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1. Quasi-stationary distributions
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Let (X,,) nen be @ Markov chain on {1,2,...,N} whose transition
probabilities (Pjj)1<;j<n are given by
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— X admits a unique stationary distribution vy,

viP=v; et nl_lgl@pP" lirPOOP#(Xne):vs,

for any initial distribution u on {1,...,N}.

— Well known extensions

m using spectral theory

m using coupling methods, irreducibility assumptions and so on...
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Let (X)) nen be @ Markov chain on {0,1,2,...,N} whose transition
probabilities (Qj)o<ij<n are given by

A1>0 A2>0 An-1>0 An>0
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U1 >0 U2 >0 us >0 Un-1>0 1>un>0

— X admits a unique quasi-stationary distribution v, P= Qy,. Ny

vgsP=0ovgs and lim 6,"uP" = nl_iglOOH(}"Pu(Xn €)= u(nvgs

n—+oo
for any initial distribution g on E:={1,...,N}, 6p >0, n: E— (0,+00)

— It is a consequence of Perron-Frobenius theorem (Darroch
Seneta 1965) and it implies that

i ([P (X € -] X5 # 0) = Vs 1y = 0.
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Let Q be a positive kernel on E such that Qy(E) <1 for all x€ E.

Consider (X;) =0 evolving in Eu {0}, 0 ¢ E, with transition kernel

Px(X1 €) =6xQ+(1-6xQ(E))ds and Py(X; =0) = 1.

Setting 174 = inf{n =0, X, = 0} the hitting time of 9, we have

X; =0, Vt=1,5 almost surely (i.e. 0 is absorbing).
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Let Q be a positive kernel on E such that Qy(E) <1 for all x€ E.
Consider (X;) =0 evolving in Eu {0}, 0 ¢ E, with transition kernel

Px(X1 €)=6xQ+(1-6xQ(E)ds and Py(X; =0) =1.
Setting 174 = inf{n =0, X, = 0} the hitting time of 9, we have

X; =0, Vt=1,5 almost surely (i.e. 0 is absorbing).

A quasi-stationary distribution (QSD) is a probability measure v 4
on E such that

Vgs=limPy(Xre- | t<7T
gs= Am u(Xee | 9)
for at least one initial distribution u on E.

— Surveys et book
m Méléard, V. 2012, Van Doorn, Pollett 2013
m Collet, Martinez, San Martin 2013
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Assumption E. 3 n; €N, 6,,02,c1,¢2,¢3 >0, ¢1,02: E— Ry and a
probability measure v on K c E such that

— (local Doblin) VxeK,

6:Q0"=zcv((NnK) and vQ™E)=6,Q"(E), VneN.
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Assumption E. 3 n; €N, 6,,02,c1,¢2,¢3 >0, ¢1,02: E— Ry and a
probability measure v on K c E such that

— (local Doblin) VxeK,
6:Q0"=zcv((NnK) and vQ™E)=6,Q"(E), VneN.
— (Lyapunov) 01 <6,, @1 =1, supg@; <oo, infxp >0, ¢ <1,
0xQp1 =0191(x) + 21k (%), VX€ E

0xQ2 = 02¢2(x), Vx€E.

Théoreme (Champagnat, V. 2017+)

If Assumption E holds true, then v, a €(0,1),C >0 such that
(1)
|Ex [fX) | n<To] = vgs(D| = Ca"&, VneN,
Hp2)

for all p and f such that p(g1)/plp2) < +oo et |f] < @;.
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The main point of the proof is to use Hairer and Mattingly
[2011] to prove that

for some time dependent Lyapunov function v, and the
semi-group

Hon Hon
5xSO,n0n_6YSO,nOn

s Ca” 2+ Ynyn(x) + Wnyn(3)

S f () = Ex,=x (f(Xns1) | n+ m< 15)
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The main point of the proof is to use Hairer and Mattingly
[2011] to prove that

for some time dependent Lyapunov function v, and the
semi-group

Hon Hon
5xSO,n0n_6YSO,nOn

s Ca” 2+ Ynyn(x) + Wnyn(3)

S f () = Ex,=x (f(Xns1) | n+ m< 15)

In order to do so, we prove various estimates on
Ex (1 (X)) /Ex(2(Xy)), on Py(X, € K| n+m<1y) and so on.
For instance, one central estimate is, V6 € (61/6,,1),

Ex(p1(Xn)1p<r,) - (enqh(x)) v G

E, X, < < <
& In<to) < Xt =\ oo
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1. Quasi-stationary distributions

c. Application to the Neutron Random Walk
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Let E be a bounded regular domain of R? and S;_; the unit sphere.
The NRW (X,V) is a PDMP in R%x S;_;.
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Let E be a bounded regular domain of R? and S;_; the unit sphere.
The NRW (X,V) is a PDMP in R%x S;_;.

