartingale which dominates (Gk)k≥n;

(iii) The stopped process (Sk∧τn)k≥n is a martingale.

Finally, if P(τn <∞) < 1, there is no optimal stopping time in (15).

Proof. We begin by showing that Sn ≥ E[Sn+1|Fn]. Suppose that σ1, σ2 ∈ Mn+1 and let
A = {E[Gσ1|Fn+1] ≥ E[Gσ2|Fn+1]} ∈ Fn+1. Then we can define a stopping time

σ3 = σ11A + σ21AC ∈Mn+1.

Hence:

E[Gσ3|Fn+1] = 1AE[Gσ1|Fn+1] + 1ACE[Gσ2|Fn+1]

= max {E[Gσ1|Fn+1],E[Gσ2|Fn+1]} .

Now, by Theorem 2.2, we know there exists a countable subset J ⊆Mn+1 such that

Sn+1 = sup
τ∈J

E[Gτ |Fn+1].

Moreover, we can assume that J is closed under the operation described above (i.e. if
σ1, σ2 ∈ J then σ3 is also in J) without losing the countability of J . Hence, there is a
sequence of stopping times σk such that

Sn+1 = lim
k→∞

E[Gσk |Fn+1]

where E[Gσk |Fn+1] is a sequence of increasing random variables. So

E[Sn+1|Fn] = E
[

lim
k→∞

E[Gσk |Fn+1]|Fn
]

= lim
k→∞

E [E[Gσk |Fn+1]|Fn]

= lim
k→∞

E[Gσk |Fn]

≤ Sn (16)

In addition, for all τ ∈Mn, we get (by conditioning on {τ = n}, {τ > n})

E[Gτ |Fn] ≤ max{Gn,E[Sn+1|Fn]},

Please e-mail any comments/corrections/questions to: A.M.G.Cox@bath.ac.uk.
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so Sn ≤ max{Gn,E[Sn+1|Fn]}, however clearly also Sn ≥ Gn, and (16) imply

Sn = max{Gn,E[Sn+1|Fn]}. (17)

Then, for n ≤ k < τn, Sk = E[Sk+1|Fk] a.s., that is:

Sk∧τn = E[S(k+1)∧τn|Fk], ∀k ≥ n, (18)

and so, for N > n,
Sn = E[Gτn1{τn<N} + SN1{τn≥N}|Fn].

In particular, if P(τn <∞), we can let N →∞, and use (8) and dominated convergence
to conclude:

Sn = E[Gτn|Fn] = esssup
τ∈Mn

E[Gτn|Fn].

So Vn = ESn = supτ∈Mn
E[Gτ ], and τn is optimal.

Suppose (Uk)k≥n is also a supermartingale dominating (Gk)k≥n. Then

Sk = E[Gτk |Fk] ≤ E[Uτk |Fk] ≤ Uk,

where the final inequality follows from conditional Fatou, applied to Um∧τk ≥ − supn≤r≤τk |Gr|
which (by (8)) is an integrable random variable, independent of m.

We can conclude that the stopped process is a martingale from (18) and the integrability
condition.

For the final statement in the theorem, suppose that there is another stopping time
τ ∗ ∈Mn, then if P(Sτ∗ < Gτ∗) > 0, we get:

EGτ∗ < ESτ∗ ≤ ESn = Vn

so that any optimal τ ∗ has P(τ ∗ ≥ τn) = 1. In particular, if P(τn < ∞) < 1, there is no
optimal τ ∗ with P(τ ∗ <∞) = 1.

2.2 Markovian setting

Now consider a time-homogeneous Markov chain, X = (Xn)n≥0, Xn ∈ E for some mea-
surable space (E,B), defined on a probability space (Ω,F , (Fn)n≥0,Px), with Px(X0 = x).
Further, for simplicity, we will assume that (Ω,F) = (EZ+ ,BZ+), so that the shift opera-
tors θn : Ω→ Ω can be defined by (θn(w))k = wn+k, and F0 is trivial.

Of course, this is just a special case of the setting considered in Section 2.1, so can we say
anything extra? Consider an infinite horizon problem:

V (x) = sup
τ∈M

ExG(Xτ ) (19)

where we note that we have replaced the general process Gn by a process depending only
on the current state G(Xn). Assume that there is an optimal strategy for the problem.
Before, the solution was expressed in terms of the Snell envelope. The next result shows
that we can make a more explicit connection between the Snell envelope:
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Lemma 2.4. Let Sn be the Snell envelope as given by (13). Then we have:

Sn = V (Xn), (20)

Px-a.s., for all x ∈ E, n ≥ 0.

Proof. We first note that V (Xn) ≤ Sn, since the latter is taken over all stopping times in
Mn, whereas the former is equal to the essential supremum where the supremum is taken
over stopping times in Mn of the form τn = n+ τ ◦ θn. We also note that

V (x) ≥ sup
τ∈M1

Ex[G(Xτ )]

≥ sup
τ∈M0

Ex[G(X1+τ◦θ1)]

≥ sup
τ∈M0

Ex[EX1G(X̃τ )]]

where X and X̃ are equal in law

≥ Ex
[
esssup
τ∈M0

EX1 [G(X̃τ )]

]
≥ Ex[V (X1)].

In particular, we can conclude that V (Xn) is a supermartingale, and dominates G(·), but
is smaller than Sn. By property (ii) of Theorem 2.3, we deduce that Sn = V (Xn).

So, whereas before we needed to work with the Snell envelope, now we need only consider
V (·).

