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o ’'Target probability distribution’: defined as a density w.r.t

to a
. E.g.: posterior or conditional distribution, Gibbs
probability.

@ SMC = particle methods= Importance splitting. As
"opposed” to MCMC methods. Start with a sample of N
replicas ('particles’). Algorithms output:

(approx. indep.) with +

o Aim of the talk: + app.
to neutrons (cf. talk of Leliévre and Del Moral).
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° a reference probability on S that
° a given computable function.
@ Assume . Problem for given s:

{ <1

Idea (For high dimensions / low temperature)

Estimate/Simulate "smoothly” and sequentially the path

s— (ps,ms), s€]0,1].
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Generalization

° a reference probability on S = RY that
,eg zo=1
° a given computable function
(called )- (Optional: V,Vs(x) is available).

e Problem, for s :=1:

Estimate the normalization:
Simulate according to 'target’:

Previous rare event model is particular case for:

Va(x) +oo if score(x) <'s
s\X) =
0 if score(x) > s
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Manifold Generalization?

o +e V(xOmy(dx) a target probability on S = R? that

.20 = 1.
o Target: e~ Vodr./z.
@ s+ ms a path of non-negative reference

measures and a family of
with s, s’ € R such that:

Ty = Isg[ms] (push-forward)

ms := 2d’ < 2d-dimensional phase-space volume of a parametric
family of co-tangent spaces s — T*¥s C R?9. is,s is a simulable
symplectic projection.

Lelievre-Stoltz-Rousset, Langevin dynamics with constraints and
computation of free energy differences, 2012
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Remark: High Dimensional /Low Temperature Applications

Motivated by pbs where:
Relative Entropy(target | educated proposal) — +oco.

(that is Importance Sampling fails, see also Chatterjee, Diaconis
AAP 2018) .

@ Sampling w.r.t. Gibbs distribution.
Tempering: 75 o< e~ SYX)(dx).
° Bayesian statistics:

. —V/(s, x) = (smoothed) log-likelihood from s x ngps
datas.

o event.
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Branching Neutron Transport Application

Rare Event formalism:

@ Exemple of choice of score function, ey given critical energy:
= ¢(X:)
— maxinf {s €R|
total energy of neutrons at time t in {£ > s} < eo}

e Corresponding choice of rare event flow:
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Branching Neutron Transport Application

@ Define the stopping time for the natural filtration of the
branching neutron transport process X

Note that
{score(X) < s} = {7s(X) = +o0}.

@ Using the , one can
. This yields a Markov kernel

/I\/ls(x, dx')ns(dx) = ns(dx’).
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Sequential Monte-Carlo a.k.a. Importance Splitting

Define:
Xs’(’i) state of replica n at iteration J.

General Form of the Algorithm with Weighted Replicas:

e (0) Simulate replicas according to 7.
Iterate on i = 1. .. inax:
e (i) of each replica
ne(1,N)bye (target: efvs(">7r).
o (if) replicas and update
weights. E.g.: triggered if weights are too degenerate.
o (iif)

with Markov Chain Monte Carlo transition
Ny ().
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Sequential Monte-Carlo a.k.a. Importance Splitting

Estimators:

e Target measures 1s = zise*V(X’s)ﬂ(dx) are estimated by

= ZWelght 6Xn /ZWelghts()
n=1

@ Normalizations are estimated by the

— Z Welghts()
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Selection schemes

Definition
A selection or re-sampling scheme draw
splitting or killing each replican=1...N. New weights are defined
accordingly:
E[Weight),,, B" | Weight] = Weight"

hew

so that the Effective Sample Size (e.g. Renyi entropy between
weighted and unweighted empirical distrib.) increases.

@ B" > 1 : selection of splitting type.
@ B" < 1 : selection of killing type.
e B" > 1 and E(B,) is independent on n: neutral bearing.
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Basic Refs

Papers:
@ Del Moral Doucet Jasra Sequential Monte Carlo samplers
2006.
@ A Beskos, A Jasra, N Kantas, A Thiery On the convergence of
adaptive sequential Monte Carlo methods 2016
@ F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte
Carlo for rare event estimation 2012
o F Cérou, A Guyader, Adaptive Multilevel Splitting for rare
event analysis, 2007.
@ In Phys.: "Jarzynski equality’
@ Freddy Bouchet and al..
Books
e Liu Monte Carlo Strategies
@ Chopin Introduction To Sequential Monte Carlo
@ Doucet, Freitas, Gordon Sequential Monte Carlo in Practice
@ Del Moral Feynman-Kac formula
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What is 'adaptivity ?