.f

ad

Theorem (Horton, Kyprianou, V)
Under density conditions, there exists 3vg and a € (0,1),C > 0 such that

[Py Xn€-1n<Ts)—Vvgs Ca", YneN, Yp.

v =
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Almost Sure Convergence of Measure Valued Polya Processes

1. Quasi-stationary distributions

d. An approximation scheme
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Let (X;)s=0 be a Markov process evolving in a state space EuU {0}
with 8 absorbing. We fix T> 0 and consider the following self
reinforced process (Yy)s»o with state space E:
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Let (X;)s=0 be a Markov process evolving in a state space EuU {0}
with 8 absorbing. We fix T> 0 and consider the following self
reinforced process (Yy)s»o with state space E:

m Starting from x € E, the process Y evolves according to the
dynamic of X up to 71:=TAT,.

m Then Y;, is chosen uniformly on the past trajectory of Y:

YT] = YUI, where Ul ~ [U([O,Tl)).

m Then Y evolves according to the dynamic of X up to the
minimum of 71 + T and the next absorption time, and so on...

Typical convergence result

1 rt
?/0 6yxds%>vqs (hopefully)
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Is this always true under reasonable conditions? There are no
general answer as of now, but here are works on the question:

m Aldous D., Flannery B., Palacios J.L. (1988) for finite spaces;
Benaim M., Cloez B. (2015) for finite spaces;

Blanchet J., Glynn P., Zheng S. (2016) for finite spaces;
Benaim M., Cloez B., Panloup F. (2018) for compact spaces;

Wang A.Q., Roberts G.O., Steinsaltz D. (2020) for diffusion
processes with a time inhomogeneous reinforcing mechanism;

Mailler C., V. (2020) for processes in non-compact spaces;

m Benaim M., Champagnat N., V. (2021) for diffusion processes
in a bounded open space.

However, none of them applies to the Neutron Random Walk.
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An other natural algorithm based on a Fleming-Viot type process?.

Let N=2 and define X = (X},...,va)tzg as follows:
m X evolves as N independent copies of X.
m At the first absorption time, the position of the absorbed
particle is resampled according to the empirical distribution of
the N—1 other particles (in E).
m Then X evolves as N independent copies of X up to the next
absorption time, and so on.

L Actually not a very good name, one may prefer a Moran particle system
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m At the first absorption time, the position of the absorbed
particle is resampled according to the empirical distribution of
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Some early references on this algorithm:

m Burdzy K., Holyst R., Ingerman D., March P. (1996, 2000)
Del Moral P. (1996+)
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An other natural algorithm based on a Fleming-Viot type process-.

Let N=2 and define X = (X},...,va)tzg as follows:
m X evolves as N independent copies of X.
m At the first absorption time, the position of the absorbed
particle is resampled according to the empirical distribution of
the N—1 other particles (in E).
m Then X evolves as N independent copies of X up to the next
absorption time, and so on.
Some early references on this algorithm:
m Burdzy K., Holyst R., Ingerman D., March P. (1996, 2000)
Del Moral P. (1996+)
m Del Moral P.& Guionnet A. (2001), & Miclo L. (2000,2003)

m Rousset M. (2006+)

Personal contributions :
m In general state spaces, incl. hard boundaries (PhD 2011+)
m NRW: see also Ogafrain W. and V. (2018).

