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Context and Algo Adaptivity and Mutations Bias and consistency Indexing using selection AMS

Aim of the talk

’Target probability distribution’: defined as a density w.r.t
to a simulable distribution, density given up to a normalizing
constant. E.g.: posterior or conditional distribution, Gibbs
probability.
SMC = particle methods= Importance splitting. As
”opposed” to MCMC methods. Start with a sample of N
replicas (’particles’). Algorithms output: sample of N particles
(approx. indep.) with distribution the ’target’ + estimator of
normalisation.
Aim of the talk: Overview on variants and adaptivity + app.
to neutrons (cf. talk of Lelièvre and Del Moral).
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E.g.: Rare event problem

π(dx) a reference probability on S that can be simulated.
score : Rd → R a given computable function.
Assume π({score > 0}) = 1. Problem for given s:{

Estimate ps := π({score > s})� 1
Simulate according to ’target’ ηs(dx) := π(dx | score(x) > s).

Idea (For high dimensions / low temperature)

Estimate/Simulate ”smoothly” and sequentially the path

s 7→ (ps , ηs), s ∈ [0, 1].
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Generalization

1
z0

e−V0(0)π(dx) a reference probability on S = Rd that can be
simulated, e.g. z0 = 1.
(s, x) 7→ Vs(x) : R× Rd× → R a given computable function
(called potential). (Optional: ∇xVs(x) is available).
Problem, for s := 1:{

Estimate the normalization: zs := π(e−Vs())

Simulate according to ’target’: ηs(dx) := 1
zs

e−Vs(x)π(dx).

Previous rare event model is particular case for:

Vs(x) =

{
+∞ if score(x) 6 s

0 if score(x) > s
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Manifold Generalization1

1
z0

e−V (x ,0)π0(dx) a target probability on S = Rd that can be
simulated. z0 = 1.
Target : e−Vsdπs/zs .
s 7→ πs a path of mutually singular non-negative reference
measures and a family of computable maps is,s′ : Rd → Rd

with s, s ′ ∈ R such that:

πs′ = is,s′ [πs ] (push-forward)

Example

πs := 2d ′ < 2d-dimensional phase-space volume of a parametric
family of co-tangent spaces s 7→ T ∗Σs ⊂ R2d . is,s′ is a simulable
symplectic projection.

1Lelièvre-Stoltz-Rousset, Langevin dynamics with constraints and
computation of free energy differences, 2012
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Remark: High Dimensional/Low Temperature Applications

Motivated by pbs where:

Relative Entropy(target | educated proposal)→ +∞.

(that is Importance Sampling fails, see also Chatterjee, Diaconis
AAP 2018) .

Sampling w.r.t. low temperature Gibbs distribution.
Tempering: πs ∝ e−sU(x)π(dx).
High dimensional Bayesian statistics: π = prior distribution on
model(s). −V (s, x) = (smoothed) log-likelihood from s × nobs
datas.
Rare event.
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Branching Neutron Transport Application
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Branching Neutron Transport Application

Rare Event formalism:

Exemple of choice of score function, e0 given critical energy:

score(X ) :=max
t>0

ζ(Xt)

= max
t>0

inf
{
s ∈ R |

total energy of neutrons at time t in {ξ > s} 6 e0
}

Corresponding choice of rare event flow:

zs = ps := π({score > s}), ηs := π( | score > s)
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Branching Neutron Transport Application

Define the stopping time for the natural filtration of the
branching neutron transport process X

τs(X ) := inf {t > 0 | ζ(Xt) = s}

Note that

{score(X ) < s} = {τs(X ) = +∞} .

Using the strong Markov property, one can simulate new
neutrons starting from Xτs(X ). This yields a Markov kernel
Ms(x , dx ′) leaving π conditioned by {score > s} invariant.∫

Ms(x , dx ′)ηs(dx) = ηs(dx ′).
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Sequential Monte-Carlo a.k.a. Importance Splitting

Define: 0 = s(0) < . . . < s(imax) = 1 a given, finite ladder of scores.

X n
s(i)

state of replica n at iteration i .

General Form of the Algorithm with Weighted Replicas:

(0) Simulate N independent replicas according to η0.
Iterate on i = 1 . . . imax:

(i) Weights: update the ’importance weight’ of each replica

n ∈ (1,N) by e
−Vs(i)

(X n
s(i−1)

)+Vs(i−1) (X
n
s(i−1)

)
(target: e−Vs(i)π).

(ii) Selection (optional) kill and/or split replicas and update
weights. E.g.: triggered if weights are too degenerate.
(iii) Mutation (optional): modify (’mutate’) (all or some or
none) replicas with Markov Chain Monte Carlo transition
Ms(i)(x , dx

′) that leaves invariant the target ηs(i)(dx).
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Sequential Monte-Carlo a.k.a. Importance Splitting

Estimators:

Target measures ηs = 1
zs

e−V (x ,s)π(dx) are estimated by
weighted empirical measures with normalization

ηNs(i) :=
N∑

n=1

Weightns(i)δX n
s(i)
/

N∑
n=1

Weightns(i) .

