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Monte Carlo

In many settings (Bayesian statistics, computational chemistry, machine learning...), need to
evaluate integrals

I =

∫
f (x)π(x) dx ,

where π is a probability density function.

Can approximate this by sampling X1,X2, . . . ,Xn ∼ π and use 1
n

∑n
i=1 f (Xi ), which

approximates I for large n by some LLN.
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Markov chain Monte Carlo

Exact sampling from π is hard, so instead use a stochastic process to approximately sample
from π:

Construct a Markov chain/process with transition semigroup Pt which possesses π as its
stationary distribution.

Examples: MCMC (Metropolis–Hastings), or diffusions (Langevin diffusions) or even
piecewise-deterministic Markov processes (Zig-Zag, BPS).

Provided the process is ergodic, (approximate) sampling from π is straightforward by iterating
the transition kernel, since µPt → π for any initial distribution µ.
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Definitions

A killed Markov process on state space X is a Markov process (Xt : t ≥ 0) that is killed at an
a.s. finite stopping time, the killing time, τ∂ :

At τ∂ , particle is instantaneously sent to some cemetery state ∂ /∈ X ; thus P(Xt ∈ X ) ≤ 1.

A probability distribution π on X is a quasi-stationary distribution if

Pπ(Xt ∈ ·|τ∂ > t) = π, ∀t ≥ 0.

π is typically also quasi-limiting, meaning

Px(Xt ∈ ·|τ∂ > t)→ π, as t →∞,

for any initial x ∈ X .
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Hard killing example
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Soft killing

In our applications, killing is typically defined by a killing rate κ : X → [0,∞), and the
corresponding killing time is given by

τ∂ := inf

{
t ≥ 0 :

∫ t

0
κ(Xs) ds ≥ ξ

}
,

where ξ ∼ Exp(1) independent of X .
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Soft killing example
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Quasi-stationary distributions

We are all familiar with stationary distributions: πPt = π.

In this talk, we are interested constructing a killed diffusion, whose quasi-stationary
distribution coincides with π.

The computational task is then to sample from π, when π is the quasi-stationary distribution
of a killed Markov process.
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Motivation: exact Bayesian inference for tall data

In Bayesian inference, the goal is to sample from the posterior distribution π, of the form

π(x) ∝ π0(x)
N∏
i=1

fi (x)

where N could be very large (tall data regime).

Pointwise evaluation of π, as required for Metropolis–Hastings update rule, is therefore a
prohibitive O(N) computation.

Simple workarounds (e.g. naively using stochastic gradients) typically incur an asymptotic bias
(fail to recover the true π even asymptotically).
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Quasi-stationary Monte Carlo

The quasi-stationary framework allows for the principled use of subsampling (i.e. stochastic
gradients), without introducing bias1.

Roughly speaking, in the QSMC framework we need unbiased estimates of

log π(x) =
N∑
i=1

log fi (x).

E.g. N log fI (x) where I ∼ U{1, 2, . . . ,N}.

1Pollock, Fearnhead, Johansen, Roberts. (2020). Quasi-stationary Monte Carlo and the ScaLE algorithm
(with discussion). J. Roy. Stat. Soc.: Ser. B, 82(5), 1167–1221.
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Setting

Our underlying process X will be a diffusion (e.g. Brownian motion) on X = Rd :

dXt = ∇A(Xt) dt + dWt .

The killing will be defined by a killing function κ : X → [0,∞).

For example, in the Bayesian inference setting, κ is chosen so that the quasi-stationary
distribution π coincides with our posterior distribution.

Theorem [W. et. al. (2019)]

Under mild regularity conditions, the diffusion X possesses π as its quasi-stationary
distribution when killing rate is

κ(x) =
1

2

(
∆π

π
− ∇A · ∇π

π
− 2∆A

)
+ K .
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Simulation of QSDs

Suppose then we have a killed process X , with quasi-stationary distribution π, and we are
interested to sample from π.

In conventional MCMC, since P(Xn ∈ ·)→ π, we can repeatedly apply transition kernel P to
approximate π.

Here the analogous statement is P(Xt ∈ ·|τ∂ > t)→ π, but this does not immediately give a
sensible algorithm to sample approximately from π. (Näıve rejection sampling exponential cost
in t.)

