
Monte Carlo methods and challenges for the
neutron transport equation

Alexander M. G. Cox

Bath, September 2021
Based on joint work with E. Horton, D. Villemonais, S. Harris, A. Kyprianou, T.
Davis, M. Wang.
Funded by EPSRC EP/P009220/1

University of Bath

1



Outline

Aim: To give an overview of common methods for solving the NTE
numerically using Monte Carlo methods.

Two key application areas:

• Criticality: what is ‘growth rate’ (= eigenvalue) of a system
(typically, a reactor). What does the system look like in criticality.
Important for reactor design, operation.

• Compute e.g. rates of burn-up of fissile material.
• What are typical temperatures, etc in the reactor?
• What by-products will appear in the reactor, e.g. Xenon poisoning

• Shielding Problem: Given a source of radiation in a system, how
much radioactivity will reach a given ‘detector’. E.g. in nuclear
waste management, for canister of fuel waste: will someone standing
near the canister receive a dangerous dose. Also relevant in medical,
space, etc applications.

• Typically interested in (very) rare-events.
• What are ‘typical’ paths for events reaching the detector?
• Source of particles typically important (unlike criticality). 2



Monte Carlo Basics

Fundamentally, (see Emma’s talks!) we want to compute averages over
particles following Neutron Branching Process, i.e. which undergo:

• Transport: particles move in a straight line between collisions.

• Scattering: particles collide with background objects (fuel rod,
shielding, control rods, moderator, etc.) and change velocity
(direction and energy/speed).

• Absorption: particles may be absorbed by environment and leave
system.

• Fission: particles collide with fissile material: multiple new particles
are emitted with new velocities.

In addition, particles can also exit through the boundary of the system,
after which we assume they will not reenter (hard killing).

3



A Toy reactor

Figure 1: A simple (Branching Markov Chain) model of a reactor.

4



Monte Carlo Basics

Monte Carlo is seen as the gold standard vs deterministic methods
because:

• Underlying geometry can be very complex.

• Many physical quantities are highly sensitive to energy (cross
sections, angular direction).

• Particle tracks can be of very different lengths depending on
position, direction =⇒ Diffusive approximation is not appropriate.

As a result, MC estimates have benefit of being unbiased vs deterministic
methods, which necessarily must make assumptions about discretising the
system.

5



A Cross Section

Figure 2: Cross Section of an element as a function of incident neutron energy.
Source: JEFF Report 22.

6



Numerical Implementations

A range of open-source and commercial software packages exist. Most
based on the same core algorithms (I will explain some of these!), but
with a range of different strengths/weaknesses.

• For practical purposes, need to be able to work with ‘real’ physics.
Large (and complex) libraries of real physical data, e.g. reaction
rates, cross-sections, decay rates, etc. based on experimental data.

• Underlying geometry needs to be specified! Reactors can be
complex.

• May also need to interact with other physical processes (thermal
dynamics, fluids, etc.)

Some important implementations: TRIPOLI-4, MCNP, MONK, SCONE,
. . .

7



Reactor Geometry

Figure 3: Example Reactor Geometry. Source: Jacobs/ANSWERS

8



Neutron Flux & Criticality

Recall the neutron flux is the length travelled by neutrons per given
volume, per second. In criticality problems, the fundamental problem is
to compute the stationary flux Ψ and keff , which are the solutions to the
equation:

0 =
(−→
T +
−→
S
)

Ψ +
1
keff

−→
F Ψ.

Here:
−→
T Ψ is the change in flux due to transport
−→
S Ψ is the change in flux due to scatter
−→
F Ψ is the change in flux due to fission

Idea: How much do I need to reduce/increase fission offspring to get
critical system? If e.g. keff = 2, need to ‘kill’ half of fission offspring to
make the system critical.

9



Neutron Generational Process

Recall Emma’s talk. We define the Neutron Generational Process (NGP)
as the postion of (weighted) particles after n fission events. I.e. if
Xn =

∑Nn

i=1 w
(n)
i δ

(r
(n)
i ,v

(n)
i )

is the position of Nn particles after n fission
events, and m0 = δ(r ,v) is the initial particle configuration then we can
define:

ψn[g ](r , v) = Em0 [〈g ,Xn〉]

and ψn satisfies:

ψn[g ](r , v) =

∫ ∞
0

Qs
[←−
F ψn−1[g ]

]
(r , v) ds

where Q is the expectation semigroup corresponding to just
transport/scatter (←−T +

←−
S ).

