

Neutron Transport Equation - discussion

Nick Whiteley

Institute for Statistical Science, School of Mathematics, University of Bristol
and
The Alan Turing Institute

Monte Carlo Methods for the Neutron

Transport Equation

Cox, Harris, Kyprianou & Wang

arXiv:2012.02864

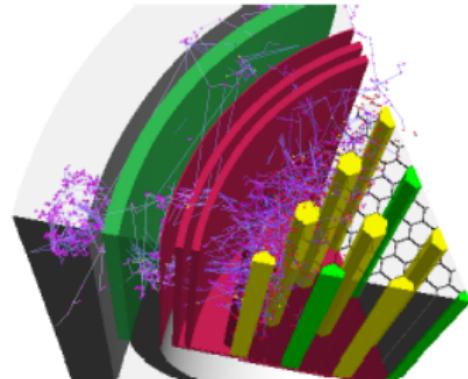


FIGURE 11. An example of a slice through a mock nuclear reactor design in which some neutron path simulations are depicted. The reactor core displays symmetry.

- **Semigroup** associated with the Neutron Random Walk

$$\phi_t[g](r, v) := E_{(r, v)} \left[e^{\int_0^t \beta(R_s, \Upsilon_s) ds} g(R_t, \Upsilon_t) \mathbf{1}(t < \tau_D) \right] \quad (1)$$

- **Principal eigenvalue** e^{λ_*} , $\lambda_* := \lim_{t \rightarrow \infty} \frac{1}{t} \log \phi_t[1](r, v)$
- Some **Monte Carlo strategies** to approximate $\phi_t[g](r, v)$ and hence λ_*
 1. Approximate the expectation in (1) by iid averaging,
 2. "Importance Sampling": approximate (1) by iid averaging under and suitable change of measure,
 3. Simulate iid replicates of the Neutron Branching Process (NBP) itself,
 4. ...
- **Complexity analysis**: cost/accuracy trade-off as a function t , number of simulation replicates and λ_* itself

Remark 1: Interacting Particle Systems/SMC for approximating $\phi_t[g](r, v)$

$$\phi_t[g](r, v) := E_{(r, v)} \left[e^{\int_0^t \beta(R_s, \Upsilon_s) ds} g(R_t, \Upsilon_t) \mathbf{1}(t < \tau_D) \right]$$

- **Applicability to NTE, quasi-stationary distributions, Yaglom limits etc.:**
 - Del Moral, P., & Miclo, L. (2003). Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. *ESAIM: Probability and Statistics*, 7, 171–208.
 - Del Moral, P., & Doucet, A. (2004). Particle motions in absorbing medium with hard and soft obstacles. *Stochastic Analysis and Applications*, 22(5), 1175–1207.
 - Rousset, M. (2006). On the control of an interacting particle estimation of Schrödinger ground states. *SIAM journal on mathematical analysis*, 38(3), 824–844.

Remark 1: Interacting Particle Systems/SMC for approximating $\phi_t[g](r, v)$

$$\phi_t[g](r, v) := E_{(r, v)} \left[e^{\int_0^t \beta(R_s, \Upsilon_s) ds} g(R_t, \Upsilon_t) \mathbf{1}(t < \tau_D) \right]$$

- **Applicability to NTE, quasi-stationary distributions, Yaglom limits etc.:**
 - Del Moral, P., & Miclo, L. (2003). Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. *ESAIM: Probability and Statistics*, 7, 171–208.
 - Del Moral, P., & Doucet, A. (2004). Particle motions in absorbing medium with hard and soft obstacles. *Stochastic Analysis and Applications*, 22(5), 1175–1207.
 - Rousset, M. (2006). On the control of an interacting particle estimation of Schrödinger ground states. *SIAM journal on mathematical analysis*, 38(3), 824–844.
- **Non-asymptotic and asymptotic error analyses for IPS relevant to complexity analysis.**
- N is number of particles, t is time-horizon
 - **N, t both finite.** Cérou, F., Del Moral, P., & Guyader, A. (2011). A nonasymptotic theorem for unnormalized Feynman-Kac particle models. In *Annales de l'IHP Probabilités et statistiques* (Vol. 47, No. 3, pp. 629–649).
 - **t finite, and $N \rightarrow \infty$.** Too many references to mention - see Pierre's book(s)!
 - **N finite, $t \rightarrow \infty$.** Whiteley, N., & Lee, A. (2014). Twisted particle filters. *The Annals of Statistics*, 42(1), 115–141.
 - **$N \rightarrow \infty$ and $t \rightarrow \infty$ simultaneously.** Bérard, J., Del Moral, P., & Doucet, A. (2014). A lognormal central limit theorem for particle approximations of normalizing constants. *Electronic Journal of Probability*, 19, 1–28.

