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Cox et al. 2020 - as per lectures

• Semigroup associated with the Neutron Random Walk

φt [g ](r , v) := E(r,v)

[
e
´ t
0 β(Rs ,Υs )dsg(Rt ,Υt)1(t < τD)

]
(1)

• Principal eigenvalue eλ? , λ? := limt→∞
1
t

log φt [1](r , v)

• Some Monte Carlo strategies to approximate φt [g ](r , v) and hence λ?
1. Approximate the expectation in (1) by iid averaging,
2. “Importance Sampling”: approximate(1) by iid averaging under and suitable

change of measure,
3. Simulate iid replicates of the Neutron Branching Process (NBP) itself,
4. ...

• Complexity analysis: cost/accuracy trade-off as a function t, number of simulation
replicates and λ? itself
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Remark 1: Interacting Particle Systems/SMC for approximating
φt [g ](r , v)

φt [g ](r , v) := E(r,v)

[
e
´ t
0 β(Rs ,Υs )dsg(Rt ,Υt)1(t < τD)

]
• Applicability to NTE, quasi-stationary distributions, Yaglom limits etc.:

• Del Moral, P., & Miclo, L. (2003). Particle approximations of Lyapunov exponents
connected to Schrödinger operators and Feynman–Kac semigroups. ESAIM:
Probability and Statistics, 7, 171-208.

• Del Moral, P., & Doucet, A. (2004). Particle motions in absorbing medium with hard
and soft obstacles. Stochastic Analysis and Applications, 22(5), 1175-1207.

• Rousset, M. (2006). On the control of an interacting particle estimation of
Schrödinger ground states. SIAM journal on mathematical analysis, 38(3), 824-844.

• Non-asymptotic and asymptotic error analyses for IPS relevant to complexity
analysis.

• N is number of particles, t is time-horizon
• N, t both finite. Cérou, F., Del Moral, P., & Guyader, A. (2011). A nonasymptotic

theorem for unnormalized Feynman-Kac particle models. In Annales de l’IHP
Probabilités et statistiques (Vol. 47, No. 3, pp. 629-649).

• t finite, and N → ∞. Too many references to mention - see Pierre’s book(s)!
• N finite, t → ∞. Whiteley, N., & Lee, A. (2014). Twisted particle filters. The

Annals of Statistics, 42(1), 115-141.
• N → ∞ and t → ∞ simultaneously. Bérard, J., Del Moral, P., & Doucet, A.

(2014). A lognormal central limit theorem for particle approximations of normalizing
constants. Electronic Journal of Probability, 19, 1-28.
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Remark 2: Dealing with hard killing
• In Neutron Branching Process a particle is killed if it leaves the domain D.
• This corresponds to the indicator function in

φt [g ](r , v) := E(r,v)

[
e
´ t
0 β(Rs ,Υs )dsg(Rt ,Υt)1(t < τD)

]
• Variance reduction. Theoretically well-grounded IPS/SMC algorithms designed to

deal with killing:
• Le Gland, F. & Oudjane, N. (2006). A sequential particle algorithm that keeps the particle

system alive. In Stochastic Hybrid Systems : Theory and Safety Critical Applications, (H.
Blom & J. Lygeros, Eds), Lecture Notes in Control and Information Sciences 337, 351–389,
Springer: Berlin

• Moral, P. D., Jasra, A., Lee, A., Yau, C., & Zhang, X. (2015). The alive particle filter and its
use in particle Markov chain Monte Carlo. Stochastic Analysis and Applications, 33(6),
943-974.

• Persing, A., & Jasra, A. (2016). Twisting the alive particle filter. Methodology and
Computing in Applied Probability, 18(2), 335-358.
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Remark 3: Towards parallel/distributed computing
• Interaction in IPS/resampling in SMC  time-uniform control on errors associated

with empirical measure
• ...but makes algorithm difficult to parallelize

• Bolic, M., Djuric, P. M., & Hong, S. (2005). Resampling algorithms and architectures for
distributed particle filters. IEEE Transactions on Signal Processing, 53(7), 2442-2450.

• Vergé, C., Dubarry, C., Del Moral, P., & Moulines, E. (2015). On parallel implementation of
sequential Monte Carlo methods: the island particle model. Statistics and Computing, 25(2),
243-260.

• Whiteley, N., Lee, A., & Heine, K. (2016). On the role of interaction in sequential Monte
Carlo algorithms. Bernoulli, 22(1), 494-529.

• Lee, A., & Whiteley, N. (2016). Forest resampling for distributed sequential Monte Carlo.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(4), 230-248.

• Heine, K., & Whiteley, N. (2017). Fluctuations, stability and instability of a distributed
particle filter with local exchange. Stochastic Processes and their Applications, 127(8),
2508-2541.

• Sen, D., & Thiery, A. H. (2019). Particle filter efficiency under limited communication. arXiv
preprint arXiv:1904.09623.
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Remark 4: beyond computing the eigen-triple - what is of interest?

• Alex highlighted the two
applications areas:
• Criticality
• Shielding Problem

• Beyond just calculating
eigen-quantities
• optimization?
• sensitivity of e.g. λ? to

physical parameters?
∇θλ?(θ) of interest?

• sensitivity of rare event
probabilities to physical
parameters?

• Beyond simulation
• inference?
• incorporation of measured

data?
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