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Overview

Interested in modelling neutrons in fissile environments and their long-term
behaviour.

One quantity of interest is the neutron flux, which is a function of
time, t ≥ 0,
neutron positionm r ∈ D ⊂ R3,
neutron direction Ω ∈ S2

neutron energy, E ∈ (0,∞).

However, often neutron energy and direction are combined into velocity, υ ∈ V .

Represent the neutron flux at time t as

Ψt(r , υ), r ∈ D, υ ∈ V .
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Scattering
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Fission
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Neutron transport equation (forwards equation)

∂Ψt

∂t (r , υ) = Q(r , υ, t)− Ω · ∇r Ψt(r , υ)− (σs(r , υ) + σf(r , υ))Ψt(r , υ)

+
∫

V
σs(r , υ′)πs(r , υ′, υ)Ψt(r , υ′)dυ′

+
∫

V
σf(r , υ′)πf(r , υ′, υ)Ψt(r , υ′)dυ′

(1)

= Q(r , υ, t) +
−→
T Ψt(r , υ) +

−→
S Ψt(r , υ) +

−→
F Ψt(r , υ), (2)

where

Q(r , υ, t) : neutron source,
σs(r , υ) : is the rate at which a neutron scatters,
σf(r , υ) : is the rate at which a fission event occurs,

πs(r , υ′, υ) : is the probability a neutron with incoming velocity υ′ scatters with
new velocity υ,

πf(r , υ′, υ) : is the average number of neutrons produced in a fission event with
new velocity υ from a neutron with incoming velocity υ′.
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Initial and boundary conditions

Initial conditions:
Ψ0(r , υ) = g(r , υ), (r , υ) ∈ D × V .

Boundary conditions:

Ψt(r , υ) = 0, r ∈ ∂D, nr · υ < 0,

where nr is the outward unit normal at r ∈ ∂D.

Stochastic analysis of the NTE 8 / 34



Neutron transport equation (backwards equation)

Set Q = 0. For f , g ∈ L2(D × V ), we have

〈f , (
−→
T +

−→
S +

−→
F )g〉 = 〈(

←−
T +

←−
S +

←−
F )f , g〉,

where
←−
T g = Ω · ∇r g(r , υ)− (σs(r , υ) + σf(r , υ))g(r , υ)
←−
S g = σs(r , υ)

∫
V
πs(r , υ, υ′)g(r , υ′)dυ′

←−
F g = σf(r , υ)

∫
V
πf(r , υ, υ′)g(r , υ′)dυ′.
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Neutron transport equation (backwards equation)

This leads to the backwards NTE given by the abstract Cauchy problem

∂Φt

∂t (r , υ) = (
←−
T +

←−
S +

←−
F )Φt(r , υ), (3)

with
Initial conditions:

Φ0(r , υ) = g(r , υ), (r , υ) ∈ D × V .

Boundary conditions:

Φt(r , υ) = 0, r ∈ ∂D, nr · υ > 0,

where nr is the outward unit normal at r ∈ ∂D.
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α-eigenvalue problem

Find (α,ϕ, ϕ̃) such that

(
←−
T +

←−
S +

←−
F )ϕ(r , υ) = αϕ(r , υ),

〈ϕ̃, (
←−
T +

←−
S +

←−
F )f 〉 = α〈ϕ̃, f 〉,

where we have the following classifications

α


< 0, system is subcritical
= 0, system is critical
> 0, system is supercritical.

Problems...
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Nuclear reactors

Figure: Model of a pressurised water reactor. Images provided by ANSWERS.
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Nuclear reactors

Figure: Model of a pebble bed modular reactor. Images provided by ANSWERS.
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Cross-sections

Figure: Example of fission cross-sections. Image provided by Wikipedia.

Stochastic analysis of the NTE 14 / 34



Contents

1 Neutron transport equation (NTE)

2 Neutron branching process

3 Perron Frobenius decomposition

4 Single particle representation

Stochastic analysis of the NTE 15 / 34



Neutron branching process

Let D be a non-empty, bounded, open subset of R3.

We take the velocity space to be V := (υmin, υmax)× S2.

Let Nt be the number of particles alive at time t.