To help matters, we note the key equation (17) becomes:

Sn = V (Xn) = max{Gn,E[Sn+1|Fn]}
= max{Gn,E[V (Xn+1)|Fn]}
= max{Gn,EXn [V (X1)]}, (21)

and we introduce an operator T which maps functions F : E → R by:

(TF )(x) = ExF (X1).

We also introduce an important concept from harmonic analysis:

Definition 2.5. We say that F : E → R is superharmonic if TF (x) is well defined,
and

TF (x) ≤ F (x)

for all x ∈ E.

Then, provided Ex|F (Xn)| <∞ for all x ∈ E, we get:

F is superharmonic iff (F (Xn))n≥0 is a supermartingale for all Px, x ∈ E.
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Note: for the example in Section 1.2, we had TF (x) = 1
2
(F (x + 1) + F (x − 1)), so

TF (x) ≤ F (x) if and only if F is concave.

We are now in a position to state an analogue of Theorem 2.3. To update certain notions,
we state the corresponding versions of (8):

sup
τ∈N

E
[
sup
n≤τ
|G(Xn)|

]
<∞. (22)

Further, given the value function V , we define the continuation region:

C = {x ∈ E : V (x) > G(x)}

and the stopping region
D = {x ∈ E : V (x) = G(x)}.

The candidate optimal stopping time is then:

τD = inf{n ≥ 0 : Xn ∈ D}. (23)

Theorem 2.6. Suppose (22) holds, with N = M, and let V (·) be defined by (19), and
τD be given by (23). Suppose that P(τD <∞) = 1. Then

(i) the stopping time τD is optimal in (19);

(ii) the value function is the smallest superharmonic function which dominates the gain
function G on E;

(iii) the stopped process (V (Xn∧τD))n≥0 is a Px-martingale for every x ∈ E

Finally, if P(τD <∞) < 1, there is no optimal stopping time in (19).

Proof. This follows directly from Theorem 2.3, having made the identification Sn = V (Xn)
in (20)

Note that we may rephrase the Bellman equation (21) in terms of the operator T as:

V (x) = max{G(x), TV (x)},

and the right hand side is really just an operator, so if we define a new operator:

QF (x) = max{G(x), TF (x)},

we see that the Bellman equation becomes: V = QV .

This gives us a relatively easy starting point to look for candidate value functions, but note
that solving V = QV is not generally sufficient: consider the ‘Markov’ process Xn = n,
and let G(x) = (1 − 1

x
). Then TV (x) = V (x + 1), so the superharmonic functions are

simply decreasing functions, and QV (x) = max{1 − 1
x
, V (x + 1)}. Clearly, V ≡ 1, and

QV = V for this choice, but QF = F whenever F ≡ const ≥ 1.

We are, however able to say some things about the value function in terms of the operator
Q:
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Lemma 2.7. Under the hypotheses of Theorem 2.6,

V (x) = lim
n→∞

QnG(x), ∀x ∈ E.

Moreover, suppose that F satisfies F = QF and

E
(

sup
n≥0

F (Xn)

)
<∞.

Then F = V iff:

lim sup
n→∞

F (Xn) = lim sup
n→∞

G(Xn), Px-a.s.,∀x ∈ E,

In which case, F (Xn) converges Px-a.s. for all x ∈ E.

We won’t prove this, but see Peskir and Shiryaev, Corollary 1.12 and Theorem 1.13, and
the comments at the end of this chapter.

One of the important features of this result, and one that proves to be important in
practice, is that we now have a set of conditions that we can check to confirm that a
candidate for the value function is indeed the value function — a common feature of
many practical problems is that the solution is obtained by ‘guessing’ a plausible V , and
checking that the function solves an appropriate version of V = QV , along with any other
suitable technical conditions.

We end the discrete time theory with a quick discussion on the time-inhomogeneous case:
we can move from a time-inhomogeneous Markov process Zn to the time-homogeneous
case Xn by considering the process

Xn = (Zn, n),

and e.g. TF (z, n) = Ez,nF (Zn+1, n+ 1), and the same results typically hold.

Also, we can think of the finite-horizon, time-homogeneous case as a special case of
the time-inhomogeneous case, in particular, if T is the operator associated with a time-
homogeneous process Xn:

TF (x) = Ex[F (X1)],

and N is the time-horizon, if we write Vn(x) for

Vn(x) = sup
τ∈MN

n

E[G(Xτ )|Fn],

then

Vn(x) = max{G(x), TVn+1(x)}
= QVn+1(x).

Using VN(x) = G(x), we then get:

Vn(x) = QN−nVN(x)

= QN−nG(x).
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From which we get:

V0(x) = QNG(x).

Note that there is no issue with multiple solutions when we have a finite horizon.

Finally, we comment on the proof of Lemma 2.7: the term limn→∞Q
nG(x) can now be

interpreted as the limit of the finite horizon problem as we let the horizon go to infinity.
If the stopped gain function is well behaved (in the sense of (22)), and the stopping
time τD is almost surely finite, we can conclude the convergence. Now if F = QF , and
the integrability condition holds, we see that F (Xn) is a supermartingale dominating the
value function. The final condition can then be used to show that the candidate value
function is indeed the smallest such supermartingale.

3 Continuous Time

3.1 Martingale treatment

Mostly, the ideas in continuous time remain identical to the ideas in the discrete time
setting. To fill in the details, we need to address a few technical issues, but mostly the
proofs will be similar to the discrete case.

