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RANDOM MEDIA IN NUCLEAR ENGINEERING APPLICATIONS

Fuel degradation: melting and solidification Dispersion of grains in fuel pellets
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PARTICLE TRANSPORT IN RANDOM MEDIA

O Assumption: 3 a collection of states (physical realizations) X = {q}

with a probability density function P(q)

q(r) : mapping between material properties and the spatial point I

qu) (r), EEF) (ﬂf — Q,r)and Q@ (r, 2): g-dependent material properties and source

U  Goal: compute the ensemble-averaged angular flux

(p(r,Q)) = /P(q)@@(r, Q)dq % Pomraning (1991)

Where @(Q) solves the linear Boltzmann equation for a given realization q:

S

Q- Vo (r, Q) + 2 (1)@ (r, Q) = f @(Q — Q,1)p @ (r, Q)dQ + Q) (r, )
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QUENCHED VS. ANNEALED DISORDER

U Quenched disorder approach

*  Generate an ensemble of N realizations from P(q)

= Solve the transport equation B{@ ¢ @ = Q@ for each realization g

*=  Deduce the ensemble-averaged flux (¢ (r, Q)) = %Zq 0D (r, Q)

=  Advantage: provides reference solutions for particle transport

=  Drawback: computational burden

U Annealed disorder approach
=  Write a transport equation for ¥ = (@ (r, Q)), which in general is not closed
= Apply a closure formula and obtain an “effective” transport equation B*y = Q*
=  Advantage: reduced computer time

=  Drawback: approximate method
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MARKOV MEDIA: ONE-DIMENSIONAL CASE

O One-dimensional n-nary Markov media generated by transition rates pa,B(r,J_r)

{X(r)} = a at position r describes a Markov chain among discrete states
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MARKOV MEDIA IN DIMENSION D

Poisson hyperplane process %+ Chord distribution at r,Q2 (Markov):
i
T(nu)={xeR?: (n,x)=u} —/ dsp(r + s€2,€2)
Plr. Q) = p(r +(92.Q)e Jo
with:

e = [ o o))

e

% Switzer’s coloring procedure: color each cell of
the Poisson tessellation with probability p,,

Palr, ) = (1 = pa)p(r. )
= Larmier et al. (2016)

U Poisson distribution for the parameters
u and n, with density

fu) 0 S x (0, +00) — [0,00)

+* Schneider & Weil (2008)

»  Any other ways of « building » Markov media?
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EFFECTIVE TRANSPORT MODELS FOR MARKOV MEDIA

U By introducing the Levermore-Pomraning (LP) closure, it is possible to derive an effective
transport equation for the material-averaged flux Y% (r, Q) = p, (p%(r, Q))

Q-VY*(r, Q) + 2 Y*(r,Q)

- f £E(Q - Q) YO (r, Q) + QT(r, Q) + pgih (1 Q) — pap®(r, Q)

\ J \ J
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Regular Boltzmann equation for « species » a. Coupling term

U Comparison with respect to reference solutions:
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» Can we build robust annealed-disorder transport equations?
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