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Martingale behaviour

Recall the martingale

This is a non-negative martingale and thus has an almost sure limit, Wx.

(H4) There exists B C D, open and compactly embedded in D, such that

inf  ot(r,v)me(r,v,0") > 0.
reBv,v'eVv

Theorem (H., Kyprianou, Villemonais)

Suppose that (H1)-(H4) hold. Then
o If Ax <0, Ws =0, almost surely.

o If A\x > 0, then (W});>0 is L?(P) convergent.

o Irrespective of the sign of A\x, {Wo = 0} = {¢ < oo} almost surely, where
¢ =inf{t > 0: (1, X;) = 0} is the time of extinction of the NBP.
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© Pal-Bell equation
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Pal-Bell equation

o Let pn(r,v, to; R, tr) denote the probability that a neutron with configuration (r,v) at time
to will lead to exactly n neutrons in R C D X V at time tr.
o Further let us introduce the probability generating function

(oo}

G(z;r,v, t) = Zznpn(’vvv ti R, tr).

n=0

Pal-Bell equation
Then G satisfies

9G(z; r,v, t)

T =v-V,G(z;r,v,t) — (os(r,v) + oz(r,v))G(z; r,v, t)

+0's(r,v)/ G(z; r, v, t)ms(r,v,0")dv’
v

M i
+ crf(r,v)z ci(r,v) (/ G(z;r,v, t)dv’) (1)
v

j=1
J#1
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Non-linear equation

For measurable functions £ : D x V — [0,1], (r,v) € D x V and t > 0, define the non-linear
semigroup

Ny 7
uelfl(r,v) = s,y [ [T F(ri(0) vie))
i=1 i

and the non-linear branching mechanism

N
GIFl(r,v) = ot (r, V)€ ) H f(r,vi)

i=1
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Non-linear equation

For measurable functions £ : D x V — [0,1], (r,v) € D x V and t > 0, define the non-linear
semigroup

Ne
uelfl(r,v) = s,y [ [T F(ri(0) vie))

i=1

and the non-linear branching mechanism

N
GIFl(r,v) = ot (r, V)€ ) H f(r,vi)

i=1

Lemma (Harris, H., Kyprianou)
Under (H1) and (H2), u¢[f](r,v) is the unique solution to

utlgl(r,v) = g(r +v(t A Ky 0)),v) — / (os(r + vs,v) + oz (r + vs,v))ur—s[g](r + vs,v)ds
0

¢
+/ as(r—i-vs,v)/ut_s[g](r+vs,v’)7rs(r+vs,v,v')ds
0 v

+ / Uf(r+US, U)g[utfs](r‘f'US,U)dS. (2)
0
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Non-linear equation

Now define

N N
Hlgl(r,v) := oe(r, v)E(r ) [ H 1 — g(r, U, — z:g(r7 v;)] .

Lemma (Harris, H., Kyprianou, Wang)

Defining v+ = 1 — ut, we have

ve[gl(r,v) = ¢[L — g](r,v) + / s [Hlve—slgll] (r, v)ds, ®3)
0

for any measurable g : D X V — [0,1] and (r,v) € D x V.
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One more assumption

(H5) Define

N
VIEl(rv) = £ | D el vdar )]
ij=1
i#j
There exists a constant C > 0 such that for all g € L} (D x V),

(957 Uf\Y/[gD > C<§57 §2>7

where g : D — [0,00) : r — / g(r,v)dv.
v
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Yaglom theorem

Theorem (Harris, H., Kyprianou, Wang)

Suppose (H1) — (H5) hold and A« = 0. For f € L (D x V) and for all r € D and v € V,

. (, xr>>‘ ] 1
lim E B MATAI | I VAE] [ S—
rye ) [eXp < t 6> 11 (3,1)%0/2

where ¥ = (@, 0¢W[p]). In other words, the law of the process conditioned on survival is
asymptotically equivalent to an exponential distribution with parameter (X/2)(p, f).
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Yaglom theorem

Theorem (Harris, H., Kyprianou, Wang)

Suppose (H1) — (H5) hold and A« = 0. For f € L (D x V) and for all r € D and v € V,

. (, xr>>‘ ] 1
lim E B MATAI | I VAE] [ S—
rye ) [eXp < t 6> 11 (3,1)%0/2

where ¥ = (@, 0¢W[p]). In other words, the law of the process conditioned on survival is
asymptotically equivalent to an exponential distribution with parameter (X/2)(p, f).