Let our gains process (Gt)t≥0 be an adapted process, defined on a filtered probability
space (Ω,F , (Ft)t≥0,P), satisfying the usual conditions6. Moreover, we will suppose that
the process is right-continuous, and left-continuous over stopping times: if τn is a sequence
of stopping times, increasing to a stopping time τ , then Gτn → Gτ ,P-a.s.. Note that this
is a weaker condition than left-continuity. Our new integrability condition will be:

sup
τ∈N

E
[

sup
0≤t≤τ

|Gτ |
]
<∞. (24)

Note in particular that with such an integrability condition, we may apply the optional
sampling theorem to any supermartingale which dominates the gains process: let Yt ≥ Gt

be a supermartingale, and τ ∈ N , τ ≥ t an almost-surely finite stopping time. Then
Yt ≥ E[Yτ∧N |Ft], and infN∈N Yτ∧N ≥ − sup0≤t≤τ |Gτ |, so dominated convergence allows us
to deduce that Yt ≥ E[Yτ |Ft].

We suppose N =MT
t , for some t < T , (including the case T =∞, which we interpret as

the a.s. continuous stopping times) and consider the problem:

Vt = sup
τ∈MT

t

EGτ . (25)

Now, introduce the process
S∗t = esssup

τ∈MT
t

E[Gτ |Ft], (26)

6That is, (Ft)t≥0 is complete (F0 contains all P-negligible sets), and right-continuous (Ft =
⋂

s>t Fs).
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and we would hope that such a process could be our Snell envelope, with the stopping
time:

τt = inf{t ≤ r ≤ T : S∗r = Gr}. (27)

There is however a technical issue here: although our gains process and the filtration are
both right continuous, the process S∗t is not a priori right-continuous: notably, we could,
for fixed t, redefine S∗t on a set of probability zero without contradicting the definition
(26). So pick any such S∗t , and suppose further that the probability space admits an
independent, U(0, 1) random variable U . Then choose a version of (S∗t ), say (S̃t) which
has S∗U = GU , but otherwise has S̃t = S∗t . This is a possible alternative choice according
to (26), but note that, if we stop both processes according to their respective versions of
(27), we get S̃τ̃t = S∗τ∗t ∧U , which will in general be substantially different!

The solution to this is from the following:

Lemma 3.1. Let S∗t be as given in (26). Then S∗t is a supermartingale and ES∗t = Vt. In
addition, S∗t admits a right-continuous version, St, which is also a supermartingale, and
for which ESt = Vt.

Proof. The supermartingale property follows by using an identical proof to that used in
Theorem 2.3, to derive (16). The equality ES∗t = Vt then follows from the definition of
an essential supremum.

For the final statement, we note that the existence of St will follow if we can show that
t 7→ ES∗t is right-continuous (e.g. Revuz & Yor, Theorem II.2.9). From the martingale
property, we get ES∗t ≥ ES∗t+δ, so that limtn↓t ES∗tn ≤ ES∗t . Now choose τ ∈ MT

t , and
consider τn = τ ∨ (t+ 1

n
) ∈Mt+ 1

n
. Then right continuity of Gt implies limn→∞Gτn = Gτ ,

and so we get EGτ ≤ lim infn→∞ EGτn ≤ lim infn→∞ ES∗
t+ 1

n

.

Now we have a suitably defined Snell envelope, we are in a position to state the main
theorem:

Theorem 3.2. Let St be the process defined in Lemma 3.1, and define the stopping time

τt = inf{t ≤ r ≤ T : Sr = Gr}. (28)

Suppose (24) holds with N =M. Fix t, and suppose that P(τt <∞) = 1. Then Vt = ESt
is the value of the optimal stopping problem:

Vt = sup
τ∈MT

t

EGτ . (29)

Moreover,

(i) The stopping time τt is optimal in (29);

(ii) The process (Sr)t≤r≤T is the smallest right-continuous supermartingale which dom-
inates (Gr)t≤r≤T ;

(iii) The stopped process (Sr∧τt)t≤r≤T is a right-continuous martingale.
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Finally, if P(τt <∞) < 1, there is no optimal stopping time in (29).

Proof. That (29) holds, and St is the smallest right-continuous martingale dominating
Gt follow from the previous lemma, and the usual argument: if Yt ≥ Gt is another
right-continuous supermartingale, Yt ≥ E[Yτ |Ft] ≥ E[Gτ |Ft], so Yt ≥ St. Note that
right-continuity in fact implies P(Yr ≥ Sr for all r ≥ t) = 1.

The major new issue concerns the optimality of τ . Previously, we were able to prove
optimality using the Bellman equation, but this no longer makes sense when we move to
the continuous time setting. Instead, we need to find a new argument.

Suppose initially that the gains process satisfies the additional condition Gt ≥ 0. Then,
for λ ∈ (0, 1] introduce

τλt = inf{r ≥ t : λSr ≤ Gr},

so τ 1t ≡ τt. Right continuity of St, Gt implies

λSτλt ≤ Gτλt
,

τλt+ = τλt .

Moreover, St ≥ E[Sτλt |Ft], since St is a supermartingale. We want to show that St =
E[Sτ1t |Ft].

Suppose λ ∈ (0, 1), and define
Rt = E[Sτλt |Ft],

and then, for s < t,

E[Rt|Fs] = E[E[Sτλt |Ft]|Fs]
= E[Sτλt |Fs]
≤ E[Sτλs |Fs]
≤ Rs.

Then Rs is a supermartingale, and an identical argument to the proof of Lemma 3.1 allows
us to deduce t 7→ ESτλt is decreasing, and therefore we can find a right-continuous version
of Rt. In particular, since Gt ≥ 0, we also have Rt ≥ 0.

