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The zig-zag process1

1. Set (x , v) ∈ Rn × {−1, 1}n.

2. Set t ← 0.

3. While t < T do

3.1 Sample Y ∼ Exp(1).

3.2 Set ρ such that
∑n

i=1

∫ t+ρ

t
λi (x + sv , v)ds = Y .

3.3 Set x ← x + ρv .
3.4 Set t ← t + ρ.
3.5 Sample I ∼ Categorical(λ1(x , v), . . . , λn(x , v)).
3.6 Set vI ← −vI .

I Between switches, x moves with constant velocity v .

I Target density π is invariant if

λi (x , v) = vi∂i log π(x) ∨ 0.

1J Bierkens, P Fearnhead and G Roberts. The zig-zag process and
super-efficient sampling for Bayesian analysis of big data, Ann Stat
47(3):1288–1320, 2019.



The zig-zag process
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Advantages and disadvantages of zig-zag

+ Avoids reversible backtracking.

+ Rejection-free.

+ Direction of travel guided by shape of target.

− Construction only makes sense if target density is
differentiable. . .

− and if the state space is one connected set.



The zig-zag process on a hybrid state space

I Target π(m, x) on F× Ω ⊆ N× Rn.

I For each m ∈ F create Ωm, a copy of Ω.

I Let Γ±m be respective exit and entrance boundaries into Ωm

(which can be artificially introduced if necessary), and suppose
Q is a Markov kernel from Γ+ = ∪m∈FΓ+

m to Γ− := ∪m∈FΓ−m.

I While in some Ωo
m, let the process undergo zig-zag dynamics

with target π(m, ·).

I When an exit boundary is hit, the state jumps with law Q and
re-enters a different copy.



The zig-zag process on a hybrid state space

Take F = {A,B} and Ω = B(0, 1).

ΩA ΩB

Γ+
A

Γ−B



Piecewise deterministic Markov processes2

The generalised zig-zag process (mt , xt , vt) is a PDMP with
generator

Lf (m, x , v) := v · ∇x f (m, x , v)

+
d∑

i=1

λi (m, x , v)[f (m, x ,Fiv)− f (m, x , v)]

whose domain D(L) consists of measurable functions f satisfying

f (m, x , v) =

∫
(j ,y ,w)∈Γ−

f (j , y ,w)Q(m, x , v ; j , dy ,w)

for any (m, x , v) ∈ Γ+, and some boundedness & continuity
conditions.

2M Davis. Markov models and optimization, Chapman & Hall, 1993.
Especially chapters 2 and 3.



Theorem3

Suppose the initial condition has a density, that F is finite, that
π(m, ·) ∈ C 1(Ωo

m) for each m ∈ F, that π > 0 on ∪m∈FΩo
m, and

1. E(m,x ,v)[#jumps by time t] <∞ for any (m, x , v) and t > 0,

2. for each (x , v) ∈ Γ+
m and (y ,w) ∈ Γ−j ,

π(m, x)Q(m, x , v ; j , y ,w) = π(j , y)Q(j , y ,−w ;m, x ,−v),

3. for each (x , v) ∈ Γ+
m,∫

(j ,y ,w)∈Γ−
(w · n(j , y))Q(m, x , v ; j , dy ,w) = −v · n(m, x),

where n(m, x) is the unit outward normal at x ∈ ∂Ωm,

4. and that Q is such that jumps facing corners are a null event.

Then π is a stationary distribution of (mt , xt , vt).

3J Koskela. Zig-zag sampling for discrete structures and non-reversible
phylogenetic MCMC, arXiv:2004.08807.



Sketch proof

I The various technical assumptions guarantee that C 1
b ∩ D(L)

separates measures on the domain of the zig-zag process.

I The aim is to show Eπ[Lf (m, x , v)] = 0 for each
f ∈ C 1

b ∩ D(L).

Eπ

[
v · ∇x f (m, x , v) +

d∑
i=1

λi (m, x , v)[f (m, x ,Fiv)− f (m, x , v)]

]
= Eπ[v · {∇x f (m, x , v)− f (m, x , v)∇x log π(m, x)}]
= Eπ[v · ∇x f (m, x , v)− v · ∇x f (m, x , v)− Boundary terms].

