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Neutron Transport Equation (NTE)

∂

∂t
ψt(r , υ) = (T + S + F)ψt(r , υ), r ∈ D, υ ∈ V ,

ψt(r , υ)= 0, r ∈ ∂D, υ · nr > 0.

where

• ψt(r , υ) = neutron flux at time t emitted from the initial config. (r , υ).

• Transport:

Tψt(r , υ) = υ · ∇ψt(r , υ).

• Scattering:

Sψt(r , υ) = σs(r , υ)

∫
V

ψt(r , υ
′)πs(r , υ, υ

′)dυ′ − σs(r , υ)ψt(r , υ).

• Fission:

Fψt(r , υ) = σf(r , υ)

∫
V

ψt(r , υ
′)πf(r , υ, υ

′)dυ′ − σf(r , υ)ψt(r , υ).
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Spectral properties of the NTE

• Let ψt = ψt [g ] solve the NTE with the initial condition

ψ0(r , υ) = g(r , υ), r ∈ D, υ ∈ V .

• ψt � eλ∗t , where λ∗ = lead eigenvalue.

λ∗ > 0 (Supercritical) λ∗ = 0 (Critical) λ∗ < 0 (Subcritical)

• Aim: Estimate the value of λ∗.
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Overview

• Three Monte-Carlo algorithms:

• Neutron branching process (NBP)

• Basic Neutron random walk (NRW)

• h-neutron random walk (h-NRW)

• Analysis on

• accuracy

• complexity

of each algorithm.

4



Neutron branching process (NBP)

Start with one particle at configuration (r , υ), which moves along the trajectory

r + υt until one of the following things happens:

• The particle leaves D and is killed.

• At rate σs(r , υ), the particle picks a new velocity υ′ with probability

πs(r , υ, υ
′)dυ′ at (r , υ).

• Independently, at rate σf(r , υ), the particle is replaced by N new particles

at (r , υ1), (r , υ2), . . . , (r , υN) satisfying

E(r,υ)

[ N∑
i=1

f (υi )
]

=

∫
V

πf(r , υ, υ
′)f (υ′)dυ′, ∀ f ≥ 0.

Each new particle evolves independently in the same way as the old

particle.

(r, υ)

(r + υt, υ)

υ′
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Neutron Branching Process & NTE

Mean behaviour of the neutron branching process verifies NTE:

Denote by Nt the number of particles alive at time t and by (ri , υi ) their

configurations. Write

Xt =
Nt∑
i=1

δ(ri ,υi )

Then

ψt [g ](r , υ) := E[〈g ,Xt〉 |X0 = δ(r ,υ)] = E
[ Nt∑

i=1

g(ri , υi )
∣∣∣X0 = δ(r ,υ)

]
solves the (NTE) for all g sufficiently smooth.
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Neutron Branching Process: Algorithm

• Simulate a neutron branching process

starting from a single particle at (r , υ).

Xt = empirical measure of the process at t.

• Repeat the simulations for k times.

X i
t = output from the i-th simulation.

• ψt [g ](r , υ) ≈ 1
k

∑k
i=1〈g ,X

i
t 〉 for k large.

Then, the NBP-estimator for eλ∗ is given by

ΨNBP(t, k) =
( 1

k

k∑
i=1

〈g ,X i
t 〉)
) 1

t
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Neutron Branching Process: Convergence rate

Theorem (CHKW. 20+)

As t, k →∞, we have

• for λ∗ > 0: E[(ΨNBP(t, k)− eλ∗)2] = O( 1
k + 1

t2 );

• for λ∗ = 0: E[(ΨNBP(t, k)− eλ∗)2] = O( t
k + 1

t2 );

• for λ∗ < 0: E[(ΨNBP(t, k)− eλ∗)2] = O( e−λ∗t

k + 1
t2 );
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Sketch of proof

E[(ΨNBP(t, k)− eλ∗)2] ≤ 2E[(ΨNBP(t, k)−ψt(r , υ)
1
t )2] + 2(ψt(r , υ)

1
t − eλ∗)2.

The first term is estimated using the many-to-two:

E
[
〈f ,Xt〉〈g ,Xt〉

]
= ψt [fg ] +

∫ t

0

ψs

[
η[ψt−s [f ], ψt−s [g ]]

]
ds

where η[f , g ] = σf · E
[∑N

i 6=j f (υi )g(υj)
]
. It follows that

Var[〈g ,Xt〉] �


e2λ∗t , λ∗ > 0,

t, λ∗ = 0,

eλ∗t , λ∗ < 0.
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Neutron Branching Process: Cost estimates

• Roughly speaking, the cost of simulating a NBP consists of

• memory cost: storing the trajectory of each particle

• CPU time: sampling scattering and fission events

• We need a counter for the above events: for f , g ∈ L+
∞(D × V ), let

Costt [f , g ] =
∑
u

g
(
rubu , υ

u
bu

)
1{bu≤t} +

∑
u

∑
i

f
(
rusui , υ

u
sui

)
1{sui ≤t},

where
∑

u is over all the particles u, bu is the birth time of u, (rut , υ
u
t ) its

trajectory, and (sui ) the sequence of its scattering times.

• In particular, Costt [0, 1] � memory cost, while Costt [1, 1] � CPU-time.

12



Neutron Branching Process: Cost estimates

Using standard tools on point processes, we can show that

Theorem (CHKW. 20+)

As t →∞, we have

• for λ∗ > 0: E
[
Costt [f , g ]

]
= O(eλ∗t);

• for λ∗ = 0: E
[
Costt [f , g ]

]
= O(t);

• for λ∗ < 0: E
[
Costt [f , g ]

]
= O(1).