Plan: show that the moments of the conditioned distribution converge to the moments of an
exponential distribution.
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Yaglom theorem

Theorem (Harris, H., Kyprianou, Wang)

Suppose (H1) — (H5) hold and A« = 0. For f € L (D x V) and for all r € D and v € V,

<f,xr>>‘ -
lim E —02 ) N >0 = ———
R [ex"< t e 1+ (3,202

where ¥ = (@, 0¢W[p]). In other words, the law of the process conditioned on survival is
asymptotically equivalent to an exponential distribution with parameter (X/2)(p, f).

Plan: show that the moments of the conditioned distribution converge to the moments of an
exponential distribution.

Note that
1 E5 [<f7Xt>k]

1
lim E f, Xe)|Ne >0 G LA
' 5(! 1))[< t> | t ] tk ]P)(S (Nt > O)

t— o0
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Step 1: Study the moments of the NBP

N¢

Recall that v¢[f](r,v) =1 — Es(, 0 H f(ri(t), vi(t))
i=1

o Suppose we take f = e % Then

velfl(r,v) =1—Eg,

[02 (o). r)] Ry, [ e].

o Differentiating k > 1 times and setting 6 = 0 yields

wle ¥ 0)| = (DM, (g X0

a0k

6=0

o What happens if we differentiate the evolution equation satisfied by v;?
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Step 1: Study the moments of the NBP

Proposition (Gonzalez, H., Kyprianou)

Fix k > 2. Then
t
k—1
o [0 =wd 100+ [0 [0 ras ex0
0
where
k N
(k—1) _ ki
i) =8y | D (o) TT e [EX09] |
ki k2 J=1
N
and [ki,..., kN]i is the set of all non-negative N-tuples (ki,..., ky) such that Z ki = k and at
i=1
least two of the k; are strictly positive.
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Step 1: Study the moments of the NBP

Proposition (Gonzalez, H., Kyprianou)

Fix k > 2. Then
t
k—1
o [0 =wd 100+ [0 [0 ras ex0
0
where
i N
(k—1) _ ki
Ni—s [f](rvv) _g(r,v) Z (k1,~-~7kN) HElS(,’v) [<f»Xt> j] 3
[kas- - k]2 J=1
N
and [kq,..., kN]i is the set of all non-negative N-tuples (ki,..., ky) such that Z ki = k and at
i=1
least two of the k; are strictly positive.

Theorem (Gonzalez, H., Kyprianou)

Uniformly, for (r,v) € D x V and f € LY, we have

lim |e(r,0) e~ CIEs [(F, X)) - 0(F, @) (2/2) | = 0.
t—o0 ’
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Step 2: Survival probability

Theorem (Harris, H., Kyprianou, Wang)

Forall re D and v € V
2
lim tPs (N> 0) = el

t— o0 >

o Note that by setting f = 0, we have
Ni
velo)(r,v) =1 Ey, [ [0 = Ps,.., (Ne > 0)
i=1
and so 1P’5(nv)(Nf > 0) is a solution to (3).
o Study the non-linear equation to get coarse upper and lower bounds of the form C/t.

