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Martingale behaviour

Recall the martingale

W 1
t := e−λ∗t 〈ϕ,Xt〉

ϕ(r , υ)
.

This is a non-negative martingale and thus has an almost sure limit, W∞.

(H4) There exists B ⊂ D, open and compactly embedded in D, such that

inf
r∈B,υ,υ′∈V

σf(r , υ)πf(r , υ, υ′) > 0.

Theorem (H., Kyprianou, Villemonais)
Suppose that (H1)-(H4) hold. Then

If λ∗ ≤ 0, W∞ = 0, almost surely.

If λ∗ > 0, then (W 1
t )t≥0 is L2(P) convergent.

Irrespective of the sign of λ∗, {W∞ = 0} = {ζ <∞} almost surely, where
ζ = inf{t > 0 : 〈1,Xt〉 = 0} is the time of extinction of the NBP.
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2 Pàl-Bell equation

3 Critical case

4 Supercritical case

5 Subcritical case

6 Neutron generational processes

Stochastic analysis of the NTE 5 / 30



Pàl-Bell equation

Let pn(r , υ, t0; R, tf ) denote the probability that a neutron with configuration (r , υ) at time
t0 will lead to exactly n neutrons in R ⊂ D × V at time tf .

Further let us introduce the probability generating function

G(z; r , υ, t) =
∞∑

n=0

znpn(r , υ, t; R, tf ).

Pàl-Bell equation
Then G satisfies

∂G(z; r , υ, t)
∂t

= υ · ∇r G(z; r , υ, t)− (σs(r , υ) + σf(r , υ))G(z; r , υ, t)

+ σs(r , υ)
∫

V
G(z; r , υ′, t)πs(r , υ, υ′)dυ′

+ σf(r , υ)
M∑

j=1
j 6=1

ci (r , υ)
(∫

V
G(z; r , υ′, t)dυ′

)i

(1)
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Non-linear equation
For measurable functions f : D × V → [0, 1], (r , υ) ∈ D × V and t ≥ 0, define the non-linear
semigroup

ut [f ](r , υ) = Eδ(r,υ)

[
Nt∏
i=1

f (ri (t), υi (t))

]
,

and the non-linear branching mechanism

G[f ](r , υ) = σf(r , υ)E(r,υ)

[
N∏

i=1

f (r , υi )

]
.

Lemma (Harris, H., Kyprianou)
Under (H1) and (H2), ut [f ](r , υ) is the unique solution to

ut [g ](r , υ) = g(r + υ(t ∧ κ(r,υ)), υ)−
∫ t

0
(σs(r + υs, υ) + σf(r + υs, υ))ut−s [g ](r + υs, υ)ds

+
∫ t

0
σs(r + υs, υ)

∫
V

ut−s [g ](r + υs, υ′)πs(r + υs, υ, υ′)ds

+
∫ t

0
σf(r + υs, υ)G[ut−s ](r + υs, υ)ds. (2)
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Non-linear equation

Now define

H[g ](r , υ) := σf(r , υ)E(r,υ)

[
1−

N∏
i=1

(
1− g(r , υi )

)
−

N∑
i=1

g(r , υi )

]
.

Lemma (Harris, H., Kyprianou, Wang)
Defining vt = 1− ut , we have

vt [g ](r , υ) = ψt [1− g ](r , υ) +
∫ t

0
ψs
[
H[vt−s [g ]]

]
(r , υ)ds, (3)

for any measurable g : D × V → [0, 1] and (r , υ) ∈ D × V .
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One more assumption

(H5) Define

VV[g ](r , υ) = E(r,υ)

[ N∑
i,j=1
i 6=j

g(r , υi )g(r , υj )
]

There exists a constant C > 0 such that for all g ∈ L+
∞(D × V ),

〈ϕ̃, σfVV[g ]〉 ≥ C〈ϕ̃, ḡ2〉,

where ḡ : D → [0,∞) : r 7→
∫

V
g(r , υ)dυ.
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Yaglom theorem

Theorem (Harris, H., Kyprianou, Wang)
Suppose (H1)− (H5) hold and λ∗ = 0. For f ∈ L+

∞(D × V ) and for all r ∈ D and υ ∈ V ,

lim
t→∞

Eδ(r,υ)

[
exp
(
−θ
〈f ,Xt〉

t

)∣∣∣Nt > 0
]

=
1

1 + 〈ϕ̃, f 〉Σθ/2
,

where Σ = 〈ϕ̃, σfVV[ϕ]〉. In other words, the law of the process conditioned on survival is
asymptotically equivalent to an exponential distribution with parameter (Σ/2)〈ϕ̃, f 〉.