Now consider the (right-continuous) process

Lt = λSt + (1− λ)Rt.

Then, for λ ∈ (0, 1):

Lt = λSt + (1− λ)Rt1{τλt =t} + (1− λ)Rt1{τλt >t}

≥ λSt + (1− λ)E[Sτλt |Ft]1{τλt =t}
≥ λSt + (1− λ)St1{τλt =t}

≥ St1{τλt =t} + λSt1{τλt >t}

≥ Gt,
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where we have used: τλt > t implies λSt > Gt. Since Lt is now a supermartingale
dominating Gt, we must also have Lt ≥ St, and therefore St ≤ Rt. So in fact St = Rt,
and rearranging, we get

St = E[Sτλt |Ft] ≤
1

λ
E[Gτλt

|Ft]. (30)

But as λ ↑ 1, τλt increases to some limiting (possibly infinite) stopping time σ, and by the
left continuity for stopping times of Gt, we get St ≤ E[Gσ|Ft].

So it just remains to show that σ = τ 1t (since we already have St ≥ E[Gσ|Ft]).

Since τ 1t ≥ τλt for λ ∈ (0, 1), we have τ 1t ≥ σ, but if {σ < τ 1t } has positive probability,
then also with positive probability we have Sσ > Gσ, and hence

St = E[Gσ|Ft] < E[Sσ|Ft]

with positive probability, but this contradicts the supermartingale property of St. Hence
we can conclude that St = E[Gτ1t

|Ft] = E[Sτ1t |Ft].

Now we note that we may remove the assumption that Gt ≥ 0. Since we are assuming
(24),

Mt = E
[

inf
0≤t≤T

Gt|Ft
]

is a right-continuous, uniformly integrable martingale. Now define a new problem with
gain process G̃t = Gt −Mt, and note that this is now non-negative, and right-continuous
(although not necessarily left-continuous for stopping times). Then if we solve the problem
for G̃t, we get:

S̃t = esssup
τ∈N

E[G̃τ |Ft] = esssup
τ∈N

E[Gτ −Mτ |Ft] = St −Mt.

We can now apply the above argument to the processes (G̃t, S̃t) up to the step at (30),
and from there reverting to the processes (Gt, St), we get the desired conclusion.

The remaining claims in the theorem follow with the usual arguments.

3.2 Markovian setting

Take (Xt)t≥0 a Markov process on (Ω,F , (Ft)t≥0,Px) on a measurable space (E,B) where,
for simplicity, we suppose E = Rd,B = Borel(Rd), and (Ω,F) = (E[0,∞),B[0,∞)), so that
the shift operators are measurable. In addition, we again suppose the sample paths of
(Xt)t≥0 are right-continuous, and left-continuous for stopping times. As usual, we also
introduce an integrability condition:

sup
τ∈N

Ex
[
sup
t≤τ
|G(Xt)|

]
<∞. (31)

Our problem of interest is:
V (x) = sup

τ∈N
ExG(Xτ ). (32)
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In this section, we will in general consider the case where N =M, although we will also
at times consider the case N =MT , for which all the results we state will also hold (and
in cases, will be simpler).

The argument we used in Lemma 2.4 can be used essentially unmodified to see that

V (x) ≥ ExV (Xs)

for all x ∈ E, s ≥ 0, and therefore V (Xt) = St,Px-a.s., using the same reasoning.

Again, we define the continuation and stopping regions by:

C = {x ∈ E : V (x) > G(x)}
D = {x ∈ E : V (x) = G(x)}.

We want τD = inf{t ≥ 0 : Xt ∈ D} to be a stopping time, and XτD ∈ D. For a
right-continuous process in a right-continuous filtration, this is true if D is closed. Re-
call also that a function is lower semi-continuous (upper semi-continuous) if f(x) ≤
lim infxn→x f(xn) (f(x) ≥ lim supxn→x f(xn)) for all x ∈ E. Equivalently, f is lower
semi-continuous (lsc) if {x ∈ E : f(x) ≤ A} is closed for any A ∈ R. Similarly, f is upper
semi-continuous (usc) if {x ∈ E : f(x) ≥ A} is closed. Note that if f is usc, −f is lsc,
and if f, g are usc/lsc, f + g is usc/lsc. Then D is closed if {V −G ≤ 0} is closed, which
occurs if V −G is lsc, and therefore if V is lsc and G is usc. It is under these conditions
that we will generally work.

The restriction to lsc V allows us to rule out certain pathological examples (e.g. V (x) =
1{x=0} = G(x), when Xt = BM(R2)), but is also not a strong constraint: if x 7→ ExG(Xτ )
is continuous (or lsc) for each τ , then x 7→ ExG(Xτ ) is also lsc. The usc of G ensures that
we don’t stop outside the stopping region: e.g. G(x) = 1{x 6=0}, then P0(τD = 0) = 1, but
G(XτD) = 0.

We can also extend Definition 2.5 to the current context:

Definition 3.3. A measurable function F : E → R is superharmonic if

ExF (Xσ) ≤ F (x)

for all stopping times σ and all x ∈ E. (Note that this requires F (Xσ) ∈ L1(Px) for all
x ∈ E.)

Lemma 3.4. Suppose F is lsc and (F (Xt))t≥0 is uniformly integrable. Then F is super-
harmonic if and only if (F (Xt))t≥0 is a right-continuous supermartingale under Px, for
each x ∈ E.

