Branching process inspired numerical approaches to the Neutron Transport Equation

Alex Cox (Bath), Simon Harris (Auckland), Emma Horton (INRIA), Andreas Kyprianou (Bath) and **Minmin Wang** (Sussex)

BBP6-Neutron Transport Days, 16th September 2021

Neutron Transport Equation (NTE)

$$\frac{\partial}{\partial t}\psi_t(r,v) = (\mathrm{T} + \mathrm{S} + \mathrm{F})\psi_t(r,v), \quad r \in D, v \in V,$$

where

- $\psi_t(r, v)$ = neutron flux at time t emitted from the initial config. (r, v).
- Transport:

$$\mathrm{T}\psi_t(\mathbf{r},\upsilon)=\upsilon\cdot\nabla\psi_t(\mathbf{r},\upsilon).$$

• Scattering:

$$\mathrm{S}\psi_t(r,\upsilon) = \sigma_\mathrm{s}(r,\upsilon) \int_V \psi_t(r,\upsilon') \pi_\mathrm{s}(r,\upsilon,\upsilon') d\upsilon' - \sigma_\mathrm{s}(r,\upsilon) \psi_t(r,\upsilon).$$

• Fission:

$$F\psi_t(r,\upsilon) = \sigma_f(r,\upsilon) \int_V \psi_t(r,\upsilon') \pi_f(r,\upsilon,\upsilon') d\upsilon' - \sigma_f(r,\upsilon) \psi_t(r,\upsilon).$$

Neutron Transport Equation (NTE)

$$\begin{split} &\frac{\partial}{\partial t}\psi_t(\mathbf{r},\upsilon) = (\mathrm{T} + \mathrm{S} + \mathrm{F})\psi_t(\mathbf{r},\upsilon), \quad \mathbf{r} \in D, \upsilon \in V, \\ &\psi_t(\mathbf{r},\upsilon) = \mathbf{0}, \quad \mathbf{r} \in \partial D, \upsilon \cdot \mathbf{n}_r > \mathbf{0}. \end{split}$$

where

- $\psi_t(r, v)$ = neutron flux at time t emitted from the initial config. (r, v).
- Transport:

$$\Gamma\psi_t(\mathbf{r},\upsilon)=\upsilon\cdot\nabla\psi_t(\mathbf{r},\upsilon).$$

• Scattering:

$$\mathrm{S}\psi_t(r,\upsilon) = \sigma_\mathrm{s}(r,\upsilon) \int_V \psi_t(r,\upsilon') \pi_\mathrm{s}(r,\upsilon,\upsilon') d\upsilon' - \sigma_\mathrm{s}(r,\upsilon) \psi_t(r,\upsilon).$$

• Fission:

$$F\psi_t(r,\upsilon) = \sigma_f(r,\upsilon) \int_V \psi_t(r,\upsilon') \pi_f(r,\upsilon,\upsilon') d\upsilon' - \sigma_f(r,\upsilon) \psi_t(r,\upsilon)$$

Spectral properties of the NTE

• Let $\psi_t = \psi_t[g]$ solve the NTE with the initial condition

$$\psi_0(r, v) = g(r, v), \quad r \in D, v \in V.$$

• $\psi_t \simeq e^{\lambda_* t}$, where $\lambda_* = \text{lead eigenvalue}$.

• Aim: Estimate the value of λ_* .

- Three Monte-Carlo algorithms:
 - Neutron branching process (NBP)
 - Basic Neutron random walk (NRW)
 - *h*-neutron random walk (*h*-NRW)
- Analysis on
 - accuracy
 - complexity
 - of each algorithm.