Plan: show that the moments of the conditioned distribution converge to the moments of an
exponential distribution.

Note that

lim
t→∞

1
tk Eδ(r,υ) [〈f ,Xt〉k |Nt > 0] = lim

t→∞

1
tk

Eδ(r,υ) [〈f ,Xt〉k ]
Pδ(r,υ) (Nt > 0)

.
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Step 1: Study the moments of the NBP

Recall that vt [f ](r , υ) = 1− Eδ(r,υ)

[
Nt∏
i=1

f (ri (t), υi (t))

]
.

Suppose we take f = e−θg . Then

vt [f ](r , υ) = 1− Eδ(r,υ)

[
e−θ
∑Nt

i=1
g(ri (t),υi (t))

]
= 1− Eδ(r,υ)

[
e−θ〈g,Xt〉

]
.

Differentiating k ≥ 1 times and setting θ = 0 yields

∂k

∂θk vt [e−θg ](r , υ)
∣∣∣
θ=0

= (−1)k+1Eδ(r,υj )

[
〈g ,Xt〉k

]
What happens if we differentiate the evolution equation satisfied by vt ?
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Step 1: Study the moments of the NBP

Proposition (Gonzalez, H., Kyprianou)
Fix k ≥ 2. Then

Eδ(r,υ)

[
〈f ,Xt〉k

]
= ψt [f k ](x) +

∫ t

0
ψs

[
βη

(k−1)
t−s [f ]

]
(r , υ) ds, t ≥ 0, (4)

where

η
(k−1)
t−s [f ](r , υ) = E(r,υ)

 ∑
[k1,...,kN ]2k

( k
k1, . . . , kN

) N∏
j=1

Eδ(r,υ)

[
〈f ,Xt〉kj

] ,
and [k1, . . . , kN ]2

k is the set of all non-negative N-tuples (k1, . . . , kN ) such that
N∑

i=1

ki = k and at

least two of the ki are strictly positive.

Theorem (Gonzalez, H., Kyprianou)
Uniformly, for (r , υ) ∈ D × V and f ∈ L∞+ , we have

lim
t→∞

∣∣ϕ(r , υ)−1t−(`−1)Eδ(r,υ)

[
〈f ,Xt〉`

]
− `! 〈f , ϕ̃〉`(Σ/2)`−1

∣∣ = 0.
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Step 2: Survival probability

Theorem (Harris, H., Kyprianou, Wang)
For all r ∈ D and υ ∈ V

lim
t→∞

tPδ(r,υ) (Nt > 0) =
2ϕ(r , υ)

Σ
.

Note that by setting f = 0, we have

vt [0](r , υ) = 1− Eδ(r,υ)

[
Nt∏
i=1

0

]
= Pδ(r,υ) (Nt > 0)

and so Pδ(r,υ) (Nt > 0) is a solution to (3).

Study the non-linear equation to get coarse upper and lower bounds of the form C/t.

We them bootstrap these bounds to obtain a precise limit.

Stochastic analysis of the NTE 14 / 30



Idea of the proof

Step 3: The previous two steps imply that

lim
t→∞

1
tk Eδ(r,υ) [〈f ,Xt〉k |Nt > 0] = lim

t→∞

1
tk

Eδ(r,υ) [〈f ,Xt〉k ]
Pδ(r,υ) (Nt > 0)

= lim
t→∞

Eδ(r,υ) [〈f ,Xt〉k ]/tk−1

tPδ(r,υ) (Nt > 0)

=
ϕ(r , υ)k!(Σ/2)k−1〈f , ϕ̃〉k

2ϕ(r , υ)/Σ

= k!
( 〈f , ϕ̃〉Σ

2

)k
.
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So far...

From the Perron-Frobenius result, we have

lim
t→∞

e−λ∗t
Eδ(r,υ) [〈g ,Xt〉]

ϕ(r , υ)
= 〈ϕ̃, g〉.

Can we obtain a stochastic analogue of this result:

lim
t→∞

e−λ∗t 〈g ,Xt〉
ϕ(r , υ)

= ??