The ‘if’ direction is clear. For the ‘only if’ direction, if F is superharmonic,

F (Xt) ≥ EXtF (Xs) = Ex [F (Xt+s)|Ft] .

So F is a super-martingale. The hard part is checking right-continuity. We leave the
proof of this fact to Peskir & Shiryaev, Proposition I.2.5.

From this, we get the following theorem:
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Theorem 3.5. Suppose there exists an optimal stopping time τ ∗ with P(τ ∗ <∞) = 1, so
that

V (x) = ExG(Xτ∗)

for all x ∈ E. Then

(i) V is the smallest superharmonic function dominating G on E;

Moreover, if V is lsc, and G is usc, then also

(ii) τD ≤ τ ∗ for all x ∈ E, and τD is optimal;

(iii) the stopped process (V (Xt∧τD))t≥0 is a right-continuous Px-martingale.

Proof.

ExV (Xσ) = ExEXσG(Xτ∗) = ExEx [G(Xτ∗) ◦ θσ|Fσ]

= ExG(Xσ+τ∗◦θσ) ≤ sup
τ

ExG(Xτ ) = V (x).

So V is a super-harmonic function, dominating G. For any other super-harmonic F we
get

ExG(Xτ ) ≤ ExF (Xτ ) ≤ F (x),

and taking the supremum over τ , we get V (x) ≤ F (x). For any optimal stopping time, if
Px(V (Xτ∗) > G(Xτ∗)) > 0, we get

ExG(Xτ∗) < ExV (Xτ∗) ≤ V (x),

so τ ∗ optimal implies τD ≤ τ ∗. By Lemma 3.4, V (Xt) is a right-continuous supermartin-
gale, and further V (XτD) = G(XτD) by lsc/usc. Then

V (x) = ExG(Xτ∗) = ExV (Xτ∗)

≤ ExV (XτD) = ExG(XτD) ≤ V (x),

where the inequality follows from the supermartingale property.

For (iii):

Ex[V (XτD)|Ft] = Ex[G(XτD)|Ft]
= EXt [G(XτD)|Ft]1{t<τD} + V (XτD)1{t≥τD}

= V (Xt∧τD)

This theorem constitutes necessary conditions for the existence of a solution. Now we
consider sufficient conditions:
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Theorem 3.6. Suppose there exists a function V̂ , which is the smallest superharmonic
function dominating G on E. Suppose also V̂ is lsc and G is usc. Let D = {x ∈ E :
V̂ (x) = G(x)}, and suppose τD is as above. Then

(i) if Px(τD <∞) = 1, for all x ∈ E, then V̂ = V and τD is optimal;

(ii) if Px(τD <∞) < 1, for some x ∈ E, then there is no optimal stopping time τ .

Proof. For all τ, x:
ExG(Xτ ) ≤ ExV̂ (Xτ ) ≤ V̂ (x).

Taking the supremum over all τ , we get G(x) ≤ V (x) ≤ V̂ (x). Suppose in addition
G(·) ≥ 0, and introduce for λ ∈ (0, 1),

Cλ = {x ∈ E : λV̂ (x) > G(x)}
Dλ = {x ∈ E : λV̂ (x) ≤ G(x)}.

Then the usc/lsc of V̂ , G imply Cλ is open and Dλ is closed. Also, Cλ ↑ C,Dλ ↓ D as
λ ↑ 1. Taking τDλ = inf{t ≥ 0 : Xt ∈ Dλ} we get τDλ ≤ τD a.s., and so Px(τDλ <∞) = 1
for all x ∈ E.

Note that x 7→ ExV̂ (XτDλ
) is superharmonic:

Ex
[
EXσ [V̂ (XτDλ

)]
]

= Ex
[
Ex
[
V̂ (Xσ+τDλ◦θσ)|Fσ

]]
= ExV̂ (Xσ+τDλ◦θσ)

≤ ExV̂ (XτDλ
)

since V̂ is superharmonic, and σ + τDλ ◦ θσ ≥ τDλ .

Now, if x ∈ Cλ, then G(x) < λV̂ (x) ≤ λV̂ (x) + (1 − λ)ExV̂ (XτDλ
) since the last term is

non-negative. If x ∈ Dλ, G(x) ≤ V̂ (x) = λV̂ (x) + (1− λ)ExV̂ (XτDλ
), so for all x ∈ E, we

get
G(x) ≤ λV̂ (x) + (1− λ)ExV̂ (XτDλ

)

But since both terms on the right are superharmonic, the whole expression is, and there-
fore:

V̂ (x) ≤ λV̂ (x) + (1− λ)ExV̂ (XτDλ
),

which implies
V̂ ≤ ExV̂ (XτDλ

).

Again using superharmonicity, we conclude:

V̂ (x) = ExV̂ (XτDλ
).

Since V̂ is lsc and G is usc, we deduce

V̂ (XτDλ
) ≤ 1

λ
G(XτDλ

), (33)
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and we get

V̂ (x) = ExV̂ (XτDλ
) ≤ 1

λ
ExG(XτDλ

) ≤ 1

λ
V (x).

Letting λ ↑ 1, we conclude that V̂ (x) ≤ V (x), and therefore V̂ = V , V (x) ≤ 1
λ
G(XτDλ

).

Now consider the sequence τDλ as λ ↑ 1. Then τDλ ↑ σ, for some stopping time σ. We
need to show σ = τD. Since τDλ ≤ τD for λ < 1, we must have σ ≤ τD. Using (33) and

the left-continuity of Xt over stopping times, and lsc of V̂ , usc of G, we must have:

V (Xσ) ≤ G(Xσ),

and hence V (Xσ) = G(Xσ), so that σ ≥ τD (recall the definition of τD.)