We are interested in Monte Carlo algorithms to sample from the quasi-stationary distribution:
in the context of Bayesian inference we call this quasi-stationary Monte Carlo (QSMC).
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in t.)

We are interested in Monte Carlo algorithms to sample from the quasi-stationary distribution:
in the context of Bayesian inference we call this quasi-stationary Monte Carlo (QSMC).

Andi Q. Wang (Bristol) Quasi-stationary Monte Carlo 16 September, 2021 13 / 28



Particle methods: sampling in space

One approach, taken in [Pollock et. al. (2020)], see also
[Del Moral & Miclo (2003), Burdzy et. al. (2000)] is to use an interacting particle system;
continuous-time sequential Monte Carlo (SMC).
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Alternative approach: sampling in time

Can alternatively use a stochastic approximation approach.

Idea: run the killed process forwards in time, and whenever a killing event happens, the
process is instantaneously reborn from a new point, chosen from the empirical occupation
measure of the process,

µt =
1

t

∫ t

0
δXs ds.

N.B. Weighted empirical occupation measure also possible; regularisation around t = 0 also
possible (and advisable).

Convergence has been proven in various settings:
[Aldous et. al. (1988), Blanchet et. al. (2016), Benäım et. al. (2016)], and more recently
[W. et al, (2020), Mailler & Villemonais (2020)].
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ReScaLE example
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Regenerating ScaLE

In our context of exact Bayesian inference on Rd on tall data sets, we have dubbed the
resulting algorithm ReScaLE.

ReScaLE differs from traditional MCMC since it’s a self-interacting diffusion, and can be
analysed using techniques of stochastic approximation. It is rejection-free, amenable to
subsampling (tall data).

A rigorous proof of convergence on Rd with Brownian motion is still an open problem!
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2d MCMC trace plot, [Kumar (2019)]
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Figure: Trace plot for logistic regression on Menarche data set.

Andi Q. Wang (Bristol) Quasi-stationary Monte Carlo 16 September, 2021 18 / 28



Preliminary results: Tall data, [Kumar (2019)]

US domestic airline data set2; 20 years of flight data, with n = 120748239.

Want draws from posterior of a logistic regression model: response is whether or not flights
are delayed with three covariates.

Figure: ReScaLE applied to US domestic airline data set.

2http://stat-computing.org/dataexpo/2009/the-data.html
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Atomic extension

Simulating from the empirical occupation measure

µt =
1

t

∫ t

0
δXs ds

of the diffusion seriously impedes efficiency and performance of ReScaLE.

Instead of drawing from µt , draw from some approximation µ̃t .

µ̃t =
1

N(t)

N(t)∑
i=1

δXT (i)
,

where N is a homogeneous Poisson process, arrivals (T1,T2, . . . ).

This entirely circumvents the need for complex simulations involving diffusion bridges as in
[Pollock et. al. (2020), Kumar (2019)].
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Validity of atomic extension

In the proof of convergence of ReScaLE, this extension is still valid:

provided µ̃t converges to µt at a polynomial rate.

That is, we want to show that

µ̃t =
1

N(t)

N(t)∑
i=1

δXT (i)
≈ 1

t

∫ t

0
δXs ds = µt ,

and in fact each XT (i) ∼ µt .

This falls into the framework of empirical process theory, which indeed shows the desired
convergence.
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Perturbation theory (joint with D. Rudolf)

Perturbation theory studies the stability of certain systems under ‘small’ perturbations.

In the context of Bayesian inference via MCMC, you might ask, if we perturbed our MCMC
algorithm (e.g. due to missing data, stochastic gradients, numerical error...), how does this
affect the resulting posterior inference?

There is a well-developed literature in this setting, typically bounding d(π, π̂) between
approximate posterior π̂ and true posterior π, some distance d .
[Roberts et. al. (1998), Rudolf & Schweizer (2018), Fuhrmann et. al. (2021)].

What can be said in the QSD context?
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Perturbation theory for QSDs

To be concrete, we continue with the killed (reversible) diffusion setting on Rd , with killing at
rate κ : Rd → [0,∞).

In typical QSMC setting, the data only enters the system via the killing rate. Thus for many
common perturbations, the result is that we are using an alternative killing rate, κ̂.

