Nonreversible MCMC for discontinuous targets and disconnected spaces with boundaries

Jere Koskela

Stochastic analysis of the neutron transport equation 17 September 2021

Outline

The zig-zag process

The zig-zag process on a hybrid state space

The coalescent

A geometric embedding of coalescent trees

Zig-zag for the coalescent

One slide on neutrons

The zig-zag process ${ }^{1}$

1. Set $(x, v) \in \mathbb{R}^{n} \times\{-1,1\}^{n}$.
2. Set $t \leftarrow 0$.
3. While $t<T$ do
3.1 Sample $Y \sim \operatorname{Exp}(1)$.
3.2 Set ρ such that $\sum_{i=1}^{n} \int_{t}^{t+\rho} \lambda_{i}(x+s v, v) \mathrm{d} s=Y$.
3.3 Set $x \leftarrow x+\rho v$.
3.4 Set $t \leftarrow t+\rho$.
3.5 Sample $I \sim$ Categorical $\left(\lambda_{1}(x, v), \ldots, \lambda_{n}(x, v)\right)$.
3.6 Set $v_{l} \leftarrow-v_{l}$.

- Between switches, x moves with constant velocity v.
- Target density π is invariant if

$$
\lambda_{i}(x, v)=v_{i} \partial_{i} \log \pi(x) \vee 0
$$

${ }^{1}$ J Bierkens, P Fearnhead and G Roberts. The zig-zag process and super-efficient sampling for Bayesian analysis of big data, Ann Stat 47(3):1288-1320, 2019.

The zig-zag process

(d) 2D S-shaped density
${ }^{1}$ J Bierkens, P Fearnhead and G Roberts. The zig-zag process and super-efficient sampling for Bayesian analysis of big data, Ann Stat 47(3):1288-1320, 2019.

Advantages and disadvantages of zig-zag

+ Avoids reversible backtracking.
+ Rejection-free.
+ Direction of travel guided by shape of target.
- Construction only makes sense if target density is differentiable...
- and if the state space is one connected set.

The zig-zag process on a hybrid state space

- Target $\pi(m, x)$ on $\mathbb{F} \times \Omega \subseteq \mathbb{N} \times \mathbb{R}^{n}$.
- For each $m \in \mathbb{F}$ create Ω_{m}, a copy of Ω.
- Let $\Gamma_{m}^{ \pm}$be respective exit and entrance boundaries into Ω_{m} (which can be artificially introduced if necessary), and suppose Q is a Markov kernel from $\Gamma^{+}=\cup_{m \in \mathcal{F}} \Gamma_{m}^{+}$to $\Gamma^{-}:=\cup_{m \in \mathcal{F}} \Gamma_{m}^{-}$.
- While in some Ω_{m}^{o}, let the process undergo zig-zag dynamics with target $\pi(m, \cdot)$.
- When an exit boundary is hit, the state jumps with law Q and re-enters a different copy.

The zig-zag process on a hybrid state space

Take $\mathbb{F}=\{A, B\}$ and $\Omega=B(0,1)$.

Piecewise deterministic Markov processes ${ }^{2}$

The generalised zig-zag process $\left(m_{t}, x_{t}, v_{t}\right)$ is a PDMP with generator

$$
\begin{aligned}
L f(m, x, v):= & v \cdot \nabla_{x} f(m, x, v) \\
& +\sum_{i=1}^{d} \lambda_{i}(m, x, v)\left[f\left(m, x, F_{i} v\right)-f(m, x, v)\right]
\end{aligned}
$$

whose domain $D(L)$ consists of measurable functions f satisfying

$$
f(m, x, v)=\int_{(j, y, w) \in \Gamma^{-}} f(j, y, w) Q(m, x, v ; j, \mathrm{~d} y, w)
$$

for any $(m, x, v) \in \Gamma^{+}$, and some boundedness \& continuity conditions.
${ }^{2}$ M Davis. Markov models and optimization, Chapman \& Hall, 1993. Especially chapters 2 and 3.