Finally, to see that τD is indeed optimal, using (33) and Fatou:

V (X) ≤ lim sup
λ↑1

ExG(XτDλ
)

≤ Ex lim sup
λ↑1

G(XτDλ
)

≤ ExG(lim sup
λ↑1

XτDλ
)

= ExG(XτDλ
)

where in the last two lines, we have used the usc of G, and the left-continuity for stopping
times of Xt.

The final statement in the theorem follows from Theorem 3.5.

We will not prove the final step (that we can drop the condition G ≥ 0), but refer instead
to Peskir & Shiryaev.

This result allows us to find the value function by looking for the smallest superharmonic
function dominating G

In fact, if we can directly (via other methods) prove that the value function must be lsc,
we can get the following result:

Theorem 3.7. If V is lsc, G is usc, and Px(τD < 1) = 1, then τD is optimal.

Of course, in the finite horizon setting, we don’t need to check the final condition! As
mentioned above, V lsc can also be relatively easy to check if e.g. x 7→ ExG(Xτ ) is
continuous for each τ .

Sketch proof. To deduce this from the previous result, we need to show that V is super-
harmonic. Since V is lsc, it is measurable, and thus, by the Strong Markov property, we
have:

V (Xσ) = esssup
τ

Ex[G(Xσ+τ◦θσ)|Fσ].

Using similar arguments to e.g. the proof of Theorem 2.3, we can finds a sequence of
stopping times such that

V (Xσ) = lim
n→∞

Ex[G(Xσ+τn◦θσ)|Fσ],
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where the right hand side is an increasing sequence. Then:

ExV (Xσ) = lim
n→∞

Ex[G(Xσ+τn◦θσ)] ≤ V (x).

Since any other superharmonic function F has

ExG(Xσ) ≤ ExF (Xσ) ≤ F (x),

V must be the smallest superharmonic function, and now everything follows from Theo-
rem 3.6.

4 Free Boundary Problems

4.1 Infinitesimal Generators

Let Xt be a suitably nice7 time-homogeneous Markov process, and write Pt for the tran-
sition semi-group of the process — that is, Ptf(x) = Exf(Xt).

Suppose f ∈ C0 (the set of continuous functions with limit 0 at infinity) is sufficiently
smooth that

LXf = lim
t↓0

1

t
(Ptf − f)

exists in C0. Then LX : DX → C0 is the infinitesimal generator of X, where we write
DX ⊆ C0 for the set of functions where LX is defined.

Definition 4.1. If X is a Markov process, a Borel function f belongs to the domain DX

of the extended infinitesimal generator if there exists a Borel function g such that

f(Xt)− f(X0)−
∫ t

0

g(Xs) ds

is a right-continuous martingale for every x ∈ E; in which case, we write g = LXf . It can
then be shown that DX ⊆ DX .

Theorem 4.2 (Revuz & Yor, VII.1.13). If Pt is a ‘nice’ semi-group on Rd, and C∞K ⊆ DX ,

(i) C2
K ⊆ DX ;

(ii) for every relatively compact open set U , there exist functions aij, bi, c on U and a
kernel N such that for all f ∈ C2

K and x ∈ U :

LXf(x) = c(x)f(x) +
∑

bi(x)
∂f

∂xi
(x) +

∑
aij(x)

∂2f

∂xi∂xj
(x)

+

∫
R\{x}

[
f(y)− f(x)− 1U(y)

∑
(yi − xi)

∂f

∂xi
(x)

]
N(x, dy). (34)

N(x, ·) is a Radon measure on Rd \ {x}, a is a symmetric, non-negative matrix,
c ≤ 0 and a, c do not depend on U .

7Feller — i.e. if Pt is the transition semi-group, and Ptf(x) = Exf(Xt), then for f ∈ C0, the set of
continuous functions tending to zero at infinity, then ||Ptf || ≤ ||f ||, where || · || is the uniform norm, for
all f ∈ C0, Pt ◦ Ps = Pt+s and limt↓0 ||Ptf − f || = 0 for every f ∈ C0.
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We can interpret some of the terms in the operator as follows: the c(x) term encodes
the rate at which the process is ‘killed’ at x, b(x) is the drift, and (aij(x)) the diffusion
matrix. N(x, ·) is the jump measure. In the case where the measure N is identically zero,
the process Xt is continuous.

4.2 Boundary problems

Consider now our value function. If D exists, with τD almost surely finite, then V (Xt∧τD)
is a right-continuous martingale, and V (Xt) is a supermartingale. Provided V ∈ DX , in
terms of the operator LX , this implies we have

LXV ≤ 0 x ∈ E (35)

V ≥ G x ∈ E (36)

LXV = 0 x ∈ C (37)

V = G x ∈ D (38)

Reversing these arguments, we can try to exploit this as a solution method: suppose that
we can find a closed set D̂ such that P(τD̂ <∞) = 1, and a function V̂ such that (35)–(38)
holds for this set. Then

V̂ (Xt)− V̂ (X0)−
∫ t

0

LX V̂ (Xs) ds

is a martingale, and hence V̂ (Xt∧τD̂) is a martingale, and V̂ (Xt) is a supermartingale.

Moreover, since D̂ is closed, XτD̂
∈ D̂, so

V̂ (x) = ExV̂ (XτD̂
) = ExG(XτD̂

),

and for any stopping time τ ∈M,

V̂ (x) ≥ ExV̂ (Xτ ) ≥ ExG(Xτ )

and therefore τD̂ must be optimal.

