
Stochastic analysis of the neutron transport equation

Emma Horton
Inria Bordeaux

16th September 2021

Based on joint work with Alex Cox (University of Bath), Simon Harris (University of Auckland),
Andreas Kyprianou (University of Bath), Denis Villemonais (Université de Lorraine) and Minmin
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Overview

Interested in modelling neutrons in fissile environments and their long-term
behaviour.

One quantity of interest is the neutron flux, which is a function of
time, t ≥ 0,
neutron positionm r ∈ D ⊂ R3,
neutron direction Ω ∈ S2

neutron energy, E ∈ (0,∞).

However, often neutron energy and direction are combined into velocity, υ ∈ V .

Represent the neutron flux at time t as

Ψt(r , υ), r ∈ D, υ ∈ V .
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Scattering
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Fission
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Neutron transport equation (forwards equation)

∂Ψt

∂t (r , υ) = Q(r , υ, t)− Ω · ∇r Ψt(r , υ)− (σs(r , υ) + σf(r , υ))Ψt(r , υ)

+
∫

V
σs(r , υ′)πs(r , υ′, υ)Ψt(r , υ′)dυ′

+
∫

V
σf(r , υ′)πf(r , υ′, υ)Ψt(r , υ′)dυ′

(1)

= Q(r , υ, t) +
−→
T Ψt(r , υ) +

−→
S Ψt(r , υ) +

−→
F Ψt(r , υ), (2)

where

Q(r , υ, t) : neutron source,
σs(r , υ) : is the rate at which a neutron scatters,
σf(r , υ) : is the rate at which a fission event occurs,

πs(r , υ′, υ) : is the probability a neutron with incoming velocity υ′ scatters with
new velocity υ,

πf(r , υ′, υ) : is the average number of neutrons produced in a fission event with
new velocity υ from a neutron with incoming velocity υ′.
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Initial and boundary conditions

Initial conditions:
Ψ0(r , υ) = g(r , υ), (r , υ) ∈ D × V .

Boundary conditions:

Ψt(r , υ) = 0, r ∈ ∂D, nr · υ < 0,

where nr is the outward unit normal at r ∈ ∂D.
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Neutron transport equation (backwards equation)

Set Q = 0. For f , g ∈ L2(D × V ), we have

〈f , (
−→
T +

−→
S +

−→
F )g〉 = 〈(

←−
T +

←−
S +

←−
F )f , g〉,

where
←−
T g = Ω · ∇r g(r , υ)− (σs(r , υ) + σf(r , υ))g(r , υ)
←−
S g = σs(r , υ)

∫
V
πs(r , υ, υ′)g(r , υ′)dυ′

←−
F g = σf(r , υ)

∫
V
πf(r , υ, υ′)g(r , υ′)dυ′.
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Neutron transport equation (backwards equation)

This leads to the backwards NTE given by the abstract Cauchy problem

∂Φt

∂t (r , υ) = (
←−
T +

←−
S +

←−
F )Φt(r , υ), (3)

with
Initial conditions:

Φ0(r , υ) = g(r , υ), (r , υ) ∈ D × V .

Boundary conditions:

Φt(r , υ) = 0, r ∈ ∂D, nr · υ > 0,

where nr is the outward unit normal at r ∈ ∂D.
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α-eigenvalue problem

Find (α,ϕ, ϕ̃) such that

(
←−
T +

←−
S +

←−
F )ϕ(r , υ) = αϕ(r , υ),

〈ϕ̃, (
←−
T +

←−
S +

←−
F )f 〉 = α〈ϕ̃, f 〉,

where we have the following classifications

α


< 0, system is subcritical
= 0, system is critical
> 0, system is supercritical.

Problems...
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Nuclear reactors

Figure: Model of a pressurised water reactor. Images provided by ANSWERS.
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Nuclear reactors

Figure: Model of a pebble bed modular reactor. Images provided by ANSWERS.

Stochastic analysis of the NTE 13 / 34



Cross-sections

Figure: Example of fission cross-sections. Image provided by Wikipedia.
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Neutron branching process

Let D be a non-empty, bounded, open subset of R3.

We take the velocity space to be V := (υmin, υmax)× S2.

Let Nt be the number of particles alive at time t.