Neutron branching process (NBP)

Start with one particle at configuration (r, v), which moves along the trajectory r + vt until one of the following things happens:

- The particle leaves D and is killed.
- At rate $\sigma_{\rm s}(r, \upsilon)$, the particle picks a new velocity υ' with probability $\pi_{\rm s}(r, \upsilon, \upsilon')d\upsilon'$ at (r, υ) .
- Independently, at rate $\sigma_f(r, v)$, the particle is replaced by N new particles at $(r, v_1), (r, v_2), \dots, (r, v_N)$ satisfying

$$\mathcal{E}_{(r,\upsilon)}\Big[\sum_{i=1}^{N}f(\upsilon_i)\Big]=\int_{V}\pi_{\mathrm{f}}(r,\upsilon,\upsilon')f(\upsilon')d\upsilon', \ \forall f\geq 0.$$

Each new particle evolves independently in the same way as the old particle.

Neutron branching process (NBP)

Start with one particle at configuration (r, v), which moves along the trajectory r + vt until one of the following things happens:

- The particle leaves D and is killed.
- At rate $\sigma_{\rm s}(r, \upsilon)$, the particle picks a new velocity υ' with probability $\pi_{\rm s}(r, \upsilon, \upsilon')d\upsilon'$ at (r, υ) .
- Independently, at rate $\sigma_f(r, v)$, the particle is replaced by N new particles at $(r, v_1), (r, v_2), \dots, (r, v_N)$ satisfying

$$\mathcal{E}_{(r,\upsilon)}\Big[\sum_{i=1}^{N}f(\upsilon_i)\Big]=\int_{V}\pi_{\mathrm{f}}(r,\upsilon,\upsilon')f(\upsilon')d\upsilon', \ \forall f\geq 0.$$

Each new particle evolves independently in the same way as the old particle.

Neutron branching process (NBP)

Start with one particle at configuration (r, v), which moves along the trajectory r + vt until one of the following things happens:

- The particle leaves D and is killed.
- At rate $\sigma_{\rm s}(r, \upsilon)$, the particle picks a new velocity υ' with probability $\pi_{\rm s}(r, \upsilon, \upsilon')d\upsilon'$ at (r, υ) .
- Independently, at rate $\sigma_f(r, v)$, the particle is replaced by N new particles at $(r, v_1), (r, v_2), \dots, (r, v_N)$ satisfying

$$\mathcal{E}_{(r,\upsilon)}\Big[\sum_{i=1}^{N}f(\upsilon_i)\Big]=\int_{V}\pi_{\mathrm{f}}(r,\upsilon,\upsilon')f(\upsilon')d\upsilon', \ \forall f\geq 0.$$

Each new particle evolves independently in the same way as the old particle.

Mean behaviour of the neutron branching process verifies NTE:

Denote by N_t the number of particles alive at time t and by (r_i, v_i) their configurations. Write

$$X_t = \sum_{i=1}^{N_t} \delta_{(r_i, \upsilon_i)}$$

Then

$$\psi_t[g](r,\upsilon) := \mathbb{E}[\langle g, X_t \rangle \,|\, X_0 = \delta_{(r,\upsilon)}] = \mathbb{E}\Big[\sum_{i=1}^{N_t} g(r_i,\upsilon_i) \,\Big|\, X_0 = \delta_{(r,\upsilon)}\Big]$$

solves the (NTE) for all g sufficiently smooth.

Neutron Branching Process: Algorithm

• Simulate a neutron branching process starting from a single particle at (r, v).

 X_t = empirical measure of the process at t.

- Repeat the simulations for k times.
 Xⁱ_t = output from the *i*-th simulation.
- $\psi_t[g](r, \upsilon) \approx \frac{1}{k} \sum_{i=1}^k \langle g, X_t^i \rangle$ for k large. Then, the NBP-estimator for e^{λ_*} is given by

$$\Psi_{ ext{NBP}}(t,k) = \Big(rac{1}{k}\sum_{i=1}^k \langle g, X_t^i
angle)\Big)^{rac{1}{t}}$$

Theorem (CHKW. 20+)