Let {(ri (t), υi (t)) : i = 1, . . . ,Nt} denote their configurations in D × V .
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Neutron branching process

A neutron with configuration (r , υ) moves along the trajectory r + υs, s ≥ 0 until
one of three things occur.

the neutron hits the boundary of the domain, at which point it is killed.

at a random time Ts, which is distributed as

P(r,υ)(Ts > t) = exp
(
−
∫ t

0
σs(r + υs, υ)ds

)
,

the neutron scatters. It’s new velocity is chosen according to πs(r + υs, υ, ·).

at a random time Tf, which is distributed as

P(r,υ)(Tf > t) = exp
(
−
∫ t

0
σf(r + υs, υ)ds

)
,

a fission occurs. A random number, N, of neutrons with velocities {υi , i = 1, . . . ,N}
are produced according to (Z,P), which satisfies∫

V
g(υ′)πf(r , υ, υ′)dυ′ = E(r,υ)[〈g ,Z〉].
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Neutron branching process

We can represent the branching process via the atomic measures

Xt(A) =
Nt∑
i=1

δ(ri (t),υi (t))(A), A ∈ B(D × V ).

Define the expectation semigroup

ψt [g ](r , υ) := Eδ(r,υ) [〈g ,Xt〉] = Eδ(r,υ)

[
Nt∑
i=1

g(ri (t), υi (t))

]
.

Note that

ψ0[g ](r , υ) = g(r , υ) and ψt [g ](r , υ) = 0 for r ∈ ∂D, nr · υ > 0. (4)
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Neutron branching process

(H1) Cross-sections σs, σf, πs and πf are uniformly bounded away from infinity.
(H2) We have inf

r∈D,υ,υ′∈V
(σsπs + σfπf) > 0.

Lemma (Cox, Harris, H., Kyprianou)
Under (H1) and (H2), for r ∈ D, υ ∈ V , t ≥ 0 and g ∈ L∞+ (D × V ), ψt [g ](r , υ) is the unique
solution to

ψt [g ](r , υ) = g(r + υt, υ)1{t<κr,υ} −
∫ t

0
(σs(r + υs, υ) + σf(r + υs, υ))ψt−s [g ](r + υs, υ)ds

+
∫ t

0
σs(r + υs, υ)

∫
V
ψt−s [g ](r + υs, υ′)πs(r + υs, υ, υ′)ds

+
∫ t

0
σf(r + υs, υ)

∫
V
ψt−s [g ](r + υs, υ′)πf(r + υs, υ, υ′)ds,

where κr,υ = inf{t > 0 : r + υt /∈ D} and with boundary and initial conditions given by (4).
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Neutron branching process

Lemma (Cox, Harris, H., Kyprianou)
Under (H1) and (H2), the mild solution ψt [g ], is equal on L2(D × V ) to (Φt , t ≥ 0) and
dual to (Ψt , t ≥ 0) on L2(D × V ), i.e.

〈f , ψt [g ]〉 = 〈f ,Φg
t 〉 = 〈Ψf

t , g〉

for all f , g ∈ L2(D × V ).
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Perron-Frobenius asymptotics

Theorem (H., Kyprianou and Villemonais)
Under the assumptions (H1) and (H2), there exist

λ∗ ∈ R, and
positive, bounded functions ϕ, ϕ̃ on D × V ,

such that for all bounded, measurable functions g : D × V → [0,∞),

〈ϕ̃, ψt [g ]〉 = eλ∗t〈ϕ̃, g〉 and ψt [ϕ] = eλ∗tϕ, t ≥ 0. (5)

Moreover, there exist C , ε > 0 such that, for all g ∈ L+
∞(D × V ),

sup
‖g‖≤1

∥∥ϕ−1e−λ∗tψt [g ]− 〈ϕ̃, g〉
∥∥
∞
≤ Ce−εt , for all t ≥ 0. (6)
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Implications of PF decomposition

From the PF decomposition, we have

ψt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Manipulation of this asymptotic allows us to simulate the eigen-elements:

λ∗ = lim
t→∞

1
t logψt [1](r , v) = lim

t→∞

1
t logEδ(r,v) [Nt ].

〈ϕ̃, g〉ϕ(r , v) = lim
t→∞

1
t

∫ t

0
e−λ∗sψs [g ](r , v)ds.
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Toy model

Figure: Estimate of λ∗
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Toy model

Figure: Estimate of λ∗
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Toy model

Figure: Estimate of ϕ̃

Figure: Estimate of ϕ

BUT...
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Neutron random walk

Let (R,Υ) = ((Rt ,Υt )t≥0) denote the process in D × V that, from an initial configuration
(r , υ), moves along the trajectory r + υs, s ≥ 0 until it either exits the domain or, at rate
α(r + υs, υ), the process scatters and chooses a new velocity according to π(r + υs, υ, ·).

