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Let (Xn)n∈N be a Markov chain on {1,2, . . . ,N} whose transition
probabilities (Pij)1≤i,j≤N are given by

1 2 N −1 N

λ1 > 0 λ2 > 0 λN−1 > 0 λN > 0

µ2 > 0 µ3 > 0 µN−1 > 0 1 >µN > 0

0

→ X admits a unique stationary distribution νs,

νsP = νs et lim
n→+∞µPn = lim

n→+∞Pµ(Xn ∈ ·) = νs,

for any initial distribution µ on {1, . . . ,N}.

→ Well known extensions

using spectral theory

using coupling methods, irreducibility assumptions and so on...
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Let (Xn)n∈N be a Markov chain on {0,1,2, . . . ,N} whose transition
probabilities (Qij)0≤i,j≤N are given by

1 2 N −1 N

λ1 > 0 λ2 > 0 λN−1 > 0 λN > 0

µ2 > 0 µ3 > 0 µN−1 > 0 1 >µN > 0

0

→ X admits a unique quasi-stationary distribution νqs, P = Q|{1,...,N}2

νqsP = θ0νqs and lim
n→+∞θ

−n
0 µPn = lim

n→+∞θ
−n
0 Pµ(Xn ∈ ·) =µ(η)νqs,

for any initial distribution µ on E := {1, . . . ,N}, θ0 > 0, η : E → (0,+∞)

→ It is a consequence of Perron-Frobenius theorem (Darroch
Seneta 1965) and it implies that

lim
n→+∞

∥∥Pµ(Xn ∈ · | Xn 6= 0)−νqs
∥∥

TV = 0.
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Let Q be a positive kernel on E such that Qx(E) ≤ 1 for all x ∈ E.

Consider (Xn)n≥0 evolving in E ∪ {∂}, ∂ ∉ E, with transition kernel

Px(X1 ∈ ·) = δxQ+ (1−δxQ(E))δ∂ and P∂(X1 = ∂) = 1.

Setting τ∂ = inf{n ≥ 0, Xn = ∂} the hitting time of ∂, we have

Xt = ∂, ∀t ≥ τ∂ almost surely (i.e. ∂ is absorbing).

Définition

A quasi-stationary distribution (QSD) is a probability measure νqs

on E such that
νqs = lim

t→∞Pµ
(
Xt ∈ · | t < τ∂

)
for at least one initial distribution µ on E.

→ Surveys et book
Méléard, V. 2012, Van Doorn, Pollett 2013
Collet, Mart́ınez, San Mart́ın 2013
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Assumption E. ∃ n1 ∈N, θ1,θ2,c1,c2,c3 > 0, ϕ1,ϕ2 : E →R+ and a
probability measure ν on K ⊂ E such that

→ (local Doblin) ∀x ∈ K ,

δxQn1 ≥ c1ν(·∩K ) and νQn(E) ≥ c2δxQn(E), ∀n ∈N.

→ (Lyapunov) θ1 < θ2, ϕ1 ≥ 1, supK ϕ1 <∞, infK ϕ2 > 0, ϕ2 ≤ 1,

δxQϕ1 ≤ θ1ϕ1(x)+ c21K (x), ∀x ∈ E

δxQϕ2 ≥ θ2ϕ2(x), ∀x ∈ E.

Théorème (Champagnat, V. 2017+)

If Assumption E holds true, then ∃νqs, α ∈ (0,1),C > 0 such that

∣∣Eµ [
f (Xn) | n < τ∂

]−νqs(f )
∣∣≤ Cαnµ(ϕ1)

µ(ϕ2)
, ∀n ∈N,

for all µ and f such that µ(ϕ1)/µ(ϕ2) <+∞ et |f | ≤ϕ1.
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Théorème (Champagnat, V. 2017+)

If Assumption E holds true, then ∃νqs, α ∈ (0,1),C > 0 such that

∣∣Eµ [
f (Xn) | n < τ∂

]−νqs(f )
∣∣≤ Cαnµ(ϕ1)

µ(ϕ2)
, ∀n ∈N,

for all µ and f such that µ(ϕ1)/µ(ϕ2) <+∞ et |f | ≤ϕ1.