So a common approach will be to ‘guess’ what D might be, and then define

V (x) =

{
ExG(XτD) : x ∈ C
G(x) : x ∈ D

and then verify that

LXV ≤ 0 x ∈ E
V ≥ G x ∈ E

In general, we may want to consider slightly more complicated payoffs than a simple
function of Xt, where Xt has the generator given by (34). To consider how we might do
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this, consider first the simple example where Xt is continuous, and so the solution is given
by

V (x) = ExG(XτD)

so that V is a solution to the Dirichlet problem:

LXV (x) = 0, x ∈ C
V (x) = G(x), x ∈ ∂C,

for the correct choice of D.

Now, consider some other problems — our aim is to derive the correct analogue of the
Dirichlet problem for more complicated payoff functions. Again, for all these examples,
we shall assume that the process Xt is continuous, and there exists an optimal stopping
time for the respective problem which is a.s. finite. Where necessary, we will assume any
needed finiteness conditions — the arguments here should be seen as heuristic, rather
than exact.

(i) Consider the problem:
V (x) = sup

τ
Ex
[
e−λτH(Xτ )

]
where λt =

∫ t
0
λ(Xs) ds, for a measurable function λ(·). We can account for this

by considering instead the killed process X̃t, killed at rate λ(Xt), which in turn has
generator LX̃ = LX − λI, to conclude that

V (x) = sup
τ

Ex
[
H(X̃τ )

]
,

and so V satisfies the PDE

LXV (x) = λV, x ∈ C
V (x) = H(x), x ∈ ∂C.

(ii) Consider the finite horizon problem:

V (x, t) = sup
τ∈MT

t

E(x,t)M(Xτ )

where the appropriate Markov process is Zt = (Xt, t). Then we know V (Xt, t) is a
martingale for (x, t) ∈ C ⊆ R × R+. Assuming suitable smoothness on f , we can
apply Itô to derive the operator of Zt:

LZf(x, s) = lim
t↓0

{
E(x,s)f(Xt, t+ s)− f(x, s)

t

}

= lim
t↓0

E(x,s)

[∫ t
0
LXf(Xr, s+ r) ds+

∫ t
0
∂f
∂t

(Xr, s+ r) dr
]

t


= LXf(x, s) +

∂f

∂t
(x, s).
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So the condition on V being a martingale now implies we get the PDE:

LXV (x) = −∂V
∂t
, (x, t) ∈ C (39)

V (x) = M(x), (x, t) ∈ ∂C.

Note that this is the Cauchy problem in PDE theory. There is also killed version of
this problem, where the right hand side of (39) becomes: −∂V

∂t
+ λV .

(iii) Let L be a continuous function and consider

V (x) = sup
τ

Ex
[∫ τ

0

L(Xs) ds

]
.

Note that this problem does not immediately lend itself to a Markov setting, so
we need to expand the state space: consider the process Zt = (Xt, Lt), where
Lt = l +

∫ t
0
L(Xs) ds, and l is the starting point of the process Lt. Then for a

function h, applying Itô as above, we see that the generator of the new process Z
is given by

LZh(x, l) = LXh+
∂h

∂l
L(x),

where the first term is the operator LX applied only to the first co-ordinate of h.
Now consider the more general problem

Ṽ (x, l) = sup
τ

Ex
[
l +

∫ τ

0

L(Xs) ds

]
.

Then ∂Ṽ
∂l

= 1, and Ṽ (x, l) = V (x) + l. So the condition LZ Ṽ (x, l) = 0 implies

LXV +
∂Ṽ

∂l
L(x) = 0

and therefore, we deduce that V solves the PDE

LXV (x) = −L(x), x ∈ C (40)

V (x) = 0, x ∈ ∂C.

Once again, there is a killed version, where the right hand side of (40) becomes
−L(x) + λV .

(iv) Consider St = max0≤r≤tXr ∨ S0, and let our underlying Markov process be Zt =
(Xt, St) on Ẽ = {(x, s) : x ≤ s}, where (X0, S0) = (x, s) under Px,s for (x, s) ∈ Ẽ.
We wish to consider a problem of the form:

V (x, s) = sup
τ

Ex,s [M(Xτ , Sτ )] ,

where M(x, s) is a continuous function on Ẽ.
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Now we again consider the generator of the process Z. If x < s, LZ = LX . Applying
Itô at (s, s), since St is a finite variation process, we get

LZf(s, s) = lim
t↓0

{
E(s,s)f(Xt, St)− f(s, s)

t

}

= lim
t↓0

E(s,s)

[∫ t
0
LXf(Xr, Sr) ds+

∫ t
0
∂f
∂s

(Xr, Sr) dSr

]
t


= LXf(s, s) +

∂f

∂s
(s, s) lim

t↓0

[
Es,s(St − s)

t

]
.

Now, for small t, and a Brownian motion Bt started at 0, we have supr≤tBt ∼
√
t,

and thus in the limit, Es,s(St−s)
t

=∞. In order for the generator to be well defined,

the function f must therefore satisfy: ∂f
∂s

(s, s) = 0. Hence, LZV = 0 implies:

LXV (x, s) = 0, (x, s) ∈ C (41)

∂V

∂s
(x, s) = 0, x = s

V (x, s) = M(x, s), (x, t) ∈ ∂C.

Note that the set C is now a subset of Ẽ. Again, there is also a killed version, where
an additional λV appears on the right hand side of (41).