Let {(ri (t), υi (t)) : i = 1, . . . ,Nt} denote their configurations in D × V .
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Neutron branching process

A neutron with configuration (r , υ) moves along the trajectory r + υs, s ≥ 0 until
one of three things occur.

the neutron hits the boundary of the domain, at which point it is killed.

at a random time Ts, which is distributed as

P(r,υ)(Ts > t) = exp
(
−
∫ t

0
σs(r + υs, υ)ds

)
,

the neutron scatters. It’s new velocity is chosen according to πs(r + υs, υ, ·).

at a random time Tf, which is distributed as

P(r,υ)(Tf > t) = exp
(
−
∫ t

0
σf(r + υs, υ)ds

)
,

a fission occurs. A random number, N, of neutrons with velocities {υi , i = 1, . . . ,N}
are produced according to (Z,P), which satisfies∫

V
g(υ′)πf(r , υ, υ′)dυ′ = E(r,υ)[〈g ,Z〉].
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Neutron branching process

We can represent the branching process via the atomic measures

Xt(A) =
Nt∑
i=1

δ(ri (t),υi (t))(A), A ∈ B(D × V ).

Define the expectation semigroup

ψt [g ](r , υ) := Eδ(r,υ) [〈g ,Xt〉] = Eδ(r,υ)

[
Nt∑
i=1

g(ri (t), υi (t))

]
.

Note that

ψ0[g ](r , υ) = g(r , υ) and ψt [g ](r , υ) = 0 for r ∈ ∂D, nr · υ > 0. (4)
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Neutron branching process

(H1) Cross-sections σs, σf, πs and πf are uniformly bounded away from infinity.
(H2) We have inf

r∈D,υ,υ′∈V
(σsπs + σfπf) > 0.

Lemma (Cox, Harris, H., Kyprianou)
Under (H1) and (H2), for r ∈ D, υ ∈ V , t ≥ 0 and g ∈ L∞+ (D × V ), ψt [g ](r , υ) is the unique
solution to

ψt [g ](r , υ) = g(r + υt, υ)1{t<κr,υ} −
∫ t

0
(σs(r + υs, υ) + σf(r + υs, υ))ψt−s [g ](r + υs, υ)ds

+
∫ t

0
σs(r + υs, υ)

∫
V
ψt−s [g ](r + υs, υ′)πs(r + υs, υ, υ′)ds

+
∫ t

0
σf(r + υs, υ)

∫
V
ψt−s [g ](r + υs, υ′)πf(r + υs, υ, υ′)ds,

where κr,υ = inf{t > 0 : r + υt /∈ D} and with boundary and initial conditions given by (4).
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Neutron branching process

Lemma (Cox, Harris, H., Kyprianou)
Under (H1) and (H2), the mild solution ψt [g ], is equal on L2(D × V ) to (Φt , t ≥ 0) and
dual to (Ψt , t ≥ 0) on L2(D × V ), i.e.

〈f , ψt [g ]〉 = 〈f ,Φg
t 〉 = 〈Ψf

t , g〉

for all f , g ∈ L2(D × V ).
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Perron-Frobenius asymptotics

Theorem (H., Kyprianou and Villemonais)
Under the assumptions (H1) and (H2), there exist

λ∗ ∈ R, and
positive, bounded functions ϕ, ϕ̃ on D × V ,

such that for all bounded, measurable functions g : D × V → [0,∞),

〈ϕ̃, ψt [g ]〉 = eλ∗t〈ϕ̃, g〉 and ψt [ϕ] = eλ∗tϕ, t ≥ 0. (5)

Moreover, there exist C , ε > 0 such that, for all g ∈ L+
∞(D × V ),

sup
‖g‖≤1

∥∥ϕ−1e−λ∗tψt [g ]− 〈ϕ̃, g〉
∥∥
∞
≤ Ce−εt , for all t ≥ 0. (6)
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Implications of PF decomposition

From the PF decomposition, we have

ψt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Manipulation of this asymptotic allows us to simulate the eigen-elements:

λ∗ = lim
t→∞

1
t logψt [1](r , v) = lim

t→∞

1
t logEδ(r,v) [Nt ].

〈ϕ̃, g〉ϕ(r , v) = lim
t→∞

1
t

∫ t

0
e−λ∗sψs [g ](r , v)ds.
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Toy model

Figure: Estimate of λ∗
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Toy model

Figure: Estimate of λ∗
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Toy model

Figure: Estimate of ϕ̃

Figure: Estimate of ϕ

BUT...
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Neutron random walk

Let (R,Υ) = ((Rt ,Υt )t≥0) denote the process in D × V that, from an initial configuration
(r , υ), moves along the trajectory r + υs, s ≥ 0 until it either exits the domain or, at rate
α(r + υs, υ), the process scatters and chooses a new velocity according to π(r + υs, υ, ·).

Define the semigroup associated with the NRW via

φt [g ](r , υ) := E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )dsg(Rt ,Υt )1(t<τD )

]
,

for some bounded function β : D × V → R.