10



Estimating keff using ‘naïve’ methods

Theorem (C.-Horton-Kyprianou-Villemonais)
Under relatively mild technical conditions, there exists a positive right
eigenfunction ϕ, a positive left eigenmeasure η and keff ∈ R+ such that
for all g ,

〈η, ψn[g ]〉 = keff〈η, g〉, resp. ψn[ϕ] = kn
effϕ.

In addition, for large n, we get

ψn[g ](r , v) ∼ kn
eff〈η, g〉ϕ(r , v).

‘Naïve’ MC algorithm:

• Start with a collection of particles at sites (r , v), run until M fission
generations. Average population size grows like keff , i.e.
keff ≈ M−1 log (#Particles alive at time t)

But. . . Computationally challenging. For large M, keff 6= 1, population
size is either exponentially large, or exponentially small! 11



Understanding the semi-group

Can look to understand what is happening at the level of the semi-group.

• Start with particles with law η0. Define a sequence of probability
measures of the form:

ηm[g ] :=
〈ηm−1, ψ1[g ]〉
〈ηm−1, ψ1[1]〉

I.e. start particles with law ηm−1 and run the process until after the
next fission event. Look at the normalised density.

• By the theorem, ηm converges to the left-eigenmeasure (η —
suitably normalised), and keff ≈ 〈ηm−1, ψ1[1]〉.

The operation which maps probability measures to probability measures,

µ 7→ Φ(µ), where Φ(µ)[g ] :=
〈µ, ψ1[g ]〉
〈µ, ψ1[1]〉

is known as the Boltzmann-Gibbs transformation. Formally, we can solve
our eigenvalue problem by keff = 〈η, ψ1[1]〉 where η = Φ(η), or
η = limn→∞Φn(η).

12



(Simplified) Power Iteration Algorithm

Aim: Compute keff .

Fix N, number of particles in each ‘batch’, M the number of generations.

1. Start with a collection of N particles approximating some
distribution: ηN0 =

∑N
i=1 δ(r (0)i ,v

(0)
i )

. Fix k0, an estimate of keff . Set
m = 0.

2. Simulate each particle from ηNm independently until it leaves the
system, or a fission event happens.

3. Where a fission event should happen with (on average) ν offspring,
instead generate ν/km offspring (on average).

4. Let Nm be the number of particles after fission.
5. Normalise the particle population to N particles by copying/deleting

randomly selected particles.
6. Set km+1 := km × N/Nm. m 7→ m + 1.
7. If m = M, STOP, else GOTO 2.

Return: Estimate keff ≈ 1
αM

∑M
m=(1−α)M km, α corresponds to burn-in

period. 13



keff Computations

0 50 100 150 200 250

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Figure 4: Estimates of keff in the Toy Reactor. Line denotes true value.

14



Comments on Power Iteration

1. Algorithm is a type of Interacting Particle System (IPS). The
normalisation step (∼ Boltzmann-Gibbs) induces interaction
between particles.

2. In most examples, convergence for keff is fast, although easy to
construct pathological examples.

3. Some analysis of convergence properties in the Nuclear Engineering
literature (e.g. Brissenden and Garlick (1986), Ueki (2002)), and
lots of experimental validation.

4. Particles often ‘stored’ when not selected. Use a ‘particle bank’ to
supply extra particles if we end up with too few.

15



Flux Calculations

In addition to the value of keff , often want to also compute stationary
flux Ψ.

Can do this using tallies: count up e.g. number of collisions happening in
a given space-direction-energy region. Tallies give an indication of e.g.
burn-up rates in fuel rods. Need to model fuel burn-up over time to
understand how reactor behaviour may change.

Difficulty: most particles spend time in ‘hot’ region of the reactor. Can
be hard to get accurate estimates of flux in the ‘cold’ regions.

One solution: variance reduction.

16



Variance Reduction for Criticality

Main idea: introduce an importance function h (cf Minmin’s talk). Bias
particles towards areas of greater weight.

Mathematically: introduce a change of measure to bias the paths towards
the desired area, but introduce a weight to ensure the ‘expectation’
remains unbiased.

‘Optimal’ choice of weighting function (Zero-variance scheme, e.g.
Christoforou & Hoogenboon, 2011) corresponds to the adjoint function,
given as ϕ above.

But: ϕ is hard to compute. Two approaches:

• Deterministic solver of a (discrete) approximation.

• Iterated Fission Probability (Nauchi and Kameyama, 2011)

17



Iterated Fission Probability

Recall we wanted to estimate ϕ, where ϕ is given by

ψn[ϕ] = kn
effϕ

Nauchi & Kameyama (2011) suggest defining the Iterated Fission
Probability:

IFP(r , v) = k0(r ,v)k
1
(r ,v) · · · k

L
(r ,v)

where k i
(r ,v) is the estimated multiplication factor in the power iteration

routing for particles started at (r , v). For L large, all estimates will be
keff .