L Actually not a very good name, one may prefer a Moran particle system
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Almost Sure Convergence of Measure Valued Polya Processes

2. Measure valued Pdlya processes

a. Finite and irreducible Pdlya urns
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law

®3/8
®3/8
02/8

e — 000
e — 0O l
O o0

State of the urn at time n+3 State of the urn at time n+2
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State of the urn at time n

mn=35+35+25.
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State of the urn at time n

mn=35+35+25.
Pick a color Yy, € E:= {EN8 R | whie |}, with probability

my 3

) + 3 ) + 2 )
mn( 8 m 8 black 8 '

We then get the state of the urn at time n+1 via

Yn+ 1

0
Mps1 = My + 0y, RV \where RY = |1
2

S OonnN
O =

For instance, if Y;.; = blue, then

M1 =30 gy + 50 gy + 30 [

— Aldous, Flannery, Palacios 1988, Janson 2004, Pemantle 2007
— Bandyopadhyay, Thacker 2017, Mailler, Marckert 2017
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Let E be a Polish space, .4 ; the set of positive measures on E and

m mg € 4, the initial urn,
m RY (iid random) kernels from E to E.
m P a kernel from E to E

The urn my, being defined, we pick and set

m;,P
m; P(E)

Yi ~ et Mmuyy1=my+ 5Y,,+

(n+1)
(RUTD,
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Hypothesis C. There exist ¢,c2,0 >0 and a locally bounded
function V with compact level sets, such that

m 0<c <infyeg Re(E) < sup,cg Rx(E) <1, where Ry := [E(RSCD)
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m 0€(0,c) and
R,-V=0V(x)+c, Vx€E.
m the sub Markov kernel R—1I admits a QSD v4. In addition,

the convergence toward the QSD is uniform in total variation
norm in {a € 4, (E) | a-VY9< C}, C>0 for some g>1.

m Ris Feller and some (technical) bounds on moments of R\,

(Note the similarities with Assumption E)

Theorem (Mailler, V. 2020)

If my-V <oo, then the sequence (my,/m;(E)),>o converges
almost-surely to v for the topology of weak convergence.

23/27



Almost Sure Convergence of Measure Valued Polya Processes
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Recall that we are given a Markov process X evolving in Eu {6} and
T >0 is fixed. We consider the initial composition measure
mgy =6y, and define the random kernel

TATy
RY :f Ox,ds, where (X;)s>0 ~ Py.
0

X

Then the law of the empirical distribution of the reinforced process
at the n'" resampling time is distributed as m,,/ m,(E).
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Recall that we are given a Markov process X evolving in Eu {6} and
T >0 is fixed. We consider the initial composition measure
mgy =6y, and define the random kernel

TATy
Rgcl) :/ Ox,ds, where (X;)s>0 ~ Py.
0

Then the law of the empirical distribution of the reinforced process
at the n'" resampling time is distributed as m,,/ m,(E).
Example. Assume that X is solution to the SDE

dX; = dB; + b(X;) dt, X, € R
killed at rate x, with [|x|leo < +00, let Y be the reinforced diffusion.
Theorem (Mailler, V. 2020)

If limsup,_. b o _3 ||1<||1’2 then

[x]
f 5ys dS

VQSD a.S.
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Difficulty: We observe that
Qu(B) =E(RP(B)) =Ex(11 AT) < TPx(11 = 1),

so that, when the underlying is the NRW, then the condition on
the minimum of Qy(E) does not hold true.
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A possible direction. The same difficulty holds when X is an
elliptic diffusion process killed at the boundary of a bounded
regular open set D. In this case, one can manage to prove by
coupling methods that 1 [('dy,ds is tight,
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Difficulty: We observe that
Qu(B) =E(RP(B)) =Ex(11 AT) < TPx(11 = 1),

so that, when the underlying is the NRW, then the condition on
the minimum of Qy(E) does not hold true.

A possible direction. The same difficulty holds when X is an
elliptic diffusion process killed at the boundary of a bounded
regular open set D. In this case, one can manage to prove by
coupling methods that %foté‘ys ds is tight,and obtain:

Theorem (Benaim, Champagnat, V. 2021)

Let Y be a reinforced elliptic diffusion process, resampled according
to its historical empirical distribution when it hits the boundary,
then

S?

VQs,

1 t
—ff(Ys)ds
tJo

where v(gs is the unique quasi-stationary distribution of the
underlying process, and f is any bounded continuous function.

a.
t—+o0
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The END
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