Normalizations are estimated by the average weights over
replicas

zNs(i) :=
1
N

N∑
n=1

Weightns(i)
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Selection schemes

Definition
A selection or re-sampling scheme draw branching numbers Bn ∈ N
splitting or killing each replica n = 1 . . .N. New weights are defined
accordingly:

E[WeightnnewB
n |Weight] = Weightn

so that the Effective Sample Size (e.g. Renyi entropy between
weighted and unweighted empirical distrib.) increases.

Bn > 1 : selection of splitting type.
Bn 6 1 : selection of killing type.
Bn > 1 and E(Bn) is independent on n: neutral bearing.
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Basic Refs

Papers:

Del Moral Doucet Jasra Sequential Monte Carlo samplers
2006.
A Beskos, A Jasra, N Kantas, A Thiery On the convergence of
adaptive sequential Monte Carlo methods 2016
F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte
Carlo for rare event estimation 2012
F Cérou, A Guyader, Adaptive Multilevel Splitting for rare
event analysis, 2007.
In Phys.: ’Jarzynski equality’
Freddy Bouchet and al..

Books
Liu Monte Carlo Strategies
Chopin Introduction To Sequential Monte Carlo
Doucet, Freitas, Gordon Sequential Monte Carlo in Practice
Del Moral Feynman-Kac formula
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What is ’adaptivity’ ?

A ’non-adaptive’ SMC/Importance Splitting algorithm consist
of: i) preset ladder of scores 0 = s(0) < . . . < s(imax) = 1, ii)
preset choice of mutations Ms leaving target ηs invariant.
Many ’adaptive’ variants (e.g. Adaptive Multilevel Splitting,
see after) are presented as follows: the choice of the scores is
random, adaptive.
In this talk I propose a different ’mindset’:

Idea
Scores are always deterministic -> continuous ladder.

Interpret ’Adaptivity’ = ’Mutations Only If Selection’.

Nothing happens for most scores (’weighting = waiting’) because
of the triggering of mutations by selection.
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Triggered Mutations

Consider the mutation Ms after the selection step in the algo.
Vocabulary:

Preset Mutations: Ms is preset, applied to all replicas at each
score → non-adaptive, ’Feynman-Kac-Del Moral structure’.
Mutations-If-Selection: A mutation kernel Ms is triggered
only when selection step is triggered.
Mutations-On-Child: The mutation kernel Ms applied only
to children when selction is such that the sample of children '
target.
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Triggered Mutations

Example (Mutations-If-Selection)

Compute an Effective Sample Size (ESS) of the weights at
each score/iteration.
If ESS is above a treshhold: trigger selection.
If selection happens, mutations on all replicas are triggered.

Example (Mutations-On-Child)

Special case of Mutations-If-Selection.
Resampling/selection is such that for splitting:

Law(Child) =
1
N

N∑
n=1

W nδX n ' target.

Triggered mutations are applied on children ONLY.
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Adaptive/Triggered Mutation variant

Remarks

The goal of triggered Mutations (If-Selection, On-Child) is to
save computational power by avoiding mutations (hence
evaluation of V or ∇V ) if simple weighting is sufficient.
Consistency of Adaptive mutations: large sample N → +∞.
Consistency of Adaptive mutations: large mixing Ms → ηs .
Well-known rare event case: Adaptive Multilevel Splitting
(AMS) algorithm (see after).
AMS in the dynamical setting has a hidden non-adaptive
Feynman-Kac-Del Moral structure (see below).
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Remark on Adaptive Mutations

Additional Intrinsic Adaptivity on Mutations: The mutation
kernel Ms is random and depends on the past replica empirical
distribution. E.g.: if Ms is based on accept/reject, proposal is
adaptively tuned to target an average acceptance rate r0 ∈ (0, 1).
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The Feynman-Kac-Del Moral structure

For non-adaptive = preset mutations, the algorithm can be
derived from a Feynman-Kac (FK) formula:∫

ϕ(x)e−Vs(i)
(x)
π(dx) =

E
[
ϕ(Xs(i))e

−
∑i

i′=1 Vs(i′) (Xs(i′−1)
)−Vs(i′−1)

(Xs(i′−1)
)
]

where Xs(i) , i > 0 is a Markov chain with X0 ∼ η0 and
probability transition Ms(i) .
The algoritm is then: simulating independently N chains with
FK weights. Additional re-sampling/selection to prevent
weight degeneracy.
Nota Bene: in Del Moral, re-sampling/selection is put in a
(very slightly restrictive) ’mean-field’ form.
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Jarzynski equality

Remark
The Feynman-Kac formula before is known in physics as ’Jarzynski
equality’. In that case:

s is reaction coordinate or a thermodynamic parameter.
Target is a canonical Gibbs distribution (mechanical system
thermostatted).
Mutation is Newton dynamics with parameter s + random
perturbation at given temperature (Langevin).
Weight = e−Work/(kbT ) !!
Exists experimentally !!
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The Feynman-Kac-Del Moral structure

Proposition (Unbiasedness)

Un-normalized estimators are unbiased for algorithms following the
Feynman-Kac-Del Moral structure.