As $t, k \to \infty$, we have

- for $\lambda_* > 0$: $\mathbb{E}[(\Psi_{\mathrm{NBP}}(t,k) e^{\lambda_*})^2] = \mathcal{O}(\frac{1}{k} + \frac{1}{t^2});$
- for $\lambda_* = 0$: $\mathbb{E}[(\Psi_{\text{NBP}}(t,k) e^{\lambda_*})^2] = \mathcal{O}(\frac{t}{k} + \frac{1}{t^2});$
- for $\lambda_* < 0$: $\mathbb{E}[(\Psi_{\mathrm{NBP}}(t,k) e^{\lambda_*})^2] = \mathcal{O}(\frac{e^{-\lambda_* t}}{k} + \frac{1}{t^2});$

$$\mathbb{E}[(\Psi_{\rm NBP}(t,k) - e^{\lambda_*})^2] \le 2\mathbb{E}[(\Psi_{\rm NBP}(t,k) - \psi_t(r,v)^{\frac{1}{t}})^2] + 2(\psi_t(r,v)^{\frac{1}{t}} - e^{\lambda_*})^2.$$

The first term is estimated using the many-to-two:

$$\mathbb{E}\big[\langle f, X_t \rangle \langle g, X_t \rangle\big] = \psi_t[fg] + \int_0^t \psi_s \Big[\eta[\psi_{t-s}[f], \psi_{t-s}[g]]\Big] ds$$

where $\eta[f,g] = \sigma_{\rm f} \cdot \mathcal{E}\Big[\sum_{i \neq j}^N f(\upsilon_i)g(\upsilon_j)\Big]$. It follows that

$$\operatorname{Var}[\langle g, X_t \rangle] \asymp \begin{cases} e^{2\lambda_* t}, & \lambda_* > 0, \\ t, & \lambda_* = 0, \\ e^{\lambda_* t}, & \lambda_* < 0. \end{cases}$$

- Roughly speaking, the cost of simulating a NBP consists of
 - memory cost: storing the trajectory of each particle
 - CPU time: sampling scattering and fission events
- We need a counter for the above events: for $f,g \in L^+_\infty(D \times V)$, let

$$\operatorname{Cost}_{t}[f,g] = \sum_{u} g\left(r_{b_{u}}^{u}, v_{b_{u}}^{u}\right) \mathbf{1}_{\{b_{u} \leq t\}} + \sum_{u} \sum_{i} f\left(r_{s_{i}^{u}}^{u}, v_{s_{i}^{u}}^{u}\right) \mathbf{1}_{\{s_{i}^{u} \leq t\}},$$

where \sum_{u} is over all the particles u, b_{u} is the birth time of u, (r_{t}^{u}, v_{t}^{u}) its trajectory, and (s_{i}^{u}) the sequence of its scattering times.

• In particular, $\text{Cost}_t[0,1] \asymp \text{memory cost}$, while $\text{Cost}_t[1,1] \asymp \text{CPU-time}$.

Using standard tools on point processes, we can show that

- Theorem (CHKW. 20+)
- As $t \to \infty$, we have
 - for $\lambda_* > 0$: $\mathbb{E}\left[\operatorname{Cost}_t[f,g]\right] = \mathcal{O}(e^{\lambda_* t});$
 - for $\lambda_* = 0$: $\mathbb{E} \left[\operatorname{Cost}_t[f, g] \right] = \mathcal{O}(t);$
 - for $\lambda_* < 0$: $\mathbb{E}[\operatorname{Cost}_t[f,g]] = \mathcal{O}(1).$

Applications: Combining this with the previous estimates, we can determine the "optimal" choice of k, t to minimise total computational cost for a given level of accuracy.

Recall (NTE): $\partial_t \psi_t = (T + S + F)\psi_t$. We can scrap fission using many-to-one.

- Set $\beta(\cdot) = \sigma_{f}(\cdot) (\int_{V} \pi_{f}(\cdot, \upsilon') d\upsilon' 1).$
- Let (r_t, v_t), t ≥ 0, be the path of the following particle: starting at (r, v), it moves along the trajectory r + vt until
 - either the particle leaves D and is killed;
 - or at rate $\alpha(\cdot) = \sigma_s(\cdot) + \sigma_f(\cdot) \int_V \pi_f(\cdot, \upsilon') d\upsilon'$, the particle picks a new velocity υ' with probability $\pi(\cdot, \upsilon') d\upsilon'$, where $\pi = (\sigma_s \pi_s + \sigma_f \pi_f)/\alpha$.
- Then

$$\widetilde{\psi}_t[g](r,\upsilon) := \mathbb{E}\Big[e^{\int_0^t \beta(r_5,\upsilon_5)ds}g(r_t,\upsilon_t)\mathbf{1}_{\{\text{alive at }t\}}\Big]$$

solves the (NTE).