Theorem ${ }^{3}$

Suppose the initial condition has a density, that \mathbb{F} is finite, that $\pi(m, \cdot) \in C^{1}\left(\Omega_{m}^{o}\right)$ for each $m \in \mathbb{F}$, that $\pi>0$ on $\cup_{m \in \mathbb{F}} \Omega_{m}^{o}$, and 1. $\mathbb{E}_{(m, x, v)}[\#$ jumps by time $t]<\infty$ for any (m, x, v) and $t>0$,
2. for each $(x, v) \in \Gamma_{m}^{+}$and $(y, w) \in \Gamma_{j}^{-}$,

$$
\pi(m, x) Q(m, x, v ; j, y, w)=\pi(j, y) Q(j, y,-w ; m, x,-v)
$$

3. for each $(x, v) \in \Gamma_{m}^{+}$,

$$
\int_{(j, y, w) \in \Gamma^{-}}(w \cdot n(j, y)) Q(m, x, v ; j, \mathrm{~d} y, w)=-v \cdot n(m, x),
$$

where $n(m, x)$ is the unit outward normal at $x \in \partial \Omega_{m}$,
4. and that Q is such that jumps facing corners are a null event.

Then π is a stationary distribution of $\left(m_{t}, x_{t}, v_{t}\right)$.
${ }^{3} \mathrm{~J}$ Koskela. Zig-zag sampling for discrete structures and non-reversible phylogenetic MCMC, arXiv:2004.08807.

Sketch proof

- The various technical assumptions guarantee that $C_{b}^{1} \cap D(L)$ separates measures on the domain of the zig-zag process.
- The aim is to show $\mathbb{E}_{\pi}[L f(m, x, v)]=0$ for each $f \in C_{b}^{1} \cap D(L)$.

$$
\begin{aligned}
& \mathbb{E}_{\pi}\left[v \cdot \nabla_{x} f(m, x, v)+\sum_{i=1}^{d} \lambda_{i}(m, x, v)\left[f\left(m, x, F_{i} v\right)-f(m, x, v)\right]\right] \\
& =\mathbb{E}_{\pi}\left[v \cdot\left\{\nabla_{x} f(m, x, v)-f(m, x, v) \nabla_{x} \log \pi(m, x)\right\}\right] \\
& =\mathbb{E}_{\pi}\left[v \cdot \nabla_{x} f(m, x, v)-v \cdot \nabla_{x} f(m, x, v)-\text { Boundary terms }\right]
\end{aligned}
$$

- The defining boundary property of the domain $D(L)$ and the two conditions on π and Q are exactly what you need to show that boundary terms vanish.

Ergodicity

If \mathbb{F} is finite and the process restricted to a single domain Ω_{m} with target $\pi(m, \cdot)$ is ergodic for each $m \in \mathbb{F}$, then the full process is ergodic provided

$$
\int_{(x, v) \in \Gamma_{m}^{+}} \int_{(y, v) \in \Gamma_{j}^{-}} Q(m, x, v ; j, \mathrm{~d} y, w) \pi(m, x)>0
$$

for enough ordered pairs $(m, j) \in \mathbb{F}^{2}$ to form a tour.
Some criteria for ergodicity of a single-domain process are known ${ }^{4}$.
${ }^{4}$ J Bierkens, G Roberts and P-A Zitt. Ergodicity of the zig-zag process, Ann Appl Probab 29(4):2266-2301, 2019.

The coalescent ${ }^{5}$

- $\left(\Pi_{t}\right)_{t \geq 0}$ with $\Pi_{0}=\{\{1\}, \ldots,\{n\}\}$.
- Holding times $T_{k} \sim \operatorname{Exp}\left(\binom{k}{2}\right)$.
- At jump times, two randomly chosen blocks merge.
- $i \sim j$ in $\Pi_{t} \Leftrightarrow i$ and j have a common ancestor at time t.
- Mutations as a Poisson point process with rate $\theta / 2$ on the branches of the tree.
${ }^{5}$ J F C Kingman. The coalescent, Stoch Proc Appl 13(3):235-248, 1982.