8 / 27



1 The main point of the proof is to use Hairer and Mattingly
[2011] to prove that∥∥∥δxSn0n

0,n0n −δySn0n
0,n0n

∥∥∥
TV

≤ Cαn(2+ψn0n(x)+ψn0n(y))

for some time dependent Lyapunov function ψn and the
semi-group

Sn+m
n,n+1f (x) = EXn=x

(
f (Xn+1) | n+m < τ∂

)

2 In order to do so, we prove various estimates on
Ex(ϕ1(Xn))/Ex(ϕ2(Xn)), on Px(Xn ∈ K | n+m < τ∂) and so on.
For instance, one central estimate is, ∀θ ∈ (θ1/θ2,1),

Ex(ϕ1(Xn) | n < τ∂)) ≤ Ex(ϕ1(Xn)1n<τ∂)

Ex(ϕ2(Xn)1n<τ∂)
≤

(
θnϕ1(x)

ϕ2(x)

)
∨Cθ.
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Let E be a bounded regular domain of Rd and Sd−1 the unit sphere.
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Let E be a bounded regular domain of Rd and Sd−1 the unit sphere.
The NRW (X ,V ) is a PDMP in Rd ×Sd−1.

Theorem (Horton, Kyprianou, V)

Under density conditions, there exists ∃νqs and α ∈ (0,1),C > 0 such that∥∥Pµ (Xn ∈ · | n < τ∂)−νqs
∥∥

TV ≤ Cαn, ∀n ∈N, ∀µ.
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c. Application to the approximation scheme

12 / 27



13 / 27



Let (Xt)t≥0 be a Markov process evolving in a state space E ∪ {∂}
with ∂ absorbing. We fix T > 0 and consider the following self
reinforced process (Yt)t≥0 with state space E:

Starting from x ∈ E, the process Y evolves according to the
dynamic of X up to τ1 := T ∧τ∂.

Then Yτ1 is chosen uniformly on the past trajectory of Y :

Yτ1 := YU1 , where U1 ∼U([0,τ1)).

Then Y evolves according to the dynamic of X up to the
minimum of τ1 +T and the next absorption time, and so on...

Typical convergence result

1

t

∫ t

0
δYs ds

a.s.−−−−→
t→+∞ νqs (hopefully)
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Is this always true under reasonable conditions? There are no
general answer as of now, but here are works on the question:

Aldous D., Flannery B., Palacios J.L. (1988) for finite spaces;

Benäım M., Cloez B. (2015) for finite spaces;

Blanchet J., Glynn P., Zheng S. (2016) for finite spaces;

Benäım M., Cloez B., Panloup F. (2018) for compact spaces;

Wang A.Q., Roberts G.O., Steinsaltz D. (2020) for diffusion
processes with a time inhomogeneous reinforcing mechanism;

Mailler C., V. (2020) for processes in non-compact spaces;

Benaim M., Champagnat N., V. (2021) for diffusion processes
in a bounded open space.

However, none of them applies to the Neutron Random Walk.

15 / 27



An other natural algorithm based on a Fleming-Viot type process1.
Let N ≥ 2 and define X= (X 1

t ,...,X N
t )t≥0 as follows:

X evolves as N independent copies of X .

At the first absorption time, the position of the absorbed
particle is resampled according to the empirical distribution of
the N −1 other particles (in E).

Then X evolves as N independent copies of X up to the next
absorption time, and so on.

Some early references on this algorithm:

Burdzy K., Holyst R., Ingerman D., March P. (1996, 2000)

Del Moral P. (1996+)

Del Moral P.& Guionnet A. (2001), & Miclo L. (2000,2003)

Rousset M. (2006+)

Personal contributions :

In general state spaces, incl. hard boundaries (PhD 2011+)

NRW: see also Oçafrain W. and V. (2018).

