Neutron Transport Days 2021

Pierre Nyquist

Department of Mathematics KTH Royal Institute of Technology

Branching Structures Meeting Bath, September 17, 2021

> MePierreNyg https://people.kth.se/~pierren/

Large deviations

Monte Carlo methods

Stochastic control + PDEs and variational problems

Large deviations

Monte Carlo methods

2

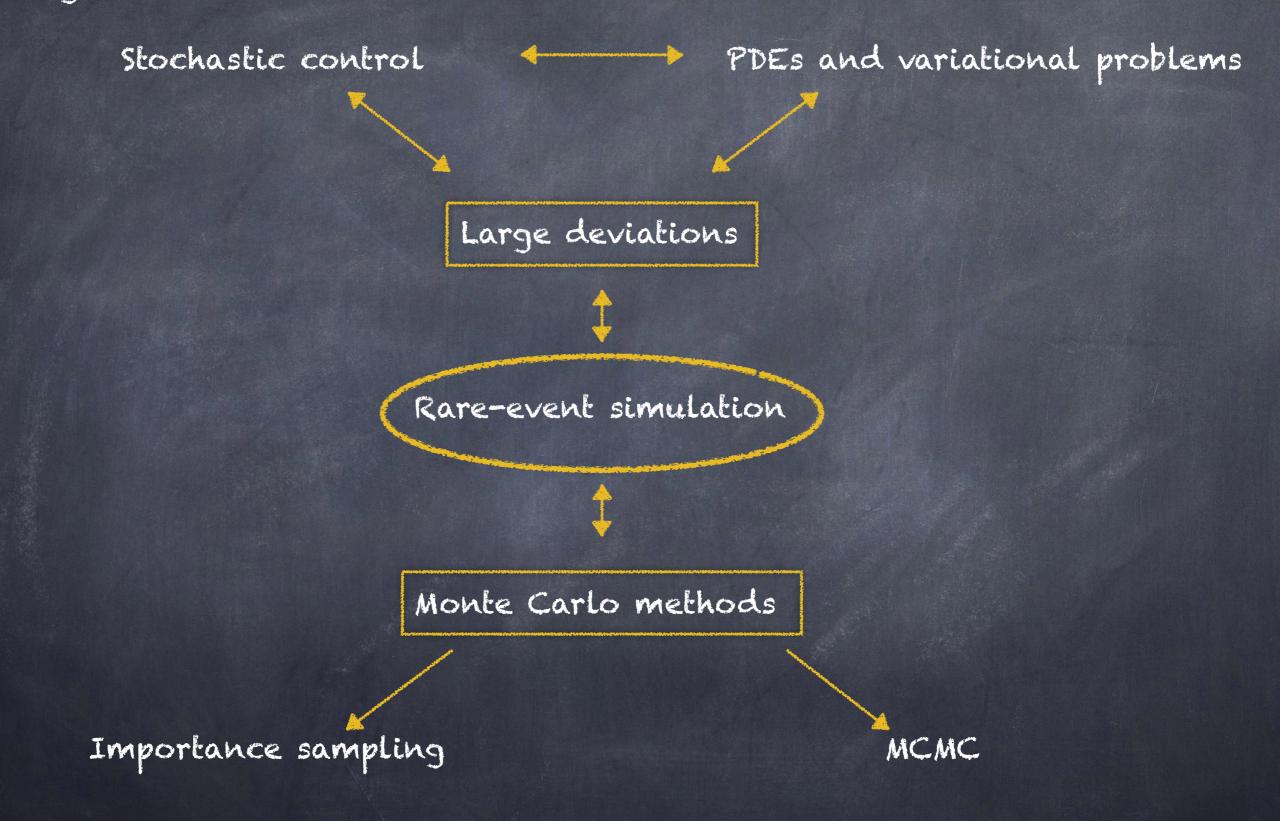
Stochastic control + PDEs and variational problems

Large deviations

Monte Carlo methods

Importance sampling

MCMC



9. Discussion and numerical comparison of methods.

9.1. Towards Improved Monte-Carlo Methods for the NTE. The results of the previous section (in particular Remark 8.1) suggests that extremely efficient methods for estimating λ_* can be developed if the eigenfunction φ is known. Unfortunately, finding the optimal φ is generally at least as hard as finding the optimal λ_* , so this is not immediately helpful. However, importance sampling can still be highly effective in reducing the variance of the numerical scheme even when the function φ is not known. The key question is how to construct informative functions h which might approximate φ well.

The benefits of combining SMC methods with importance sampling has been investigated by (e.g. [29]). It is in this combination that we expect the results in Sections 7 and 8 to be of most benefit. Specifically, we would anticipate using SMC methods to sample/resample from a population of particles, which themselves undergo motion according to an h-transformed version of the NRW. We aim to write more about this in forthcoming work.