It turns out that studying the martingale

Wt := e−λ∗t 〈ϕ,Xt〉
ϕ(r , υ)

, t ≥ 0

and its limit, W∞, provides the answer.
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Strong law of large numbers

Theorem (Harris, H., Kyprianou)
Under the assumptions (H1)-(H3), for all measurable, non-negative and directionally continuousa

functions g on D × V such that, up to a multiplicative constant, g ≤ ϕ, then for any
(r , υ) ∈ D × V , we have,

e−λ∗t 〈g ,Xt〉
ϕ(r , υ)

→ 〈g , ϕ̃〉W∞

Pδ(r,υ) -almost surely and in L2(P), as t →∞.

aBy this, we mean functions g such that lim
s→0

g(r + υs, υ) = g(r, υ).
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Moments

Theorem (Gonzalez, H., Kyprianou)
Suppose λ > 0. Uniformly for (r , υ) ∈ D × V and f ∈ L∞+ (D × V ), we have

lim
t→∞

∣∣ϕ(r , υ)−1e−`λtEδ(r,υ)

[
〈f ,Xt〉`

]
− `!〈f , ϕ̃〉`L`

∣∣ = 0,

where L1 = 1 and we define iteratively for k ≥ 2

Lk =
1

λ(k − 1)

〈
ϕ̃, βE·

[ ∑
[k1,...,kN ]2k

N∏
j=1

j:kj>0

ϕ(r , υj )Lkj (r , υj )
]〉

,

where [k1, . . . , kN ]2
k is the set of all non-negative N-tuples (k1, . . . , kN ) such that

N∑
i=1

ki = k and

at least two of the ki are strictly positive
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Subcritical case

Theorem (Gonzalez, H., Kyprianou)
Suppose λ < 0. Then uniformly for (r , υ)× D × V and f ∈ L∞+ (D × V ), we have

lim
t→0

∣∣ϕ(r , υ)−1e−λtEδ(r,υ)

[
〈f ,Xt〉`

]
− `!〈f , ϕ̃〉`L`

∣∣ = 0,

where we define iteratively L1 = 〈f , ϕ̃〉 and for k ≥ 2,

Lk =
〈f k , ϕ̃〉
〈f , ϕ̃〉kk!

−

〈
βE·
[ k∑

n=2

1
λ(n − 1)

∑
[k1,...,kN ]nk

N∏
j=1

j:kj>0

ϕ(r , υj )Lkj

]
, ϕ̃

〉
,

where [k1, . . . , kN ]nk is the set of all non-negative N-tuples (k1, . . . , kN ) such that
N∑

i=1

ki = k and

exactly 2 ≤ n ≤ k of the ki are strictly positive.
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Some open questions/future research directions

Genealogical stucture

Clustering

Central limit theorems

Law of large numbers in terms of
initial population size

Precise rates of convergence for
the moments  Monte Carlo
error bounds

Figure: Image provided by Eric Dumonteil
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2 Pàl-Bell equation

3 Critical case

4 Supercritical case

5 Subcritical case

6 Neutron generational processes

Stochastic analysis of the NTE 23 / 30



keff eigenvalue problem

Find a triple (keff , φ, φ̃) such that

(
←−
T +

←−
S )φ(r , υ) = −

1
keff

←−
F φ(r , υ) 〈φ̃, (

←−
T +

←−
S )f 〉 = −

1
keff
〈φ̃,
←−
F f 〉,

where we have the following regimes

keff


< 1, system is subcritical
= 1, system is critical
> 1, system is supercritical.

 This involves studying the growth of the process at branching times.
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Neutron generational process

In place of (Xt , t ≥ 0), we consider the process (Xn, n ≥ 0), where, for n ≥ 1, Xn given by

Xn =
Nn∑
i=1

δ
(r (n)

i ,υ
(n)
i )
,

where {(r (n)
i , υ

(n)
i ), i = 1, · · · Nn} are the position-velocity configurations of the Nn particles

that are n-th in their genealogies to be the result of a fission event.

In place of the semigroup ψt , we consider

Ψn[g ](r , υ) := Eδ(r,υ) [〈g ,Xn〉] .