Define the semigroup associated with the NRW via

φt [g ](r , υ) := E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )dsg(Rt ,Υt )1(t<τD )

]
,

for some bounded function β : D × V → R.

Then

φt [g ](r , υ) = g(r + υt, υ)1{t<κr,υ} −
∫ t

0
(α(r + υs, υ)− β(r + υs, υ))φt−s [g ](r + υs, υ)ds

+
∫ t

0
α(r + υs, υ)

∫
V
φt−s [g ](r + υs, υ′)π(r + υs, υ, υ′)dυ′ds
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Neutron random walk

For (r , υ) ∈ D × V and υ′ ∈ V , define

α(r , υ) = σs(r , υ) + σf(r , υ)
∫

V
πf(r , υ, υ′)dυ′ = σs(r , υ) + σf(r , υ)m(r , υ),

π(r , υ, υ′) = σs(r , υ)πs(r , υ, υ′) + σf(r , υ)πf(r , υ, υ′)
α(r , υ) ,

β(r , υ) = α(r , υ)− σs(r , υ)− σf(r , υ) = σf(r , υ) (m(r , υ)− 1) .

Lemma (Many-to-one)
Under the assumptions (H1) and (H2), for (r , υ) ∈ D × V , g ∈ L∞+ (D × V ) and t ≥ 0,
the semigroup

φt [g ](r , υ) := E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )dsg(Rt ,Υt)1(t<τD )

]
,

is also a solution to the NTE, and hence ψt = φt .
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Neutron random walk

α = σs + σfm,

π(r , υ, υ′) = σsπs + σfπf

α
,

β(r , υ) = σf (m − 1) .
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Monte Carlo implications

From the Perron Frobenius result, we have

φt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Using instead the NRW, we have

λ∗ = lim
t→∞

1
t log φt [1](r , v) = lim

t→∞

1
t log E(r,v)

[
e
∫ t

0
β(Rs ,Υs )ds1t<τD

]
.

〈ϕ̃, g〉ϕ(r , v) = lim
t→∞

1
t

∫ t

0
e−λ∗sφs [g ](r , v)ds.

BUT...
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Martingales

Due to the Perron Frobenius theorem and the many-to-one representation,

Eδ(r,υ) [〈ϕ,Xt〉] = eλ∗tϕ(r , υ) = E(r,υ)

[
e
∫ t

0
β(Rs ,Υs )ds

ϕ(Rt ,Υt)
]
.

Thus,

W 1
t := e−λ∗t 〈ϕ,Xt〉

ϕ(r , υ) and W 2
t := e−λ∗t+

∫ t

0
β(Rs ,Υs )ds ϕ(Rt ,Υt)

ϕ(r , υ)

are unit mean martingales under Pδ(r,υ) and P(r,υ), respectively.

We will study W 1
t later. For now, we consider W 2

t . Define the change of measure

dPϕ(r,υ)

dP(r,υ)

∣∣∣∣
Ft

= W 2
t .

We would like to understand the processes ((R,Υ),Pϕ).
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Spine Decomposition

(H3) Fission offspring are bounded in number by the constant nmax > 1.

Theorem (H., Kyprianou, Villemonais)
Under the assumptions (H1), (H2) and (H3) the process ((R,Υ),Pϕ) is a NRW,
characterised by the scattering rate and kernel

Kϕ,r,υα(r , υ) and K−1
ϕ,r,υ

ϕ(r , υ′)
ϕ(r , υ) π(r , υ, υ′).

Moreover, it is conservative with stationary distribution ϕϕ̃.

BUT...
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Some open questions/future research directions

Monte Carlo techniques and complexity analysis
Biasing techniques/h-transform/twisted particle filters
Feynman-Kac models/population control/sequential Monte Carlo
Optimal number of particles/run time
Stability analysis

Multitype processes:

∂

∂t
ψt (i , r , υ) = υ · ∇ψt (i , r , υ)− (σi

s(r , υ) + σi
f(r , υ))ψt (i , r , υ)

+ σi
s(r , υ)

∫
V
ψt (i , r , υ)πi

s(r , υ, υ′)dυ′

+ σi
f(r , υ)

`∑
j=1

∫
V
ψt (j, r , υ)πi,j

f (r , υ, υ′)dυ′.
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To be continued...
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