Neutron Random Walk: Algorithm

The following is an estimator of e^λ*:

$$\Psi_{\text{NRW}}(t,k) = \left(\frac{1}{k} \sum_{i=1}^{k} e^{\int_{0}^{t} \beta(r_{s}^{i}, \upsilon_{s}^{i}) ds} g(r_{t}^{i}, \upsilon_{t}^{i}) \mathbf{1}_{\{\text{alive at }t\}}\right)^{\frac{1}{t}},$$

where (r_s^i, v_s^i) , $1 \le i \le k$, are independent (α, π) -neutron random walks.

• Problem: large variance due to exponentially small chance of survival.

Dooh *h*-transform for Neutron Random Walk

• Write L for the infinitesimal generator of the (α, π) -neutron random walk, i.e.

$$Lh(r,\upsilon) = \upsilon \cdot \nabla h(r,\upsilon) + \alpha(r,\upsilon) \int_{V} (h(r,\upsilon') - h(r,\upsilon)) \pi(r,\upsilon,\upsilon') d\upsilon'.$$

• Let $h \in L^+_\infty(D \times V)$ and define

$$\frac{d\mathsf{P}^h_{(r,\upsilon)}}{d\mathbb{P}_{(r,\upsilon)}} = \exp\bigg(-\int_0^t \frac{\mathrm{L}h(r_s,\upsilon_s)}{h(r_s,\upsilon_s)}ds\bigg)\frac{h(r_t,\upsilon_t)}{h(r,\upsilon)}\mathbf{1}_{\{\text{alive at }t\}}.$$

Then under $\mathbf{P}^h,\,(r_t,\upsilon_t)_{t\geq 0}$ is distributed as a neutron random walk with scattering rates

$$\alpha^{h}(r,\upsilon) = \frac{\alpha(r,\upsilon)}{h(r,\upsilon)} \int_{V} h(r,\upsilon') \pi(r,\upsilon,\upsilon') d\upsilon'$$

 In particular, if h → 0+ at ∂D, then the scattering rate α^h → ∞ at ∂D; the particle will never leave D under P^h. The following is an estimator of e^{λ_*} :

$$\Psi_{h\text{-RW}}(t,k) = \left\{ \frac{1}{k} \sum_{i=1}^{k} \exp\left(\int_{0}^{t} \frac{\mathrm{L}h(r_{s}^{i}, \upsilon_{s}^{i})}{h(r_{s}^{i}, \upsilon_{s}^{i})} + \beta(r_{s}^{i}, \upsilon_{s}^{i}) ds \right) \frac{g(r_{t}^{i}, \upsilon_{t}^{i})}{h(r_{t}^{i}, \upsilon_{t}^{i})} \right\}^{\frac{1}{t}},$$

where (r_s^i, v_s^i) , $1 \le i \le k$, are independent (α^h, π^h) -neutron random walks.

Theorem (CHKW. 20+)

As $k, t \to \infty$, we have

$$\mathsf{E}^{h}[(\Psi_{h\text{-}\mathrm{RW}}(t,k)-e^{\lambda_{*}})^{2}]=\mathcal{O}(\tfrac{e^{2(\lambda_{h}-\lambda_{*})t}}{k}+\tfrac{1}{t^{2}}),$$

and

$$\mathbf{E}^{h}[\operatorname{Cost}_{t}] = \mathcal{O}(e^{(\lambda_{*}-\lambda_{h}')t}),$$

where $\lambda_h \geq \lambda_* \geq \lambda'_h$.

h-Neutron Random Walk: Choice of h

• The "optimal" choice of h is given by the lead eigenfunction φ , i.e.