@ A 'non-adaptive’ SMC/Importance Splitting algorithm consist
of: i) 0= 50) < v+ v < S(igax) = 1, ii)
leaving target 7)s invariant.
e Many 'adaptive’ variants (e.g. Adaptive Multilevel Splitting,
see after) are presented as follows: the choice of the

@ In this talk | propose a different 'mindset’:

Scores are always deterministic -> continuous ladder.

Interpret ' Adaptivity’ = 'Mutations Only If Selection’.

Nothing happens for most scores ( ) because
of the triggering of mutations by selection.
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Triggered Mutations

Consider the mutation M; after the selection step in the algo.
Vocabulary:
@ Preset Mutations:
— non-adaptive, '’
e Mutations-If-Selection: A mutation kernel M is triggered
only when selection step is triggered.
@ Mutations-On-Child: The mutation kernel M applied only
to children
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Triggered Mutations

Example (Mutations-If-Selection)

e Compute an (ESS) of the weights at
each score/iteration.

@ If ESS is above a treshhold: trigger selection.

° are triggered.

Example (Mutations-On-Child)
°

@ Resampling/selection is such that for splitting:

Law(Child) = + 2; W"5xn ~ target.

o Triggered
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Adaptive/Triggered Mutation variant

@ The goal of Mutations (If-Selection, On-Child) is to
by avoiding mutations (hence

evaluation of V or VV ) if
° of Adaptive mutations: N — +o0.

° of Adaptive mutations: Ms — ns.

o Well-known rare event case:
(AMS) algorithm (see after).

(see below).
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Remark on Adaptive Mutations

Additional Intrinsic Adaptivity on Mutations: The mutation
kernel M, is random and depends on the past replica empirical
distribution. E.g.: if My is based on

to target an average acceptance rate ry € (0, 1).
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The Feynman-Kac-Del Moral structure

@ For non-adaptive = preset mutations, the algorithm can be
derived from a Feynman-Kac (FK) formula:

/ p(x)e 0 (dx) =

. [SO(Xs(-) Yo 2= Y Ko )= Vagr ) Ko )

where Xs(,-), i > 0 is a Markov chain with Xy ~ 19 and

probability transition M, .
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The Feynman-Kac-Del Moral structure

o For , the algorithm can be
derived from a

/SO(X) (dx) =
Elo(Xs, Je Sl Vo) O a)) = Vagr—) Ko _a)

where X; > 0 is a Markov chain with Xy ~ 19 and

0!
@ The algoritm is then:
. Additional re-sampling/selection to prevent
weight degeneracy.

@ Nota Bene: in Del Moral, re-sampling/selection is put in a
(very slightly restrictive) 'mean-field’ form.



Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:




Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:




Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:

e Target is a canonical Gibbs distribution (mechanical system
thermostatted).




Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:

°
e Target is a canonical Gibbs distribution (mechanical system

thermostatted).
e Mutation is with parameter s + random

perturbation at given temperature (Langevin).




Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:

°
e Target is a canonical Gibbs distribution (mechanical system

thermostatted).
e Mutation is with parameter s + random
perturbation at given temperature (Langevin).
I




Bias and consistency
0®00

Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:

°

e Target is a canonical Gibbs distribution (mechanical system
thermostatted).

e Mutation is with parameter s + random

perturbation at given temperature (Langevin).

° 1!

e Exists experimentally !!
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The Feynman-Kac-Del Moral structure

Proposition (Unbiasedness)

| A

Proof.
First remark that
f<Pe*VS(i) dm = E[@(Xs(f))ef Vg Koy )T Vaon) Ksi—ny)) o

e o X50)TV5(0) (X50))] where i — X is the
MCMC chain used in the mutation step. Then check that for i < iy

_ e _
i~ zsN(,-) / Q" (v) dné\(’,—) is a

N
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High dimension requires continuous

@ High Dimension d > 1: weights that are x by
e Ve Ko T Ve (X)) 3t each iteration have exponential
variance with d (typically).