The coalescent

The coalescent as missing data

A geometric embedding of coalescent trees ${ }^{6}$

- Encode a tree as $\left(E_{n}, \mathbf{t}_{n}\right)$.
- $\mathbf{t}_{n}:=\left(t_{1}, \ldots, t_{n-1}\right) \in \mathbb{R}_{+}^{n-1}$ are the times between successive mergers.
- E_{n} is the ranked topology: an ordered set of nodes specifying the exact merger events.
- τ-space: separate copy of \mathbb{R}_{+}^{n-1} for each distinct E_{n}.
- Glue common faces of separate orthants together to form a connected space.
$\Rightarrow E_{n}=\frac{(n-1)!n!}{2^{n-1}}$.
${ }^{6}$ A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic trees, J Theor Biol 403:197-208, 2016.

The three leaf τ-space

One third of the four leaf τ-space

${ }^{6}$ A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic trees, J Theor Biol 403:197-208, 2016.

The infinite sites coalescent posterior

- Regard E_{n} as a set of edges.
- Given n observed sequences and a putative ancestral tree $\left(E_{n}, \mathbf{t}_{n}\right)$, for an edge $\gamma \in E_{n}$, define:
- $m_{\gamma}:=$ number of mutations on γ.
- $t_{i} \in \gamma$ if γ spans the ith interval.
- $\ell_{\gamma}:=\sum_{i: t t_{i} \in \gamma} t_{i}$ be the branch length.

$$
\begin{aligned}
\pi\left(\theta, E_{n}, \mathbf{t}_{n}\right) \propto & \left\{\prod_{\gamma \in E_{n}} \frac{1}{m_{\gamma}!}\left(\frac{\theta \ell_{\gamma}}{2}\right)^{m_{\gamma}}\right\} \\
& \times \exp \left(-\sum_{i=1}^{n-1} \frac{(n+1-i)(n+\theta-i)}{2} t_{i}\right)
\end{aligned}
$$

Flip rates

$$
\begin{aligned}
& \lambda_{i}\left(E_{n}, \mathbf{t}_{n}, \theta ; v\right):=v_{i}\left(\frac{(n+1-i)(n+\theta-i)}{2}-\sum_{\gamma \in E_{n}: t_{i} \in \gamma} \frac{m_{\gamma}}{\ell_{\gamma}}\right) \vee 0, \\
& \lambda_{\theta}\left(E_{n}, \mathbf{t}_{n}, \theta ; v\right):=v_{\theta}\left(\sum_{i=1}^{n-1} \frac{n+1-i}{2} t_{i}-\frac{1}{\theta} \sum_{\gamma \in E_{n}} m_{\gamma}\right) \vee 0 .
\end{aligned}
$$

Important: $v_{i}= \pm 1 /\binom{n+1-i}{2}$.

Ranked topology crossings

- Exit and entrance boundaries $:=$ faces at which $t_{i}=0$ or $\theta=0$.
- Define the jump kernel Q via the orthants which intersect at a face.
- π is continuous at the boundaries of ranked topologies.
- Crossing into uniformly chosen adjacent topology when a boundary is hit satisfies the conditions on Q.
- So does reflecting at the $t_{1}=0$ and $\theta=0$ boundaries.

Simulation study ${ }^{7}$

Figure 3.
Perfect phylogeny of the Griffiths and Tavaré (1994) data set.
${ }^{8}$ A Hobolth, M K Uyenoyama and C Wiuf. Importance sampling for the infinite sites model, Stat Appl Genet Mol Biol 7(1) Article 32, 2008.
${ }^{8}$ R C Griffiths and S Tavaré. Ancestral inference in population genetics, Stat Sci 9:307-319, 1994.
${ }^{8}$ R H Ward, B L Frazier, K Dew and S Pääbo. Extensive mitochondrial diversity within a single Amerindian tribe, Proc Natl Acad Sci USA 88:8720-8724, 1991.

Mutation rate

Tree height

Mutation rate, sample size $=550$

Tree height, sample size $=550$

Mutation rate, $\theta=55$

Tree height, $\theta=55$

What about a nuclear reactor?