Key point: IFP(r , v) ∝ ϕ(r , v) (approximately), but IFP can be estimated
by Monte Carlo!

18



Population Control, Russian Roulette and Splitting

General picture: simulate a particle process with weights. Have several
ways of managing process to control the particle numbers:

• Population Control: At end of batches (fission events), ‘normalise’
the population to keep a fixed number of particles at start of each
generation.

• Russian Roulette: If the weight of a particle gets too small, kill it
with given probability. Otherwise increase the weight.

• Splitting: If the weight of a particle gets too high, split the particle
into independent copies.

• Implicit Capture: Instead of allowing a particle to be absorbed,
reduce weight according to capture probability.

• Weight Windows: Fix levels to determine when to do
roulette/splitting.

19



Population Control, Russian Roulette and Splitting

All modify the branching/killing behaviour of the process while
maintaining a ‘fair-game’ or unbiasedness of the particles.

Fundamental trade-off: too much branching (= splitting) increases
correlation of particles. Too little branching increases variance (higher
weights). Too much killing (= roulette) increases correlation of particles,
too little gives too many small particles.

20



Big Picture: Variance reduction

• Lots of ways of constructing stochastic representations of the
underlying physical process ψn:

• Theoretical: h-transform methodology/many-to-one, etc.
• Practical: Iterated fission probability, population control, Russian

Roulette, etc.
• Essentially, all are different probabilistic representations of the same

Interacting Particle System. (c.f. Pierre’s talk)
• Lots of practical experience, but limited theoretical understanding of

how to choose the ‘best’ combination.
• In practice, lots of mystery constants, fixed based on experience.

• Large literature on Interacting Particle Systems, e.g also Sequential
Monte Carlo (SMC). Can we use this theory to better understand
these algorithms in practice?

• Better ways of parallelising interaction?
• Spine biasing? (C.f. Athreya (2000), Whitely & Lee (2014)).
• Better understanding of genealogical structure? Can this profide e.g.

clustering heuristics?

21



Advanced Monte Carlo Methods

Other advanced acceleration techniques are implemented in practice.
E.g.:

• Wielandt acceleration: introduce an overestimate of keff , k∗, say.
Solve a modified transport equation with new branching rate:

(
−→
T +
−→
S − 1

k∗
−→
F )Ψn+1 =

(
1
kn
− 1

k∗

)
−→
F Ψn

Idea: Effectively add in generations between ‘normal’ fission events.
Adjust estimate of keff appropriately. (Yamamoto & Miyoshi,
(2004)).

• Gives faster convergence to equilibrium!
• Superhistory Powering (Brissenden and Garlick (1986)). Idea: Run

each ‘stage’ for L generations of neutron transport with a given
choice of kn estimating the number of branching offspring.

• Reduces correlation between generational estimates of keff and flux.
May improve accuracy of standard deviation estimates.

• Not clear how to choose L.
22



Other Challenges in Criticality

• Clustering:
• See Eric’s talk! Particles in simulation tend to cluster due to

branching effects (mostly aphysical). Are there good ways of
adapting the simulation to account for this?

• Flux Convergence:
• In general, keff converges faster than the flux. If we want to measure

flux, need to know if ψn ≈ ψ∞.
• Current practice: Divide the space into regions, compute number of

particles in each bin. Compute Shannon Entropy,

Hsrc = −
∑

pi log(pi ),

where pi is the proportion of particles in box i . When H seems to
stabilise, source is in equilibrium!

• Simulation Parameters
• How to determine key parameters of simulation: e.g. burn-in time vs

total no of stages vs no particles per stage.

23



Source Convergence vs keff convergence

Figure 5: keff computation vs Shannon Entropy. From: Brown, F.B.,
PHYSOR, (2006)

24



Shielding Calculations

Second main class of problem is fixed source calculations, or shielding
calculations. Generally relevant in subcritical cases, where there is a
source of neutrons (e.g. nuclear waste), and we want to work out how
much radiation/what type will reach an external point.

Application examples:

• Waste management

• Space radiation: how much shielding is needed on a shuttle/space
station?

• Health applications: how well shielded is an operator of a proton
beam.

• Fusion reactors: how much shielding is necessary?

• etc.

25



Shielding basics

• Simple problem: compute flux at a detector. Equivalent to
probability of a path starting at the source reaching the detector.
Mathematically, want to solve flux equation of the form:

0 = (
−→
T +
−→
S )Ψ + Q

where Q is a source term representing particles coming into the
system. If e.g. R =

∫
D

Ψ(r , v)g(r , v) dr dv is the response at the
detector, we want to estimate R using Monte Carlo.