4.3 A simple free boundary problem

We now consider how these results may become a free boundary problem, by considering
a simple example. Suppose Xt = x + µt + σBt, for some parameters µ ≥ 0, σ > 0, and
consider the function

G(x) =


1 : x ≤ 0

0 : x ∈ (0, 1)

α : x ≥ 1

where α ∈ (0, 1). Then, for λ > 0 consider the problem:

V (x) = sup
τ

Ex
[
e−λtG(Xτ )

]
.

Clearly, we cannot do any better than a reward of 1, so it will be optimal to stop imme-
diately if we ever find ourselves below 0. Moreover, if it is optimal to stop at x ≥ 1, it is
clearly also optimal to stop at any other y > x, since these points will take even longer
to get down to 0, and this is the only place where we can score higher than α. Hence the
continuation region should be of the form: (0, z) for some z ≥ 1.

for such a region C, we can now use the previous results to compute the corresponding
value function. Let Vz be the solution to:

LXV = λV, x ∈ C
V (0) = 1

V (z) = α
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Since

LXf =
1

2
σ2d

2f

dx2
+ µ

df

dx
,

Vz(x) satisfies
1

2
σ2d

2Vz
dx2

+ µ
dVz
dx
− λVz = 0

which we can solve to get
Vz(x) = β1e

d1x + β2e
d2x

where d1, d2 =
−µ±
√
µ2+2λσ2

σ2 . Applying the boundary condition at x = 0, we see that
β1 = 1− β2, and that

Vz(x) = ed1x + β2(e
d2x − ed1x).

If we introduce γ =

√
µ2+2λσ2

σ2 , δ = − µ
σ2 , then γ ≥ −δ ≥ 0, and we can rewrite the solution

as
Vz(x) = eδx [eγx − 2β2 sinh(γx)] .

Applying the second boundary condition, Vz(z) = α, we see that

β2 =
1

2

eγz − αe−δz

sinh(γz)
,

and therefore:

Vz(x) = eδz
[
eγx − sinh(γx)

sinh(γz)
(eγz − αe−δz)

]
.

Note that for x ≤ z, eγz sinh(γx) ≤ eγx sinh(γz), and therefore the expression is positive.

If we now differentiate this expression in x, we get

V ′z (x) = δVz(x) + eδx
[
γeγx − γ cosh(γx)

sinh(γz)
(eγz − αe−δz)

]
and therefore at the right boundary,

V ′z (z) = δα + eδz
[
γeγz − γ cosh(γz)

sinh(γz)
(eγz − αe−δz)

]
.

If we differentiate this whole expression again with respect to z and simplify, we get:

d

dz
[V ′z (z)] =

γ

sinh2(γz)

[
γ(cosh((δ + γ)z)− α)− δe−δz sinh(γz)

]
.

It follows that this expression is non-negative (since γ ≥ −δ ≥ 0), and therefore that
V ′z (z) is increasing as a function of z.

This allows us to think of the solutions to the free boundary problem for given z as follows:

V ′1(1) ≤ 0: In this case, since the gradient increases as z increases, there exists a unique
z∗ ≥ 1 such that V ′z∗(z∗) = 0, and for all z < z∗, V ′z (z) < 0 and for all z > z∗,
V ′z (z) > 0. This is represented in Figure 1.
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Figure 1: Possible functions Vz(x) for different values of z. In this case, V1(1) < 0. The
parameter values are α = 1

2
, µ = 0.25, λ = 0.1, σ = 1. Note that there is a ‘largest’

function which has V ′z∗(z∗) = 0.

V ′1(1) > 0: In this case, again, since the gradient increases as z increases, V ′z (z) > 0 for
all z ≥ 1. This is represented in Figure 2.

In the first case, where there is a z∗ ≥ 1 such that V ′z∗(z∗) = 0, we can deduce that this
must be the only plausible solution to (35)–(38) — any smaller choice of z gives a function
Vz(x) (extended to R+ with Vz(x) = α for x > z) which has a kink at z with left derivative
which is negative and right derivative zero. Consequently, the value function is (strictly)
convex at this point, and Vz(Xs) would be a (strict) submartingale at this point, which
is not possible. Conversely, if we choose a z < z∗, V ′z (z) > 0, and the function Vz would
not remain above the gain function. As a result (see the argument following (35)–(38)),
Vz∗(x) is the value function. Note that in this case, z∗ can be recovered by looking for
the solution to the free-boundary problem: find V, z such that

LXV = λV, x ∈ (0, z),

V (0) = 1,

V (z) = α,

V ′(z) = 0.
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Figure 2: Possible functions Vz(x) for different values of z. In this case, V1(1) > 0. The
parameter values are α = 1

2
, µ = 0.25, λ = 2, σ = 1. Note that there is no function which

has V ′z∗(z∗) = 0.

The final condition in this case being the smooth-fit condition.

In the second case, where V ′1(1) > 0, we see again that we cannot take larger values of
z since the resulting value function passes below the value function. It is easy to see
however that (35)–(38) holds for z∗ = 1, and this is therefore the optimal choice for the
stopping region. In this case, there is no smooth-fit criterion. There are no hard-and-fast
rules regarding when there is or is not a smooth-fit principle, but in this example, it is a
consequence of the discontinuity in the gain function. In examples where the gain function
is smoother, one would expect the smooth-fit principle to hold — see Figure 3, where a
gain function G(x) = tanh(x) for x > 0 is used.
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Figure 3: An alternative payoff function, again exhibiting similar behaviour as above, but
this time a smooth-fit criterion can always be applied.
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