SEE

In R, if coordinates of X are i.i.d. and V has a sum form over
coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of
weights requires:

i) _ ) L doteo o

e Tempting to not mutate at each (),
o lIdea:
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algorithm, new representation:

° : Each replicas evolve independently
according to a invariant with
respect to target ns e Ver.

Example
Piecewise constant Markov jump process

can be simulated: i) mutations occur at random score (higher than
so with proba e~ Jo” 295 ii) mutations with Ms.

@ Other examples: discretization of a Stochastic Differential
Equation, or Piecewise Deterministic Markov Process.
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s < (0. 1]. Iterate on j:
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Re-Indexing the algorithm by splitting events

Initialize replicas and set Sg) = 0. Mutate

. Iterate on j:
e () compute the 'importance’ weight for s € [0 1] of
replicas so that it targets s for each s, e.g.: e~ Jg 0 Ve (X)ds
e (j) Compute the next random score

= inf {s > S(J-_l)\CriteriaéV == }

e.g.: Criteriag = weight degeneracy (Effective Sample Size) at

s.
according to weights.
e ()) : additional Mutations-If-Selection
with Ms, (option: On-Child).
e (j) : mutate with Ls on s € [SU) 1] new

(< all 1) replicas.
o (Exit) Stop if SU) =1 else j — j + 1.
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Re-Indexing the algorithm by splitting events

@ Preset mutations are simulated by ANTICIPATION (can be
adjusted to decrease cost).

e Unbiasedness/Feynman-Kac/Del Moral structure® holds if no
Triggered-Mutation .

(see after).

° is an example with
PSEUDO-triggered Mutation-On-Child: they are in fact
, (see after).

?See also Brehier Gazeau Goudenege Lelievre Rousset GAMS 2016
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Static? AMS algorithm

Let k < N given. Assume rare event setting with:
@ 7 := anything simulable.
°
° , only triggered mutations.
@ Selection = killing 4+ neutral bearing. Triggered by k replicas

with lowest score which are killed and then neutrally borne.

° . M is a MCMC
kernel reversible w.r.t. m with rejection if proposal has score
< s.

2F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for
rare event estimation 2012
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Dynamical® AMS algorithm

e m = Law of a Markov chain / process.

V.

@ e = lgcoress, score = max(((path)).

@ Preset mutations = Ls = Markov generator of 7 starting
from first hitting time 75 of {£ > s} to hitting time of 74, 4s.

@ Selection = killing followed by neutral bearing.
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Dynamical® AMS algorithm

e m = Law of a Markov chain / process.

0 e V5 = 1 orens, score = max(((path)).

@ Preset mutations = Ls = Markov generator of 7 starting
from first hitting time 75 of {£ > s} to hitting time of 74, 4s.

@ Selection = killing followed by neutral bearing.

@ The algorithm is just a Fleming-Viot process indexed by s.

3F Cérou, A Guyader, Adaptive multilevel splitting for rare event analysis
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Adaptive Multilevel Splitting

— Black line: {{ = constant}.



AMS
000®0000000

Adaptive Multilevel Splitting



AMS
00008000000

Adaptive Multilevel Splitting



Adaptive Multilevel Splitting



AMS
000000@0000

Adaptive Multilevel Splitting




AMS
0000000e000

Adaptive Multilevel Splitting




Adaptive Multilevel Splitting



AMS
00000000080

Adaptive Multilevel Splitting




AMS
0000000000e

Fluctuation Analysis




AMS
0000000000e

Fluctuation Analysis

@ Thanks to the FK-Del Moral structure, we can carry out
martingale analysis an obtain Central Limit Theorem
(Warning: practical issues with CLT).
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Fluctuation Analysis

@ Thanks to the FK-Del Moral structure, we can carry out
martingale analysis an obtain
(Warning: practical issues with CLT).

@ For dynamic AMS, e.g. estimator of rare event is
asymptotically normal when N — +o00 with asymptotic

variance:
Var(p) = - Inp+2 [ d(—p?)
s=>0
e Variance is Minimal = —p? In p for diffusions iff P, (rare event)
only

@ Ref: Cérou, (Delyon), Guyader , Rousset: series of paper.
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