@ We them bootstrap these bounds to obtain a precise limit.
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Idea of the proof

Step 3: The previous two steps imply that

i 1 Etg(,,v)[(fvxf)k]
im ————

t—oo tk Ps, 1))(Nf > 0)

E(;(,yv) [(fr Xf>k]/tk_1

im

too  tP, 1))(Nt > 0)

_ e(rv)RI(E/2) L 5)

2¢(r,v)/%

(2T

2

1
lim —Es
t—oo tk

J[(F, Xe) K [Ne > 0]

(r,v
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@ From the Perron-Frobenius result, we have

i Y t]Eé(,’U) [<gv Xf)]
ime ™ ——mmF——

t—o0 p(r,v) =(%8)
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@ From the Perron-Frobenius result, we have

i Y t]Eé(,’U) [<gv Xf)]
ime ™ ——mmF——

t—o0 p(r,v) =(%8)

@ Can we obtain a stochastic analogue of this result:

lim et {8X0) o
t—o00 p(r,v)
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@ From the Perron-Frobenius result, we have

At ]Ets(,,u) [<gv Xf)]

lim e~ = (¢ 8)-
t—o00 p(r,v)
@ Can we obtain a stochastic analogue of this result:
lim oAt & X0 _ o
t—o00 p(r,v)
@ It turns out that studying the martingale
W = e_’\*tL&7 Xe) t>0
o(r,v) -

and its limit, W, provides the answer.
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Strong law of large numbers

Theorem (Harris, H., Kyprianou)

Under the assumptions (H1)-(H3), for all measurable, non-negative and directionally continuous?
functions g on D X V such that, up to a multiplicative constant, g < ¢, then for any
(r,v) € D x V, we have,
7X ~
XD i oy,
e(r,v)

Ps, ,-almost surely and in L2(P), as t — oo.

7By this, we mean functions g such that lim g(r + vs, v) = g(r, v).
s—0
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Moments

Theorem (Gonzalez, H., Kyprianou)

Suppose A > 0. Uniformly for (r,v) € D x V and f € L°(D x V), we have

lim |¢(r,u)*1e*”f]E5w) [(F, x0)] - af, ¢)5L@\ —0,

t—o0

where L1 = 1 and we define iteratively for k > 2

N

ki,...,ky]2 J=1
[k, ’N]“j:kj>0

N

where [ki, ..., ky]3 is the set of all non-negative N-tuples (i, ..., ky) such that Z ki = k and
i=1

at least two of the k; are strictly positive
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Subcritical case

Theorem (Gonzalez, H., Kyprianou)

Suppose A < 0. Then uniformly for (r,v) x D x V and f € L3°(D X V), we have

fim [i(r,0)te By, [0, X0 - 7, )"Le] o0,

where we define iteratively Ly = (f, @) and for k > 2,

k
L“:%_ [Z/\n—l) > ervj } ’

= bkl 1

N
where [k1, ..., ky]} is the set of all non-negative N-tuples (ki, ..., ky) such that Z ki = k and
i=1

exactly 2 < n < k of the k; are strictly positive.
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Some open questions/future research directions

Genealogical stucture

o Clustering

o Central limit theorems

o Law of large numbers in terms of
initial population size

o Precise rates of convergence for
the moments ~~ Monte Carlo Figure: Image provided by Eric Dumonteil
error bounds
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keg eigenvalue problem

Find a triple (koft, ¢, (;;) such that

— 1 « ~ — 1 -«
(T+ )00 =—=Fotrv)  (G.(T+5)nH=-—(Fn),
keﬁ‘ keff
where we have the following regimes
<1, system is subcritical
ke € =1, system is critical
> 1,

system is supercritical.
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keg eigenvalue problem

Find a triple (koft, ¢, (;;) such that

1

keff

(T + S)o(r,v) = —

Forv)  G.(T+5)n=-11(5Fn,

where we have the following regimes

<1, system is subcritical
ke € =1, system is critical
>1, system is supercritical.

~~ This involves studying the growth of the process at branching times.
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Neutron generational process

o In place of (X¢, t > 0), we consider the process (X, n > 0), where, for n > 1, X, given by

Na

i=1

where {(rl.(")7 'UI(")), i=1,---Np} are the position-velocity configurations of the N}, particles
that are n-th in their genealogies to be the result of a fission event.

