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Neutron Transport Equation (NTE)

S, v) = (T+8+F)u(r,v), rEDweV,

where

e 1:(r,v) = neutron flux at time t emitted from the initial config. (r,v).

e Transport:
Tye(r,v) = v - Vipe(r,v).
e Scattering:
Stpe(r,v) = O'S(r,U)/ pe(r, v )ms(r, v, 0" )dv' — os(r, v)e(r, v).
%

e Fission:

wa(rav) = Uf(rv U)/th(r» ’Ul)ﬂ'f(r,’U,U/)dU, - Uf(ra U)wf(rv U).
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Spectral properties of the NTE

e Let 1), = Y;[g] solve the NTE with the initial condition

Yo(r,v) = g(r,v), reD,veV.

A+t where \, = lead eigenvalue.

i P v

e Y < e

A« > 0 (Supercritical) A = 0 (Critical) A < 0 (Subcritical)

e Aim: Estimate the value of \,.



Overview

e Three Monte-Carlo algorithms:

e Neutron branching process (NBP)
e Basic Neutron random walk (NRW)
e h-neutron random walk (h-NRW)

e Analysis on

e accuracy
e complexity

of each algorithm.




process (NBP)

Start with one particle at configuration (r,v), which moves along the trajectory
r + vt until one of the following things happens:
e The particle leaves D and is killed.

e At rate o5(r,v), the particle picks a new velocity v’ with probability
ms(r,v,v")dv’ at (r,v).

e Independently, at rate o¢(r,v), the particle is replaced by N new particles
at (r,v1), (r,v2),...,(r,vn) satisfying

N
S(m,){z f(v,-)} = /\/71'f(r,v7v')f(v')dv/7 Vf >0.
i-1

Each new particle evolves independently in the same way as the old
particle.

(r,v) v
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Neutron Branching Process & NTE

Mean behaviour of the neutron branching process verifies NTE:

Denote by N; the number of particles alive at time t and by (r;, v;) their
configurations. Write

N
Xt = Z 6(1’,-,7),-)
i=1

Then

N
velgl(r,v) = Ellg Xo) | Xo = ] =E[ Y g(ri,vi) | Xo = G

i=1

solves the (NTE) for all g sufficiently smooth.



Neutron Branching Process: Algorithm

e Simulate a neutron branching process
starting from a single particle at (r,v).

X: = empirical measure of the process at t.

e Repeat the simulations for k times.

X! = output from the i-th simulation.

o Yefg](r,v) = %Z,-kﬂ(g,Xti) for k large.
Then, the NBP-estimator for et is given by

k

Uner (e, ) = (23 (e x00)

i=1




Neutron Branching Process: Convergence rate

Theorem (CHKW. 20-+)

As t, k — oo, we have
e for \, > 0: E[(Wnpp(t, k) — e* )2 = O(% + %)
e for \, = 0: E[(Wnep(t, k) — e* )] = O(f + %)

o for A, <0: E[(Wxgp(t, k) — e*)?] = O(S7— + %);
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Sketch of proof

E[(Wxnp(t, k) — €*)?] < 2E[(Wnpp(t, k) — te(r,0) )]+ 2(te(r, v) * — )2,
The first term is estimated using the many-to-two:
t
B[, %) (g X0] = vl + | s [nlve-slf], veolell] s J

0
where n[f,g]l =o¢ - & [Zf\; f(v;)g(vj)]. It follows that

62)\*t7 )\* > 07

Var[(g, Xt>] = t7 >‘* = 07
et A <0.
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Neutron Branching Process: Cost estimates

e Roughly speaking, the cost of simulating a NBP consists of

e memory cost: storing the trajectory of each particle
e CPU time: sampling scattering and fission events

e We need a counter for the above events: for f,g € LI (D x V), let
COStt[f7g] = Zg(rlngll)lu)l{bugt} iy Z Z f<rsL;”>U;lf“>1{sf§t}7

where )~ is over all the particles u, b, is the birth time of u, (ry',vy) its

trajectory, and (s;') the sequence of its scattering times.

e In particular, Cost,[0, 1] < memory cost, while Cost[1, 1] < CPU-time.
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Neutron Branching Process: Cost estimates

Using standard tools on point processes, we can show that

Theorem (CHKW. 20+)

As t — 0o, we have
e for A\, > 0: E [Cost.[f, g]] = O(e*?);
e for A\, =0: E[Cost.[f, g]] = O(¢);
o for A, <0: E[Cost:[f, g]] = O(1).

