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The zig-zag process!

1. Set (x,v) € R" x {-1,1}".
2. Set t + 0.
3. Whilet < T do
3.1 Sample Y ~ Exp(1).
3.2 Set psuch that S0, [77 \i(x +sv,v)ds = Y.
3.3 Set x < x + pv.
34 Sett«+ t+p.

3.5 Sample /| ~ Categorical(A1(x, v), ..., An(x,Vv)).
3.6 Set v; < —v;.

P> Between switches, x moves with constant velocity v.

» Target density 7 is invariant if

)\,'(X, V) = v;0; Iog7r(x) Vv 0.

!J Bierkens, P Fearnhead and G Roberts. The zig-zag process and
super-efficient sampling for Bayesian analysis of big data, Ann Stat
47(3):1288-1320, 2019.



The zig-zag process

X0

(d) 2D S-shaped density

!J Bierkens, P Fearnhead and G Roberts. The zig-zag process and
super-efficient sampling for Bayesian analysis of big data, Ann Stat
47(3):1288-1320, 2019.



Advantages and disadvantages of zig-zag

+ 4+ +

Avoids reversible backtracking.
Rejection-free.
Direction of travel guided by shape of target.

Construction only makes sense if target density is
differentiable. ..

and if the state space is one connected set.



The zig-zag process on a hybrid state space

v

Target m(m,x) on F x Q C N x R".
For each m € F create Q,,, a copy of Q.

Let % be respective exit and entrance boundaries into Q,
(which can be artificially introduced if necessary), and suppose
Q is a Markov kernel from It = Uperlh to I i= Uperl .

While in some ¢, let the process undergo zig-zag dynamics
with target w(m,-).

When an exit boundary is hit, the state jumps with law @ and
re-enters a different copy.



The zig-zag process on a hybrid state space

Take F = {A, B} and 2 = B(0,1).




Piecewise deterministic Markov processes?

The generalised zig-zag process (m¢, x¢, v¢) is a PDMP with
generator

Lf(m,x,v):=v-V,f(m,x,v)

d
+ ) Ni(m, x, v)[F(m, x, Fiv) = £(m, x, v)]
i=1

whose domain D(L) consists of measurable functions f satisfying
fmxv)= [ iy w)Qm x,vii.dy. w)
Uy, w)er—

for any (m, x,v) € ['", and some boundedness & continuity
conditions.

2M Davis. Markov models and optimization, Chapman & Hall, 1993.
Especially chapters 2 and 3.



Theorem?3

Suppose the initial condition has a density, that F is finite, that
m(m,-) € CYQQ,) for each m € F, that m > 0 on Upmerf2S,, and

L. E(mx,v)[#jumps by time t] < oo for any (m,x,v) and t > 0,
2. for each (x,v) € I} and (y,w) €T},
W(m,x)Q(m,x, V;j7y7 W) = 77(_].,}/)@(_/.,)/, —w;m,X, _V)a

3. for each (x,v) e I},
/ (w-n(j,y)Q(m,x,v;j,dy,w) = —v - n(m,x),
(.y,w)er—

where n(m, x) is the unit outward normal at x € 0Q,,
4. and that Q is such that jumps facing corners are a null event.
Then 7 is a stationary distribution of (m¢, x¢, v¢).

%) Koskela. Zig-zag sampling for discrete structures and non-reversible
phylogenetic MCMC, arXiv:2004.08807.



Sketch proof

> The various technical assumptions guarantee that C} N D(L)
separates measures on the domain of the zig-zag process.

» The aim is to show E;[Lf(m, x, v)] = 0 for each
fe ClnD(L).

d

Ex|v-Vif(mx,v)+ Z Ai(m, x, v)[f(m,x, Fiv) — f(m, x, v)]
i=1

= ]Eﬂ'[v ’ {fo(m,x, V) - f(m,x, V)vx IOg W(m,X)}]

=Ex[v - Vif(m,x,v) — v-Vif(m,x,v)— Boundary terms].

» The defining boundary property of the domain D(L) and the
two conditions on 7 and @ are exactly what you need to show
that boundary terms vanish.



Ergodicity

If IF is finite and the process restricted to a single domain €, with
target w(m, -) is ergodic for each m € F, then the full process is
ergodic provided

x,v)el n IS ;

for enough ordered pairs (m, ) € F? to form a tour.

Some criteria for ergodicity of a single-domain process are known?.

“]J Bierkens, G Roberts and P-A Zitt. Ergodicity of the zig-zag process, Ann
Appl Probab 29(4):2266-2301, 2019.



The coalescent®

» (M¢)e>o0 with Mo = {{1},...,{n}}.

» Holding times T, ~ Exp ((’2())

> At jump times, two randomly chosen blocks merge.

» i~ jin [l < iandj have a common ancestor at time t.
>

Mutations as a Poisson point process with rate §/2 on the
branches of the tree.

®J F C Kingman. The coalescent, Stoch Proc Appl 13(3):235-248, 1982.



The coalescent




The coalescent as missing data

P(D|9):/AP(D|A,0)P(A|9)dA

.



A geometric embedding of coalescent trees®

» Encode a tree as (Ep, t,).

> t,:=(t1,...,th-1) € Rfl are the times between successive
mergers.

» E, is the ranked topology: an ordered set of nodes specifying
the exact merger events.

P> 7-space: separate copy of RQ’:I for each distinct Ej,.

» Glue common faces of separate orthants together to form a
connected space.

> £, =0

6A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic
trees, J Theor Biol 403:197-208, 2016.



The three leaf T-space

,,,,,,,,,,,,,,,
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One third of the four leaf 7-space

6A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic
trees, J Theor Biol 403:197-208, 2016.



The infinite sites coalescent posterior

» Regard E, as a set of edges.

» Given n observed sequences and a putative ancestral tree
(En, tp), for an edge 7 € E,, define:
» m, := number of mutations on 7.
» t; € v if v spans the ith interval.
» (y:=3_;,c, ti be the branch length.

(0, En, tn) o { 11 ,71{,1(9?)'"}

yEE,

n—1 . .
Xexp(_z(wll)z(nw,)ti)

i=1




Flip rates

Xi(En,tn, 0; v)

Mo(En,tn,0;v)

Important: v;

Y

n+1—i)(n+6—i m,
::v,-<( + )2(+ )— Z €>\/0,

YEEq:ti€y

;:v9<2”+1_’ va)vo

i=1 ’YEEn

=+1/("2.



Ranked topology crossings

» Exit and entrance boundaries := faces at which t; =0 or
6 =0.

» Define the jump kernel Q via the orthants which intersect at a
face.

» 7 is continuous at the boundaries of ranked topologies.

» Crossing into uniformly chosen adjacent topology when a
boundary is hit satisfies the conditions on Q.

» So does reflecting at the t; = 0 and 6 = 0 boundaries.



Simulation study’

Figure 3.
Perfect phylogeny of the Griffiths and Tavaré (1994) data set

A Hobolth, M K Uyenoyama and C Wiuf. Importance sampling for the
infinite sites model, Stat Appl Genet Mol Biol 7(1) Article 32, 2008.

8R C Griffiths and S Tavaré. Ancestral inference in population genetics,
Stat Sci 9:307-319, 1994.

8R H Ward, B L Frazier, K Dew and S P3ibo. Extensive mitochondrial
diversity within a single Amerindian tribe, Proc Natl Acad Sci USA
88:8720-8724, 1991.



Mutation rate
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Mutation rate, sample size = 550
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Tree height, sample size = 550
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Mutation rate, § = 55
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Tree height, 6 = 55
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What about a nuclear reactor?
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