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Fioure 11. An erample of a slice through a mock nu-
clear reactor design in which some neutron path simu-
lations are depicted. The reactor core displays symme-
try.
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Cox et al. 2020 - as per lectures

® Semigroup associated with the Neutron Random Walk
oelgl(r, v) = E(rv) [e‘t'é SR TS g (R, T )1(t < TD)] 1)

® Principal eigenvalue ™, A, == lim¢,o * log ¢¢[1](r, v)
® Some Monte Carlo strategies to approximate ¢:[g](r,v) and hence A,

1. Approximate the expectation in (1) by iid averaging,
2. “Importance Sampling™: approximate(1) by iid averaging under and suitable

change of measure,
3. Simulate iid replicates of the Neutron Branching Process (NBP) itself,

4. ..
® Complexity analysis: cost/accuracy trade-off as a function t, number of simulation
replicates and )\, itself
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Remark 1: Interacting Particle Systems/SMC for approximating
¢elgl(r,v)
Gelgl(r,v) = B [efo PR T g (R Te)(t < 7p)]

® Applicability to NTE, quasi-stationary distributions, Yaglom limits etc.:

® Del Moral, P., & Miclo, L. (2003). Particle approximations of Lyapunov exponents
connected to Schrédinger operators and Feynman—Kac semigroups. ESAIM:
Probability and Statistics, 7, 171-208.

® Del Moral, P., & Doucet, A. (2004). Particle motions in absorbing medium with hard
and soft obstacles. Stochastic Analysis and Applications, 22(5), 1175-1207.

® Rousset, M. (2006). On the control of an interacting particle estimation of
Schradinger ground states. SIAM journal on mathematical analysis, 38(3), 824-844.
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® Non-asymptotic and asymptotic error analyses for IPS relevant to complexity
analysis.

® N is number of particles, t is time-horizon

® N, t both finite. Cérou, F., Del Moral, P., & Guyader, A. (2011). A nonasymptotic
theorem for unnormalized Feynman-Kac particle models. In Annales de I'|HP
Probabilités et statistiques (Vol. 47, No. 3, pp. 629-649).

® ¢ finite, and N — co. Too many references to mention - see Pierre’s book(s)!

® N finite, t — co. Whiteley, N., & Lee, A. (2014). Twisted particle filters. The
Annals of Statistics, 42(1), 115-141.

® N — oo and t — oo simultaneously. Bérard, J., Del Moral, P., & Doucet, A.
(2014). A lognormal central limit theorem for particle approximations of normalizing
constants. Electronic Journal of Probability, 19, 1-28.
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Remark 2: Dealing with hard killing
® |n Neutron Branching Process a particle is killed if it leaves the domain D.

® This corresponds to the indicator function in
Dulgl(r, v) = By [ 7T g (R, TI( < 70)]

® Variance reduction. Theoretically well-grounded IPS/SMC algorithms designed to

deal with killing:
® Le Gland, F. & Oudjane, N. (2006). A sequential particle algorithm that keeps the particle
system alive. In Stochastic Hybrid Systems : Theory and Safety Critical Applications, (H.
Blom & J. Lygeros, Eds), Lecture Notes in Control and Information Sciences 337, 351-389,
Springer: Berlin

® Moral, P. D., Jasra, A, Lee, A., Yau, C., & Zhang, X. (2015). The alive particle filter and i

use in particle Markov chain Monte Carlo. Stochastic Analysis and Applications, 33(6),
943-974.

® Persing, A., & Jasra, A. (2016). Twisting the alive particle filter. Methodology and
Computing in Applied Probability, 18(2), 335-358.

Algorithm 1: Alive Particle Filter

1. Arrlime 1. For j=1,2,... until j =: Ty is reached such that G\(x{):] and
3L Gy = N:
« Sample x| from M(x, ).

2. Attimel < p <n.For j =1,2,...until j = T, is reached such that G ,(x},) = 1 and
Tl Gplxp) =N
a. Sample u;,_l uniformly from {k € {1,..., Ty —1): G;,,,(x‘;_,) =1}.

o
b. Sample x;, from My(x," ., -).

its
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Remark 3: Towards parallel/distributed computing

® |Interaction in IPS/resampling in SMC ~~ time-uniform control on errors associated
with empirical measure

® _._.but makes algorithm difficult to parallelize

Bolic, M., Djuric, P. M., & Hong, S. (2005). Resampling algorithms and architectures for
distributed particle filters. IEEE Transactions on Signal Processing, 53(7), 2442-2450.

Vergé, C., Dubarry, C., Del Moral, P., & Moulines, E. (2015). On parallel implementation of
sequential Monte Carlo methods: the island particle model. Statistics and Computing, 25(2),
243-260.

Whiteley, N., Lee, A., & Heine, K. (2016). On the role of interaction in sequential Monte
Carlo algorithms. Bernoulli, 22(1), 494-529.

Lee, A., & Whiteley, N. (2016). Forest resampling for distributed sequential Monte Carlo.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(4), 230-248.

Heine, K., & Whiteley, N. (2017). Fluctuations, stability and instability of a distributed
particle filter with local exchange. Stochastic Processes and their Applications, 127(8),
2508-2541.

Sen, D., & Thiery, A. H. (2019). Particle filter efficiency under limited communication. arXiv
preprint arXiv:1904.09623.
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Fig. 2. Some of the paths assigned positive probability by e for the (a) LEPF and (b) TBPF. Tn both cases M = 3 and
in(a)e =1
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Remark 4: beyond computing the eigen-triple - what is of interest?

® Alex highlighted the two
applications areas:
® Criticality
® Shielding Problem
® Beyond just calculating
eigen-quantities
® optimization?
® sensitivity of e.g. A, to
physical parameters?

VoA« (0) of interest? i
° e F1GURE 11. An ezxample of a slice through a mock nu-
sensitivity of rare event clear reactor design in which some neutron path simu-

proba bilities to physical lations are depicted. The reactor core displays symme-
parameters? fry-

® Beyond simulation

® inference?
® incorporation of measured
data?
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