• Challenge 1: Sometimes desired paths are very rare. May need
∼ 10lots of simulations. Numerically too intensive!

• Challenge 2: In some applications, paths may not be that rare, but
e.g. may want to know ‘how’ paths reach the detector, i.e. flux
estimates of particles reaching detector that pass through a given
location, or sensitivity to e.g. material composition.

One solution: Use biasing, or h-transform to compute a new law of the
process. Use this to direct particles to the detector.

26



Biasing the NRW

Let (Rt ,Vt) be the NRW corresponding to the generator (
−→
T +
−→
S ) with

source Q. Fix a positive function h (Doob’s h function/importance
function) which is identically 1 on the detector. Then the process

Zt :=
h(Rt ,Vt)

h(r , v)
exp

{
−
∫ t

0

(
←−
T +
←−
S )h

h
(Rs ,Vs) ds

}
is a positive martingale with Z0 = 1.

If we suppose a point source and detector, let τD be the first hitting time
of the detector, and τ∂ the absorption time:

P (τD < τ∂ |(R0,V0) = (r , v))

= h(r , v)E

[
ZτD exp

{∫ τD

0

(
←−
T +
←−
S )h

h
(Rs ,Vs) ds

}
1τD<τ∂ |(R0,V0) = (r , v)

]

= h(r , v)Eh

[
exp

{∫ τD

0

(
←−
T +
←−
S )h

h
(Rs ,Vs) ds

}
1τD<τ∂ |(R0,V0) = (r , v)

]
Now Ph is the new probability given by the change of measure Z . 27



Adjoint flux

Now we need to compute

Eh

[
exp

{∫ τD

0

(
←−
T +
←−
S )h

h
(Rs ,Vs) ds

}
1τD<τ∂ |(R0,V0) = (r , v)

]

using the new probability measure. Still a hard computation unless we
can find h such that:

(
←−
T +
←−
S )h = 0

In which case h is called the adjoint flux.

(It’s exactly the function ϕ we constructed above, in the case where
←−
F ≡ 0).

NB: Can compute dynamics of process under Ph: essentially, introduce
altered flight length, scattering distribution depending on the function h.

28



Adjoint flux approximation I

Can’t generally compute adjoint flux explicitly, but several alternatives
exist: CADIS methodology (Haghighat & Wagner, 2003) is deterministic
solver. E.g.

Figure 6: Importance map for a Bunker created by IDT. From Nowak et al.
(2019).

29



Adjoint flux approximation II

An alternative approach is a Response Matrix approach (Leppännen,
2019). Discretises space and uses Monte Carlo to approximate the
‘Markov Chain’ on the discretised space. Computes adjoint weights for
this chain.

Figure 7: Response Matrix computation of adjoint flux for a storage cask.
From Leppännen (2019).

30



Shielding: Adaptive Multilevel Splitting

See Tony’s talk!

31



Beyond Criticality and Shielding!

Another significant challenge for MC comes in Dynamic Monte Carlo.
E.g. Sjenitzer & Hoogenboom (2011), Faucher et al. (2018). Here we
want to simulate the behaviour of a reactor over the timescale of a real
event, e.g. inserting/removing a control rod, or reactor start up.

• Average generation time in a
reactor ∼ 10−5s, while neutrons
can also create a precursor during a
fission event. Precursors decay over
timescales ∼ 101s.

• In normal criticality calculations,
delayed neutrons are not a problem
— by stationarity, can assume that
the decay happens immediately.

• Storing all precursor neutrons
during MC is not feasible: for each
active neutron, ∼ 104 precursors.

Figure 8: Flux in a reactor
during removal/insertion of a
control rod. From Faucher et
al. (2018).

32



Summary

• Monte Carlo methods are pervasive in neutron transport modelling.

• Lots of challenging problems and interesting methods. Number of
existing software implementations.

• Most successful algorithms rely on Interacting Particle Models, along
with a suite of variance reduction and other tricks. . .

• . . . but there seems to be relatively little understood about the
theoretical properties and advances in the Interacting particles
literature.

• Lots of interesting challenges for mathematicians from a range of
different communities!

33



Useful References

Some useful introductions to Monte Carlo for the NTE:

• Forrest Brown: Monte Carlo Techniques for Nuclear Systems -
Theory Lectures. Lecture slides for a course at UNM. (2016)

• Lux and Koblinger: Monte Carlo Particle Transport Methods:
Neutron and Photon Calculations. Comprehensive book — standard
reference. (1991)

34