Proof.
First remark that∫
ϕ e−Vs(i)dπ = E[ϕ(Xs(i))e

−Vs(i)
(Xs(i−1) )+Vs(i−1) (Xs(i−1) ) × . . .×

e−Vs(1) (Xs(0) )+Vs(0) (Xs(0) )]=: E[Q0→i (ϕ)(X0)] where i 7→ X(i) is the
MCMC chain used in the mutation step. Then check that for i 6 i0

i 7→ zN
s(i)

∫
Q i→i0(ϕ) dηN

s(i)
is a martingale.
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High dimension requires continuous

High Dimension d � 1: weights that are × by
e−Vs(i+1) (Xs(i)

)+Vs(i)
(Xs(i)

) at each iteration have exponential
variance with d (typically).

Example

In Rd , if coordinates of X are i.i.d. and V has a sum form over
coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of
weights requires:

s(i+1) − s(i) ∼ 1√
d

d→+∞−−−−−→ 0.

Tempting to not mutate at each s(i).
Idea: switch to a continuum of scores:

s ∈
{
s(0), . . . , s(I )

}
becomes s ∈ [0, 1].
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coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of
weights requires:

s(i+1) − s(i) ∼ 1√
d

d→+∞−−−−−→ 0.

Tempting to not mutate at each s(i).
Idea: switch to a continuum of scores:

s ∈
{
s(0), . . . , s(I )

}
becomes s ∈ [0, 1].
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Indexing the algorithm by selection events

’Same’ algorithm, new representation:

Preset Mutations: Each replicas evolve independently
according to a Markov process with generator Ls invariant with
respect to target ηs ∝ e−Vsπ.

Example
Piecewise constant Markov jump process

Ls(ϕ)(x) = λs(Ms(ϕ)(x)− ϕ(x)), ηsMs = ηs

can be simulated: i) mutations occur at random score (higher than
s0 with proba e−

∫ s0
0 λsds), ii) mutations with Ms .

Other examples: discretization of a Stochastic Differential
Equation, or Piecewise Deterministic Markov Process.
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Re-Indexing the algorithm by splitting events

Initialize replicas and set S(0) = 0. Mutate all particles with Ls on
s ∈ [0, 1]. Iterate on j :

(j) Weights: compute the ’importance’ weight for s ∈ [0, 1] of
replicas so that it targets ηs for each s, e.g.: e−

∫ s
0 ∂s′Vs′ (Xs′ )ds

′
.

(j) Selection Compute the next random score

S(j) := inf
{
s > S(j−1)|CriteriaNs == 1

}
e.g.: Criterias = weight degeneracy (Effective Sample Size) at
s.

Then perform selection/re-sampling according to weights.
(j) Triggered Mutations: additional Mutations-If-Selection
with MS(j) (option: On-Child).
(j) Preset Mutations: mutate with Ls on s ∈ [S (j), 1] new
(⇔ all !) replicas.
(Exit) Stop if S (j) = 1 else j → j + 1.
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Re-Indexing the algorithm by splitting events

Remarks

Preset mutations are simulated by ANTICIPATION (can be
adjusted to decrease cost).
Unbiasedness/Feynman-Kac/Del Moral structurea holds if no
Triggered-Mutation .
AMS in ’static setting’ is an example with ONLY Triggered
Mutations-On-Child (see after).
AMS in ’dynamic setting’ is an example with
PSEUDO-triggered Mutation-On-Child: they are in fact preset
mutations given by the model itself !, (see after).

aSee also Brehier Gazeau Goudenege Lelievre Rousset GAMS 2016
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Static2 AMS algorithm

Let k < N given. Assume rare event setting with:

π := anything simulable.
e−Vs = 1score>s .
Ls = 0, only triggered mutations.
Selection = killing + neutral bearing. Triggered by k replicas
with lowest score which are killed and then neutrally borne.
Mutation-If-Selection with Mutation-On-Child. Ms is a MCMC
kernel reversible w.r.t. π with rejection if proposal has score
6 s.

2F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for
rare event estimation 2012
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Dynamical3 AMS algorithm

π = Law of a Markov chain / process.
e−Vs = 1score>s , score = max(ζ(path)).
Preset mutations = Ls = Markov generator of π starting
from first hitting time τs of {ξ > s} to hitting time of τs+δs .
Selection = killing followed by neutral bearing.
The algorithm is just a Fleming-Viot process indexed by s.

3F Cérou, A Guyader, Adaptive multilevel splitting for rare event analysis
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Adaptive Multilevel Splitting

− Black line: {ξ = constant}.
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Fluctuation Analysis

Thanks to the FK-Del Moral structure, we can carry out
martingale analysis an obtain Central Limit Theorem
(Warning: practical issues with CLT).
For dynamic AMS, e.g. estimator of rare event is
asymptotically normal when N → +∞ with asymptotic
variance:

Var(p̂) = −p2 ln p + 2
∫
s>0

Varηs (P.(rare event))d(−p2
s )

Variance is Minimal = −p2 ln p for diffusions iff Px(rare event)
only depends on x only through ξ(x).
Ref: Cérou, (Delyon), Guyader , Rousset: series of paper.
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