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[From “Monte Carlo methods for the NTE” (Cox, Harris, Kyprianou, Wang)]
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Choice of  main challenge for IS. Two common approaches: 
 - Lyapunov inequalities 
 - Control approach/HJ equations

Qn

pn = P(Xn(τ) ∈ ∂A, some τ ≤ T ) .

A large deviation-style analysis of associated control problem suggests 
 according to ,  a subsolution of a HJ equation:Qn ∇xW W

{Wt(t, x) − H(x, − ∇xW(t, x)) ≥ 0,(t, x) ∈ (0,T ] × A,
W(t, x) ≤ 0, (t, x) ∈ (0,T ] × ∂A .
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(similar ideas can be applied for MCMC, splitting, genealogical methods…)



Recent work studies connections between QSDs and stochastic control: 

Budhiraja, Dupuis, N., Wu - Quasi-stationary distributions and ergodic 
control problems (arXiv:2103.00280)
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Possible alternative: Efficient numerical methods for QSDs

- Introduce ergodic stochastic controls problems associated with 
the QSD of a diffusion process.  

- Prove well-posedness of HJB eq:s and describe how they 
characterise important properties of the QSD. 

- Opens up for numerical methods, from the control community, 
for approximating the rate (eigenvalue) and the QSD.

(very early in the development, much to do for this to be viable…)
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