Applications: Combining this with the previous estimates, we can determine

the “optimal” choice of k, t to minimise total computational cost for a given

level of accuracy.
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Neutron Random Walk via Many-to-one

Recall (NTE): ∂tψt = (T+ S+F)ψt . We can scrap fission using many-to-one.

• Set β(·) = σf(·)
( ∫

V πf(·, υ′)dυ′ − 1
)
.

• Let (rt , υt), t ≥ 0, be the path of the following particle: starting at (r , υ), it

moves along the trajectory r + υt until

• either the particle leaves D and is killed;

• or at rate α(·) = σs(·) + σf(·)
∫
V πf(·, υ′)dυ′, the particle picks a new

velocity υ′ with probability π(·, υ′)dυ′, where π = (σsπs + σfπf)/α.

• Then

ψ̃t [g ](r , υ) := E
[
e
∫ t

0 β(rs ,υs )dsg(rt , υt)1{alive at t}

]
solves the (NTE).

14



Neutron Random Walk: Algorithm

• The following is an estimator of eλ∗ :

ΨNRW(t, k) =
( 1

k

k∑
i=1

e
∫ t

0 β(r is ,υ
i
s )ds g(r it , υ

i
t)1{alive at t}

) 1
t
,

where (r is , υ
i
s), 1 ≤ i ≤ k, are independent (α, π)-neutron random walks.

• Problem: large variance due to exponentially small chance of survival.
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Dooh h-transform for Neutron Random Walk

• Write L for the infinitesimal generator of the (α, π)-neutron random walk, i.e.

Lh(r , υ) = υ · ∇h(r , υ) + α(r , υ)

∫
V

(h(r , υ′)− h(r , υ))π(r , υ, υ′)dυ′.

• Let h ∈ L+
∞(D × V ) and define

dPh
(r,υ)

dP(r,υ)

= exp

(
−
∫ t

0

Lh(rs , υs)

h(rs , υs)
ds

)
h(rt , υt)

h(r , υ)
1{alive at t}.

Then under Ph, (rt , υt)t≥0 is distributed as a neutron random walk with

scattering rates

αh(r , υ) =
α(r , υ)

h(r , υ)

∫
V
h(r , υ′)π(r , υ, υ′)dυ′

• In particular, if h→ 0+ at ∂D, then the scattering rate αh →∞ at ∂D; the

particle will never leave D under Ph.
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h-Neutron Random Walk: Implementation

The following is an estimator of eλ∗ :

Ψh-RW(t, k) =

{
1

k

k∑
i=1

exp

(∫ t

0

Lh(r is , υ
i
s)

h(r is , υi
s)

+ β(r is , υ
i
s)ds

)
g(r it , υ

i
t)

h(r it , υ
i
t)

} 1
t

,

where (r is , υ
i
s), 1 ≤ i ≤ k, are independent (αh, πh)-neutron random walks.

Theorem (CHKW. 20+)

As k, t →∞, we have

Eh[(Ψh-RW(t, k)− eλ∗)2] = O( e2(λh−λ∗)t

k
+ 1

t2 ),

and

Eh[Costt ] = O(e(λ∗−λ′h)t),

where λh ≥ λ∗ ≥ λ′h.
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h-Neutron Random Walk: Choice of h

• The “optimal” choice of h is given by the lead eigenfunction ϕ, i.e.

(L + β)ϕ = (T + S + F)ϕ = λ∗ϕ.

In that case, we have

Eϕ[(Ψϕ-RW(t, k)− eλ∗)2] = O( 1
k

+ 1
t2 ) and Eh[Costt ]] = O(1).

• In practice, one starts with a guess of ϕ. Since

e−λ∗tψt [g ](r , υ)
t→∞→ Cgϕ(r , υ),

estimates from the first simulations will provide better choice of h.
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Summary

Borrowing tools from branching particle systems, we have

• presented some Monte-Carlo algorithms (NBP, h-NRW),

• estimated their convergence rates and complexity.

Thank You
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Abstract Cauchy Problem: Existence and uniqueness

[CHHK19] Suppose that

• D is a bounded and convex domain of R3 with smooth boundary and

V ⊂ R3
+ is bounded;

• σs, σf , πs and πf are uniformly bounded;

• inf(r,υ,υ′) σsπs + σfπf > 0.

Then for g ∈ L+
∞(D × V ) (resp. g ∈ L+

2 (D × V )), there is a unique solution in

L+
∞(D × V ) (resp. in L+

2 (D × V )) to the mild equation

ψt [g ] = Ut [g ] +

∫ t

0

Us [(S + F)ψt−s [g ]]ds, t ≥ 0,

where

Ut [g ](r , υ) = g(r + υt, υ)1{κr,υ>t} with κr,υ = inf{t : r + υt /∈ D}.
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Perron-Frobenius

[HKV20] Under the previous assumptions, for the solution (ψt) to the mild

equation, there exists a λ∗ ∈ R, a positive right eigenfunction ϕ ∈ L+
∞(D × V )

and a left eigenmeasure which is absolutely continuous with respect to

Lebesgue measure on D × V with density ϕ̃ ∈ L+
∞(D × V ), both having

associated eigenvalue eλ∗t and such that ϕ (resp. ϕ̃) is uniformly

(resp. a.e. uniformly) bounded away from zero on each compactly embedded

subset of D × V . In particular, for all g ∈ L+
∞(D × V ),

〈ϕ̃, ψt [g ]〉 = eλ∗t〈ϕ̃, g〉 and ψt [ϕ] = eλ∗tϕ, t ≥ 0.

Moreover, there exists ε > 0 such that

sup
‖g‖∞≤1

‖e−λ∗tϕ−1ψt [g ]− 〈ϕ̃, g〉‖∞ = O(e−εt), t →∞.
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