1Actually not a very good name, one may prefer a Moran particle system
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3/8
3/8
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State of the urn at time n+1

↓
State of the urn at time n+2

←−

State of the urn at time n+3



State of the urn at time n

mn = 3δ
blue

+3δ
black

+2δ
white

.

Pick a color Yn+1 ∈ E := { blue , black , white }, with probability

Yn+1 ∼ mn

mn(E)
= 3

8
δ

blue
+ 3

8
δ

black
+ 2

8
δ

white
.

We then get the state of the urn at time n+1 via

mn+1 = mn +δYn+1 R(n+1), where R(n+1) =
0 2 1

1 0 1
2 0 0

 .

For instance, if Yn+1 = blue, then

mn+1 = 3δ
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+5δ
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+3δ
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.

→ Aldous, Flannery, Palacios 1988, Janson 2004, Pemantle 2007
→ Bandyopadhyay, Thacker 2017, Mailler, Marckert 2017
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1. Quasi-stationary distributions
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b. Definition and a general result
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d. An approximation scheme

2. Measure valued Pólya processes

a. Finite and irreducible Pólya urns

b. Formal description of a Measure Valued Pólya Process*
c. Application to the approximation scheme
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Let E be a Polish space, M+ the set of positive measures on E and

m0 ∈M+ the initial urn,

R(i) (iid random) kernels from E to E.

P a kernel from E to E

The urn mn being defined, we pick and set

Yn+1 ∼ mnP

mnP(E)
et mn+1 = mn +δYn+1 R(n+1).

R may be random and sampling according to mnP/mnP(E):
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Hypothesis C. There exist c1,c2,θ > 0 and a locally bounded
function V with compact level sets, such that

0 < c1 ≤ infx∈E Rx(E) ≤ supx∈E Rx(E) ≤ 1, where Rx := E(R(1)
x )

θ ∈ (0,c1) and

Rx ·V ≤ θV (x)+ c2, ∀x ∈ E.

the sub Markov kernel R− I admits a QSD νqs. In addition,
the convergence toward the QSD is uniform in total variation
norm in {α ∈M1(E) |α ·V 1/q ≤ C}, C > 0 for some q > 1.

R is Feller and some (technical) bounds on moments of R(1)
x .

(Note the similarities with Assumption E)

Theorem (Mailler, V. 2020)

If m0 ·V <∞, then the sequence (mn/mn(E))n≥0 converges
almost-surely to νqs for the topology of weak convergence.
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Recall that we are given a Markov process X evolving in E∪ {∂} and
T > 0 is fixed. We consider the initial composition measure
m0 = δx0 and define the random kernel

R(1)
x '

∫ T∧τ∂

0
δXs ds, where (Xt)t≥0 ∼Px.

Then the law of the empirical distribution of the reinforced process
at the nth resampling time is distributed as mn/mn(E).

Example. Assume that X is solution to the SDE

dXt = dBt +b(Xt)dt, X0 ∈Rd

killed at rate κ, with ‖κ‖∞ <+∞, let Y be the reinforced diffusion.

Theorem (Mailler, V. 2020)

If limsupx→+∞
〈b(x),x〉

|x| <−3
2‖κ‖

1/2∞, then

1

t

∫ t

0
δYs ds

weak−−−−→
t→+∞ νQSD a.s.
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Difficulty: We observe that

Qx(E) = E(
R(1)

x (E)
)= Ex(τ1 ∧T) ≤ T Px(τ1 ≤ T),

so that, when the underlying is the NRW, then the condition on
the minimum of Qx(E) does not hold true.

A possible direction. The same difficulty holds when X is an
elliptic diffusion process killed at the boundary of a bounded
regular open set D. In this case, one can manage to prove by
coupling methods that 1

t

∫ t
0 δYs ds is tight,and obtain:

Theorem (Benäım, Champagnat, V. 2021)

Let Y be a reinforced elliptic diffusion process, resampled according
to its historical empirical distribution when it hits the boundary,
then

1

t

∫ t

0
f (Ys)ds

a.s.−−−−→
t→+∞ νQS,

where νQS is the unique quasi-stationary distribution of the
underlying process, and f is any bounded continuous function.
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The END
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