@ In place of the semigroup 1:, we consider
Valgl(r,v) :=Es, ,, [(g; Xn)]-
@ The associated evolution equation is given by

=~ — [ ot (Ry,Tu)dut=
\Un[g](nv):/ IF:(r,u) |:e ‘/;) o )UF\Un 1[g](R5, 5) ds,
0

where (Rs, Ts) is the osms-NRW.
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Perron Frobenius behaviour

Theorem (Cox, H., Kyprianou, Villemonais)

Suppose
o the cross-sections are uniformly bounded from above and

° inf r r ) > 0.
rED,Iv,'u/EVUf( ,v)ms(r,v,v")

Then there exist k. € R, a positive right eigenfunction ¢ € L (D x V) and a left eigenmeasure,
7, on D X V, both having associated eigenvalue k. Moreover, k. is the leading eigenvalue in the
sense that, for all g € L (D x V),

(n,Vnlg]) = ki(n,g) (resp. Walp] = kip) n=>0, 5)
and there exists v > 1 such that, for all g € LI (D x V),

s || k"o Walel = (n,8)|| = O(r""), n>0. (6)
g€LL (DX V):|lglleo <1

v
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o Recall that m(r,v) := / me(r,v,v")dv’. Further let 0 = o5 + 0.
v

@ Consider a ow-NRW, where

os(r,v)

o(r,v)

O'f(r7 U) ﬂ'f(r,’U,'U/)

w(r,v,0') = ms(r,v,v’) + , reD,v,v €V.

o(r,v) m(r,v)
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o Recall that m(r,v) := / me(r,v,v")dv’. Further let 0 = o5 + 0.
v

@ Consider a ow-NRW, where

O—f(r7 U) ﬂ'f(r,’U,'U/)

os(r,v
Mn(r,v,v') + , reD,v,v €V.

w(r,U,U ) = o’(l’,’U) o—(r7'u) m(r,v)

@ We can think of the ocw-NRW as equal in law to the following process.
o the NRW (R, T) scatters for the k-th time at (r, v) with rate o(r, v);

@ a coin is tossed and the random variable Ix(r,v) takes the value 1 with probability o¢(r, v)/o(r, v)
and its new velocity, is selected according to an independent copy of the random variable @i(r, v),
whose distribution has probability density ¢ (r, v, v’)/m(r, v);

o On the other hand, with probability o5(r, v)/o(r, v); the random variable Ix(r, v) takes the value 0
and its new velocity, is selected according to an independent copy of the random variable ©}(r, v),
whose distribution has probability density 75 (r, v, v").

@ As such, the velocity immediately after the k-th scatter of the NRW, given that the
position-velocity configuration immediately before is (r,v), is coded by the random variable

Ik(r,v)ei(r, v) + (1 = Ix(r,v))O%(r,v).
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Generational many-to-one

Define sequentially, To = 0 and, for n > 1,
To=inf{t > Th_1:T¢# T:_ and Ikt(Rfyth) =1},

where (k¢, t > 0) is the process counting the number of scattering events of the NRW up to time
t.
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Generational many-to-one

Define sequentially, To = 0 and, for n > 1,
To=inf{t > Th_1:T¢# T:_ and Ikt(Rfyth) =1},

where (k¢, t > 0) is the process counting the number of scattering events of the NRW up to time

Many-to-one

|

Suppose (H1), (H2) and (H4) hold. The solution to (2) among the class of expectation
semigroups is unique for g € L3°(D x V) and the semigroup (W,, n > 0) may alternatively be
represented as

n
Walgl(r,v) = Eqry | [ m(Rr Tr)e(Rr,, Y101 g 0y | - r€DweVin>1, ()
i=1

(with Wo[g] = g), where (Rt, Tt):>0 is the ocw-NRW marked at times (7;,i > 1), and

xP = inf{t >0:R: ¢ D}.
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Open questions/future research directions

e Do it all again for “discrete time”.
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Open questions/future research directions

Do it all again for “discrete time".

@ Interactions with the environment

o Effects of temperature, pressure, ...

Not just fissile systems: shielding problems, rare event simulation, ...

o Not just nuclear reactors: health care, space, ...
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Thank you!
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