The associated evolution equation is given by

Ψn[g ](r , υ) =
∫ ∞

0
E(r,υ)

[
e−
∫ s

0
σf(Ru ,Υu)du←−F Ψn−1[g ](Rs ,Υs )

]
ds,

where (Rs ,Υs ) is the σsπs-NRW.
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Perron Frobenius behaviour

Theorem (Cox, H., Kyprianou, Villemonais)
Suppose

the cross-sections are uniformly bounded from above and
inf

r∈D,υ,υ′∈V
σf(r , υ)πf(r , υ, υ′) > 0.

Then there exist k∗ ∈ R, a positive right eigenfunction ϕ ∈ L+
∞(D × V ) and a left eigenmeasure,

η, on D × V , both having associated eigenvalue kn
∗. Moreover, k∗ is the leading eigenvalue in the

sense that, for all g ∈ L+
∞(D × V ),

〈η,Ψn[g ]〉 = kn
∗〈η, g〉 (resp. Ψn[ϕ] = kn

∗ϕ) n ≥ 0, (5)

and there exists γ > 1 such that, for all g ∈ L+
∞(D × V ),

sup
g∈L+
∞(D×V ):‖g‖∞≤1

∥∥k−n
∗ ϕ−1Ψn[g ]− 〈η, g〉

∥∥
∞

= O(γ−n), n ≥ 0. (6)
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Many-to-one

Recall that m(r , υ) :=
∫

V
πf(r , υ, υ′)dυ′. Further let σ = σs + σf.

Consider a σ$-NRW, where

$(r , υ, υ′) =
σs(r , υ)
σ(r , υ)

πs(r , υ, υ′) +
σf(r , υ)
σ(r , υ)

πf(r , υ, υ′)
m(r , υ)

, r ∈ D, υ, υ′ ∈ V .

We can think of the σ$-NRW as equal in law to the following process.
the NRW (R,Υ) scatters for the k-th time at (r , υ) with rate σ(r , υ);

a coin is tossed and the random variable Ik (r , υ) takes the value 1 with probability σf(r , υ)/σ(r , υ)
and its new velocity, is selected according to an independent copy of the random variable Θf

k (r , υ),
whose distribution has probability density πf(r , υ, υ′)/m(r , υ);

On the other hand, with probability σs(r , υ)/σ(r , υ); the random variable Ik (r , υ) takes the value 0
and its new velocity, is selected according to an independent copy of the random variable Θs

k (r , υ),
whose distribution has probability density πs(r , υ, υ′).

As such, the velocity immediately after the k-th scatter of the NRW, given that the
position-velocity configuration immediately before is (r , υ), is coded by the random variable

Ik (r , υ)Θf
k (r , υ) + (1− Ik (r , υ))Θs

k (r , υ).
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Many-to-one

Recall that m(r , υ) :=
∫

V
πf(r , υ, υ′)dυ′. Further let σ = σs + σf.

Consider a σ$-NRW, where

$(r , υ, υ′) =
σs(r , υ)
σ(r , υ)

πs(r , υ, υ′) +
σf(r , υ)
σ(r , υ)

πf(r , υ, υ′)
m(r , υ)

, r ∈ D, υ, υ′ ∈ V .
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Generational many-to-one

Define sequentially, T0 = 0 and, for n ≥ 1,

Tn = inf{t > Tn−1 : Υt 6= Υt− and Ikt (Rt ,Υt−) = 1},

where (kt , t ≥ 0) is the process counting the number of scattering events of the NRW up to time
t.

Many-to-one
Suppose (H1), (H2) and (H4) hold. The solution to (2) among the class of expectation
semigroups is unique for g ∈ L∞+ (D × V ) and the semigroup (Ψn, n ≥ 0) may alternatively be
represented as

Ψn[g ](r , υ) = E(r,υ)

[
n∏

i=1

m(RTi ,ΥTi−)g(RTn ,ΥTn )1(Tn<κD )

]
, r ∈ D, υ ∈ V , n ≥ 1, (7)

(with Ψ0[g ] = g), where (Rt ,Υt )t≥0 is the σ$-NRW marked at times (Ti , i ≥ 1), and

κD := inf{t > 0 : Rt /∈ D}.
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Open questions/future research directions

Do it all again for “discrete time”.

Interactions with the environment

Effects of temperature, pressure, ...

Not just fissile systems: shielding problems, rare event simulation, ...

Not just nuclear reactors: health care, space, ...
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Thank you!
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