Then

φt [g ](r , υ) = g(r + υt, υ)1{t<κr,υ} −
∫ t

0
(α(r + υs, υ)− β(r + υs, υ))φt−s [g ](r + υs, υ)ds

+
∫ t

0
α(r + υs, υ)

∫
V
φt−s [g ](r + υs, υ′)π(r + υs, υ, υ′)dυ′ds
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Neutron random walk

For (r , υ) ∈ D × V and υ′ ∈ V , define

α(r , υ) = σs(r , υ) + σf(r , υ)
∫

V
πf(r , υ, υ′)dυ′ = σs(r , υ) + σf(r , υ)m(r , υ),

π(r , υ, υ′) = σs(r , υ)πs(r , υ, υ′) + σf(r , υ)πf(r , υ, υ′)
α(r , υ) ,

β(r , υ) = α(r , υ)− σs(r , υ)− σf(r , υ) = σf(r , υ) (m(r , υ)− 1) .

Lemma (Many-to-one)
Under the assumptions (H1) and (H2), for (r , υ) ∈ D × V , g ∈ L∞+ (D × V ) and t ≥ 0,
the semigroup

φt [g ](r , υ) := E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )dsg(Rt ,Υt)1(t<τD )

]
,

is also a solution to the NTE, and hence ψt = φt .
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Neutron random walk

α = σs + σfm,

π(r , υ, υ′) = σsπs + σfπf

α
,

β(r , υ) = σf (m − 1) .
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Monte Carlo implications

From the Perron Frobenius result, we have

φt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Using instead the NRW, we have

λ∗ = lim
t→∞

1
t log φt [1](r , v) = lim

t→∞

1
t log E(r,v)

[
e
∫ t

0
β(Rs ,Υs )ds1t<τD

]
.

〈ϕ̃, g〉ϕ(r , v) = lim
t→∞

1
t

∫ t

0
e−λ∗sφs [g ](r , v)ds.

BUT...

Stochastic analysis of the NTE 30 / 34



Monte Carlo implications

From the Perron Frobenius result, we have

φt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Using instead the NRW, we have

λ∗ = lim
t→∞

1
t log φt [1](r , v) = lim

t→∞

1
t log E(r,v)

[
e
∫ t

0
β(Rs ,Υs )ds1t<τD

]
.

〈ϕ̃, g〉ϕ(r , v) = lim
t→∞

1
t

∫ t

0
e−λ∗sφs [g ](r , v)ds.

BUT...

Stochastic analysis of the NTE 30 / 34



Martingales

Due to the Perron Frobenius theorem and the many-to-one representation,

Eδ(r,υ) [〈ϕ,Xt〉] = eλ∗tϕ(r , υ) = E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )ds

ϕ(Rt ,Υt)
]
.

Thus,

W 1
t := e−λ∗t 〈ϕ,Xt〉

ϕ(r , υ) and W 2
t := e−λ∗t+

∫ t

0
β(Rs ,Υs )ds ϕ(Rt ,Υt)

ϕ(r , υ)

are unit mean martingales under Pδ(r,υ) and P(r,υ), respectively.

We will study W 1
t later. For now, we consider W 2

t . Define the change of measure

dPϕ(r,υ)

dP(r,υ)

∣∣∣∣
Ft

= W 2
t .

We would like to understand the processes ((R,Υ),Pϕ).
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Spine Decomposition

(H3) Fission offspring are bounded in number by the constant nmax > 1.

Theorem (H., Kyprianou, Villemonais)
Under the assumptions (H1), (H2) and (H3) the process ((R,Υ),Pϕ) is a NRW,
characterised by the scattering rate and kernel

Kϕ,r,υα(r , υ) and K−1
ϕ,r,υ

ϕ(r , υ′)
ϕ(r , υ) π(r , υ, υ′).

Moreover, it is conservative with stationary distribution ϕϕ̃.

BUT...
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Some open questions/future research directions

Monte Carlo techniques and complexity analysis
Biasing techniques/h-transform/twisted particle filters
Feynman-Kac models/population control/sequential Monte Carlo
Optimal number of particles/run time
Stability analysis

Multitype processes:

∂

∂t
ψt (i , r , υ) = υ · ∇ψt (i , r , υ)− (σi

s(r , υ) + σi
f(r , υ))ψt (i , r , υ)

+ σi
s(r , υ)

∫
V
ψt (i , r , υ)πi

s(r , υ, υ′)dυ′

+ σi
f(r , υ)

`∑
j=1

∫
V
ψt (j, r , υ)πi,j

f (r , υ, υ′)dυ′.

Stochastic analysis of the NTE 33 / 34



To be continued...
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