A further difficulty that arises in the use of *h*-transformed motion for the estimation of λ_* is that the estimates can be dominated by large-deviation effects. Specifically, although the estimates remain unbiased, for large *t* a substantial contribution to the expectation in (7.11) comes from rare particles with large weights (the exponential, product and indicator terms

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

Ex: Estimate the probability of exiting A for a process $\{X^n(t); t \in [0,T]\}$:

 $p_n = P(X^n(\tau) \in \partial A, \text{ some } \tau \leq T).$

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

Ex: Estimate the probability of exiting A for a process $\{X^n(t); t \in [0,T]\}$:

 $p_n = P(X^n(\tau) \in \partial A, \text{ some } \tau \leq T).$

(Standard) Monte Carlo: Sample trajectories $\{X_i^n\}_{i=1}^N$ from original dynamics P^n . Estimator

$$\hat{p}_{N,n} = \frac{1}{N} \sum_{i=1}^{N} I\{X_i^n(\tau) \in A, \text{ some } \tau \leq T\}$$

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

Ex: Estimate the probability of exiting A for a process $\{X^n(t); t \in [0,T]\}$:

 $p_n = P(X^n(\tau) \in \partial A, \text{ some } \tau \leq T).$

(Standard) Monte Carlo: Sample trajectories $\{X_i^n\}_{i=1}^N$ from original dynamics P^n . Estimator

$$\hat{p}_{N,n} = \frac{1}{N} \sum_{i=1}^{N} I\{X_i^n(\tau) \in A, \text{ some } \tau \leq T\}$$

Importance sampling: Sample trajectories $\{X_i^n\}_{i=1}^N$ from alternative dynamics Q^n . Estimator

$$\tilde{p}_{N,n} = \frac{1}{N} \sum_{i=1}^{N} I\{X_i^n(\tau) \in A, \text{ some } \tau \leq T\} \frac{dP^n}{dQ^n}(X_i^n)$$

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

Ex: Estimate the probability of exiting A for a process $\{X^n(t); t \in [0,T]\}$:

 $p_n = P(X^n(\tau) \in \partial A, \text{ some } \tau \leq T).$

Choice of Q^n main challenge for IS. Two common approaches:

- Lyapunov inequalities
- Control approach/HJ equations

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

Ex: Estimate the probability of exiting A for a process $\{X^n(t); t \in [0,T]\}$:

 $p_n = P(X^n(\tau) \in \partial A, \text{ some } \tau \leq T).$

Choice of Q^n main challenge for IS. Two common approaches:

- Lyapunov inequalities
- Control approach/HJ equations

A large deviation-style analysis of associated control problem suggests Q^n according to $\nabla_x W$, W a subsolution of a HJ equation:

 $\begin{cases} W_t(t,x) - H(x, -\nabla_x W(t,x)) \ge 0, (t,x) \in (0,T] \times A, \\ W(t,x) \le 0, \qquad (t,x) \in (0,T] \times \partial A. \end{cases}$

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

In general: <u>Very</u> difficult to construct "optimal" subsolution. So far, mostly toy-ish problems studied in full detail.

An in-depth (LD-style) analysis for the NTE setting (very) interesting.

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

In general: <u>Very</u> difficult to construct "optimal" subsolution. So far, mostly toy-ish problems studied in full detail.

An in-depth (LD-style) analysis for the NTE setting (very) interesting.

- Control-perspective on the choice of h,
- Provably efficient methods for interacting particle systems,
- Combination with on-line estimates and updates,
- Measure-valued processes, different from standard setting.

Relies on choosing new sampling dynamics (previous quote: h function). Rare-event simulation: Large deviation asymptotics guides the choice.

In general: <u>Very</u> difficult to construct "optimal" subsolution. So far, mostly toy-ish problems studied in full detail.

An in-depth (LD-style) analysis for the NTE setting (very) interesting.

- Control-perspective on the choice of h,
- Provably efficient methods for interacting particle systems,
- Combination with on-line estimates and updates,
- Measure-valued processes, different from standard setting.

(similar ideas can be applied for MCMC, splitting, genealogical methods...)

Possible alternative: Efficient numerical methods for QSDs

Recent work studies connections between QSDs and stochastic control: Budhiraja, Dupuis, N., Wu – Quasi-stationary distributions and ergodic control problems (arXiv:2103.00280)

- Introduce ergodic stochastic controls problems associated with the QSD of a diffusion process.
- Prove well-posedness of HJB eq:s and describe how they characterise important properties of the QSD.
- Opens up for numerical methods, from the control community, for approximating the rate (eigenvalue) and the QSD.

(very early in the development, much to do for this to be viable...)

Neutron Transport Days 2021

Pierre Nyquist

Department of Mathematics KTH Royal Institute of Technology

Branching Structures Meeting Bath, September 17, 2021

> MePierreNyg https://people.kth.se/~pierren/