Remark 2: Dealing with hard killing

- In Neutron Branching Process a particle is **killed if it leaves the domain D** .
- This corresponds to the indicator function in

$$\phi_t[g](r, v) := E_{(r, v)} \left[e^{\int_0^t \beta(R_s, \Upsilon_s) ds} g(R_t, \Upsilon_t) 1(t < \tau_D) \right]$$

- **Variance reduction.** Theoretically well-grounded IPS/SMC algorithms designed to deal with killing:
 - Le Gland, F. & Oudjane, N. (2006). A sequential particle algorithm that keeps the particle system alive. In *Stochastic Hybrid Systems : Theory and Safety Critical Applications*, (H. Blom & J. Lygeros, Eds), *Lecture Notes in Control and Information Sciences* 337, 351–389, Springer: Berlin
 - Moral, P. D., Jasra, A., Lee, A., Yau, C., & Zhang, X. (2015). The alive particle filter and its use in particle Markov chain Monte Carlo. *Stochastic Analysis and Applications*, 33(6), 943-974.
 - Persing, A., & Jasra, A. (2016). Twisting the alive particle filter. *Methodology and Computing in Applied Probability*, 18(2), 335-358.

Algorithm 1: Alive Particle Filter

1. At time 1. For $j = 1, 2, \dots$ until $j =: T_1$ is reached such that $G_1(x_1^j) = 1$ and $\sum_{i=1}^j G_1(x_1^i) = N$:
 - Sample x_1^j from $M_1(x_0, \cdot)$.
2. At time $1 < p \leq n$. For $j = 1, 2, \dots$ until $j =: T_p$ is reached such that $G_p(x_p^j) = 1$ and $\sum_{i=1}^j G_p(x_p^i) = N$:
 - a. Sample a_{p-1}^j uniformly from $\{k \in \{1, \dots, T_{p-1} - 1\} : G_{p-1}(x_{p-1}^k) = 1\}$.
 - b. Sample x_p^j from $M_p(x_{p-1}^{a_{p-1}^j}, \cdot)$.

Remark 3: Towards parallel/distributed computing

- Interaction in IPS/resampling in SMC \rightsquigarrow **time-uniform control on errors associated with empirical measure**
- ...but makes algorithm **difficult to parallelize**
 - Bolic, M., Djuric, P. M., & Hong, S. (2005). Resampling algorithms and architectures for distributed particle filters. *IEEE Transactions on Signal Processing*, 53(7), 2442-2450.
 - Vergé, C., Dubarry, C., Del Moral, P., & Moulines, E. (2015). On parallel implementation of sequential Monte Carlo methods: the island particle model. *Statistics and Computing*, 25(2), 243-260.
 - Whiteley, N., Lee, A., & Heine, K. (2016). On the role of interaction in sequential Monte Carlo algorithms. *Bernoulli*, 22(1), 494-529.
 - Lee, A., & Whiteley, N. (2016). Forest resampling for distributed sequential Monte Carlo. *Statistical Analysis and Data Mining: The ASA Data Science Journal*, 9(4), 230-248.
 - Heine, K., & Whiteley, N. (2017). Fluctuations, stability and instability of a distributed particle filter with local exchange. *Stochastic Processes and their Applications*, 127(8), 2508-2541.
 - Sen, D., & Thiery, A. H. (2019). Particle filter efficiency under limited communication. *arXiv preprint arXiv:1904.09623*.

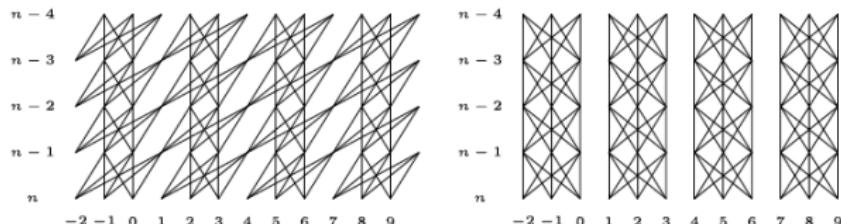


Fig. 2. Some of the paths assigned positive probability by α_∞ for the (a) LEPF and (b) IBPF. In both cases $M = 3$ and in (a) $\theta = 1$.

Remark 4: beyond computing the eigen-triple - what is of interest?

- Alex highlighted the two applications areas:
 - **Criticality**
 - **Shielding Problem**
- Beyond just calculating eigen-quantities
 - optimization?
 - sensitivity of e.g. λ_* to physical parameters?
 $\nabla_{\theta} \lambda_*(\theta)$ of interest?
 - sensitivity of rare event probabilities to physical parameters?
- Beyond simulation
 - inference?
 - incorporation of measured data?

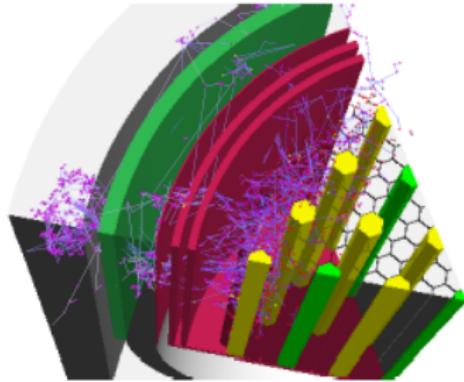


FIGURE 11. An example of a slice through a mock nuclear reactor design in which some neutron path simulations are depicted. The reactor core displays symmetry.