$$(L + \beta)\varphi = (T + S + F)\varphi = \lambda_*\varphi.$$

In that case, we have

$$\mathsf{E}^{\varphi}[(\Psi_{\varphi\text{-}\mathrm{RW}}(t,k)-\mathsf{e}^{\lambda_*})^2]=\mathcal{O}(\tfrac{1}{k}+\tfrac{1}{t^2}) \ \text{ and } \ \mathsf{E}^h[\mathrm{Cost}_t]]=\mathcal{O}(1).$$

• In practice, one starts with a guess of φ . Since

$$e^{-\lambda_* t}\psi_t[g](r,\upsilon) \stackrel{t\to\infty}{\to} C_g\varphi(r,\upsilon),$$

estimates from the first simulations will provide better choice of h.

Borrowing tools from branching particle systems, we have

- presented some Monte-Carlo algorithms (NBP, h-NRW),
- estimated their convergence rates and complexity.

THANK YOU

[CHHK19] Suppose that

- *D* is a bounded and convex domain of \mathbb{R}^3 with smooth boundary and $V \subset \mathbb{R}^3_+$ is bounded;
- $\sigma_{\rm s}, \sigma_{\rm f}, \pi_{\rm s}$ and $\pi_{\rm f}$ are uniformly bounded;
- $\inf_{(r,\upsilon,\upsilon')} \sigma_{s} \pi_{s} + \sigma_{f} \pi_{f} > 0.$

Then for $g \in L^+_{\infty}(D \times V)$ (resp. $g \in L^+_2(D \times V)$), there is a unique solution in $L^+_{\infty}(D \times V)$ (resp. in $L^+_2(D \times V)$) to the mild equation

$$\psi_t[g] = \mathrm{U}_t[g] + \int_0^t \mathrm{U}_s[(\mathrm{S} + \mathrm{F})\psi_{t-s}[g]]ds, \ t \ge 0,$$

where

$$U_t[g](r,v) = g(r+vt,v)\mathbf{1}_{\{\kappa_{r,v}>t\}} \text{ with } \kappa_{r,v} = \inf\{t: r+vt \notin D\}.$$

[HKV20] Under the previous assumptions, for the solution (ψ_t) to the mild equation, there exists a $\lambda_* \in \mathbb{R}$, a positive right eigenfunction $\varphi \in L^+_{\infty}(D \times V)$ and a left eigenmeasure which is absolutely continuous with respect to Lebesgue measure on $D \times V$ with density $\tilde{\varphi} \in L^+_{\infty}(D \times V)$, both having associated eigenvalue $e^{\lambda_* t}$ and such that φ (resp. $\tilde{\varphi}$) is uniformly (resp. a.e. uniformly) bounded away from zero on each compactly embedded subset of $D \times V$. In particular, for all $g \in L^+_{\infty}(D \times V)$,

$$\langle \tilde{\varphi}, \psi_t[g]
angle = e^{\lambda_* t} \langle \tilde{\varphi}, g
angle$$
 and $\psi_t[\varphi] = e^{\lambda_* t} \varphi, t \ge 0.$

Moreover, there exists $\epsilon > 0$ such that

$$\sup_{\|g\|_{\infty}\leq 1} \|e^{-\lambda_* t} \varphi^{-1} \psi_t[g] - \langle \tilde{\varphi}, g \rangle\|_{\infty} = O(e^{-\epsilon t}), \ t \to \infty.$$

[CHHK19] Multi-species neutron transport equation. Alexander M.G. Cox, Simon C. Harris, Emma Horton and Andreas E. Kyprianou. Journal of Statistical Physics (2019), 176(2), 425-455.

[HKV20] Stochastic Methods for the Neutron Transport Equation I: Linear Semigroup asymptotics. Emma Horton, Andreas E. Kyprianou and Denis Villemonais. Annals of Applied Probability (2020) Vol. 30, No. 6, 2815–2845.

[CHKW20+] Monte-Carlo Methods for the Neutron Transport Equation. Alexander M.G. Cox, Simon C. Harris, Andreas E. Kyprianou and Minmin Wang. arXiv:2012.02864