This corresponds to perturbing the generator Lκ by the self-adjoint operator

H := κ̂− κ.
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Reminder: generators

For underlying diffusion
dXt = ∇A(Xt) dt + dWt ,

the generator is

L0f =
1

2
∆f +∇A · ∇f ,

an (unbounded) self-adjoint operator.

When we introduce killing at rate κ, the generator is
now

Lκf = L0f − κf .
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Perturbation result for bounded perturbations

Given generator of killed diffusion Lκ, with QSD π:

Lκ = L0 − κ.

Consider a general bounded self-adjoint perturbation H; set

L̂ := Lκ + H.

Theorem

We assume Lκ possesses a spectral gap. Can find δ > 0, such that for any perturbation with
‖H‖ < δ, there is a perturbed QSD π̂, and we can bound for a C > 0,

‖π̂ − π‖ ≤ C‖H‖.

We apply this result to QSMC for logistic regression.
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Perturbation theory for truncation

Recall the setting: we run a Brownian motion X killed at rate κ, QSD π.

Simulation of the killing time τ∂ is straightforward when κ is bounded above; use Poisson
thinning.

Otherwise, exact simulation is very delicate and involves layered Brownian motion
[Pollock et. al. (2020)].

It would be greatly simplified if we simply chose a threshold M > 0, and just ran the system
with a truncated killing rate,

κM := κ ∧M.

Issues: unbounded perturbation! Given M > 0, is there still a QSD πM? And if so, is πM close
to π?
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Perturbation result for truncation

Write λκ0 := inf σ(−Lκ) > 0.

Theorem

Provided the truncation level M ≥ λκ0 , the truncated system possesses a unique QSD π̂M .

Making crucial use of a result of [Champagnat & Villemonais (2017)] for the high-killing
scenario.

Theorem

Furthermore, under mild technical conditions, we have the bound for some C > 0,

‖π̂M − π‖2 ≤ C

∫
|(κ−M)+π|2 dx .

E.g. for 1d Ornstein–Uhlenbeck process with quadratic killing, can show∫
|π − πM | dx ≤ c exp(−M).
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Conclusion

Take home message: QSDs have been used to perform exact Bayesian inference on tall data
[Pollock et. al. (2020)]!

Focussed today mostly on a stochastic approximation approach
[Kumar (2019), W. et al, (2020)]. Detailed simulations for ReScaLE to follow using new
Brownian motion R package Aslett & Pollock (2021+).

Also discussed some perturbation theory results for QSDs (preprint with D. Rudolf incoming!).

Future directions: Convergence on noncompact spaces in full generality. Combine particles
with stochastic approximation [Budhiraja et. al. (2020)]? Draw links with NTE algorithms
[Cox et. al. (2020)]?
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Subsampling: application to Tall Data

The quasi-stationary framework allows for the principled use of subsampling (i.e. stochastic
gradients), without introducing bias, Pollock et al (2020).

Our posterior π will be of the form

π(x) ∝
N∏
i=1

fi (x)

where N could be very large. (So expensive to evaluate.)

Roughly speaking, in the QSMC framework we need unbiased estimates of

log π(x) =
N∑
i=1

log fi (x).

E.g. N log fI (x) where I ∼ U{1, 2, . . . ,N}.
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General rebirth distribution

For some r > 0, fixed distribution µ0,

µt =
r

r + t
µ0 +

t

r + t

∫ t

0
δXs ds.
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Metropolis–Hastings

Algorithm 1 Metropolis–Hastings (MH)

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: simulate Yi ∼ q(Xi−1, ·)
5: α(Xi−1,Yi ) = 1 ∧ q(Yi ,Xi−1)π(Yi )

q(Xi−1,Yi )π(Xi−1)

6: with probability α(Xi−1,Yi )
7: Xi ← Yi

8: else
9: Xi ← Xi−1

10: return (Xi )i=1,...,N
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Random walk Metropolis

At current location Xn−1, simulate Zn ∼ N(0, 1) and set

Yn = Xn−1 + Zn.

Then with probability 1 ∧ π(Yn)/π(Xn−1), set Xn = Yn, otherwise set Xn = Xn−1.

Genius of MH is that very simple underlying dynamics (pure RW) can be straightforwardly
corrected to obtain draws from π.
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