Applications: Combining this with the previous estimates, we can determine
the “optimal” choice of k, t to minimise total computational cost for a given

level of accuracy.
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Neutron Random Walk via

Recall (NTE): d:¢)r = (T + S + F)1:. We can scrap fission using many-to-one.

o Set B(-) = o¢(-)( [y me(-,v")dv" — 1).
® let (rt,v¢), t > 0, be the path of the following particle: starting at (r,v), it
moves along the trajectory r 4+ vt until

e either the particle leaves D and is killed;
e or at rate a(-) = os(-) + o¢(-) [, 7 (-, v’)dv’, the particle picks a new

velocity v’ with probability 7(-, v )dv , where m = (os7s + o¢7t) /x.

® Then
wf[g](h U) =E |:ef0 5('5,115)d5g(rt7 Ut)l{alive at t}:|
solves the (NTE).
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Neutron Random Walk: Algorithm

e The following is an estimator of e**:

1

WNRW(t k ( Zejo restt (ruUt)l{allveat t})ty

where (rf,vl), 1 < i < k, are independent (o, 7)-neutron random walks.

e Problem: large variance due to exponentially small chance of survival.

Estimates of eigenvalue over time Estimates of eigenvalue over time
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® Write L for the infinitesimal generator of the (a, 7)-neutron random walk, i.e.

Lh(r,v) =v - Vh(r,v) + a(r,v) /V(h(r,v') — h(r,v))w(r,v,v")dv".

® Let he LI (D x V) and define

h
) (7 /t Lh(rs,vs)ds> h(re,ve) |
dP(rﬁv) Jo h(r57 Us) h(r, ,U) {alive at t}-

Then under Ph, (rt,vt)tzo is distributed as a neutron random walk with

scattering rates

a(r,v)

hrU:
a(r,v) h(r,v) Jv

h(r,v")m(r,v,v")dv’

® |In particular, if h — 04 at dD, then the scattering rate o — oo at dD; the

particle will never leave D under P".
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h-Neutron Random Walk: Implementation

The following is an estimator of e**:
5 5 . . 1
Lh(rs, vs) P g(ri,vi) | ¢
v (t, k) —2 2 d —
hrw ( { ZEXP (/ h(rd, ol) + B(rs; vs) 5) h(rd, o) |

where (rl,v1), 1 < i < k, are independent (o, 7")-neutron random walks.

Theorem (CHKW. 20+)
As k,t — oo, we have

2>\h )t

E"[(Whrw(t, k) — )] = O(¢ + %),

t

and
E"[Cost:] = O(eP~*Wt),

where Ay > A\ > M.
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h-Neutron Random Walk: Choice of h

e The “optimal” choice of h is given by the lead eigenfunction ¢, i.e.
L+8)p=(T+S+F)p=>Xo.
In that case, we have
E?[(Worw(t, k) — )] = O(+ + %) and E"[Cost.]] = O(1).
e |In practice, one starts with a guess of . Since
e "Yelg](r,v) " Ce(r,v),

estimates from the first simulations will provide better choice of h.

Shape of h Estimates of eigenvalue over time
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Borrowing tools from branching particle systems, we have

e presented some Monte-Carlo algorithms (NBP, h-NRW),

e estimated their convergence rates and complexity.
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Abstract Cauchy Problem: Existence and uniqueness

[CHHK19] Suppose that

e D is a bounded and convex domain of R® with smooth boundary and
V C R% is bounded;

e 0,01, s and ¢ are uniformly bounded;

° inf(r,v«,v’) OsTs + OfTf > 0.

Then for g € LI (D x V) (resp. g € L (D x V)), there is a unique solution in
LI (D x V) (resp. in LF (D x V)) to the mild equation

welg] = Udlg] + / (S + F)ens[gllds, ¢ > 0,
where

Uelg](r,v) = g(r +vt,v)ly, >y with k. = inf{t : r + vt ¢ D}.
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Perron-Frobenius

[HKV20] Under the previous assumptions, for the solution (1)) to the mild
equation, there exists a A\, € R, a positive right eigenfunction ¢ € LI (D x V)
and a left eigenmeasure which is absolutely continuous with respect to
Lebesgue measure on D x V with density @ € L, (D x V), both having
associated eigenvalue e**! and such that ¢ (resp. @) is uniformly

(resp. a.e. uniformly) bounded away from zero on each compactly embedded
subset of D x V. In particular, for all g € LY, (D x V),

(@ velg]) = e *(,8) and Yilp] = e, t>0.
Moreover, there exists ¢ > 0 such that

o le ™t o i lg] — (,8)[loo = O(e™), t = o0,
Elloo S
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