I The defining boundary property of the domain D(L) and the
two conditions on π and Q are exactly what you need to show
that boundary terms vanish.



Ergodicity

If F is finite and the process restricted to a single domain Ωm with
target π(m, ·) is ergodic for each m ∈ F, then the full process is
ergodic provided∫

(x ,v)∈Γ+
m

∫
(y ,v)∈Γ−

j

Q(m, x , v ; j , dy ,w)π(m, x) > 0

for enough ordered pairs (m, j) ∈ F2 to form a tour.

Some criteria for ergodicity of a single-domain process are known4.

4J Bierkens, G Roberts and P-A Zitt. Ergodicity of the zig-zag process, Ann
Appl Probab 29(4):2266–2301, 2019.



The coalescent5

I (Πt)t≥0 with Π0 = {{1}, . . . , {n}}.
I Holding times Tk ∼ Exp

((k
2

))
.

I At jump times, two randomly chosen blocks merge.

I i ∼ j in Πt ⇔ i and j have a common ancestor at time t.

I Mutations as a Poisson point process with rate θ/2 on the
branches of the tree.

5J F C Kingman. The coalescent, Stoch Proc Appl 13(3):235–248, 1982.



The coalescent



The coalescent as missing data

?

P(D|θ) =

∫
A
P(D|A, θ)P(A|θ)dA



A geometric embedding of coalescent trees6

I Encode a tree as (En, tn).

I tn := (t1, . . . , tn−1) ∈ Rn−1
+ are the times between successive

mergers.

I En is the ranked topology: an ordered set of nodes specifying
the exact merger events.

I τ -space: separate copy of Rn−1
+ for each distinct En.

I Glue common faces of separate orthants together to form a
connected space.

I #En = (n−1)!n!
2n−1 .

6A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic
trees, J Theor Biol 403:197–208, 2016.



The three leaf τ -space
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One third of the four leaf τ -space

6A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic
trees, J Theor Biol 403:197–208, 2016.



The infinite sites coalescent posterior

I Regard En as a set of edges.
I Given n observed sequences and a putative ancestral tree

(En, tn), for an edge γ ∈ En, define:
I mγ := number of mutations on γ.
I ti ∈ γ if γ spans the ith interval.
I `γ :=

∑
i :ti∈γ ti be the branch length.

π(θ,En, tn) ∝

{ ∏
γ∈En

1

mγ!

(θ`γ
2

)mγ

}

× exp

(
−

n−1∑
i=1

(n + 1− i)(n + θ − i)

2
ti

)
.



Flip rates

λi (En, tn, θ; v) := vi

(
(n + 1− i)(n + θ − i)

2
−

∑
γ∈En:ti∈γ

mγ

`γ

)
∨ 0,

λθ(En, tn, θ; v) := vθ

(
n−1∑
i=1

n + 1− i

2
ti −

1

θ

∑
γ∈En

mγ

)
∨ 0.

Important: vi = ±1/
(n+1−i

2

)
.



Ranked topology crossings

I Exit and entrance boundaries := faces at which ti = 0 or
θ = 0.

I Define the jump kernel Q via the orthants which intersect at a
face.

I π is continuous at the boundaries of ranked topologies.

I Crossing into uniformly chosen adjacent topology when a
boundary is hit satisfies the conditions on Q.

I So does reflecting at the t1 = 0 and θ = 0 boundaries.



Simulation study7

8A Hobolth, M K Uyenoyama and C Wiuf. Importance sampling for the
infinite sites model, Stat Appl Genet Mol Biol 7(1) Article 32, 2008.

8R C Griffiths and S Tavaré. Ancestral inference in population genetics,
Stat Sci 9:307–319, 1994.

8R H Ward, B L Frazier, K Dew and S Pääbo. Extensive mitochondrial
diversity within a single Amerindian tribe, Proc Natl Acad Sci USA
88:8720–8724, 1991.



Mutation rate



Tree height



Mutation rate, sample size = 550



Tree height, sample size = 550



Mutation rate, θ = 55



Tree height, θ = 55



What about a nuclear reactor?
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