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Abstract This paper continues our treatment of the Neutron
Transport Equation (NTE) building on the work in [7], [18] and
[16], which describes the flux of neutrons through inhomoge-
neous fissile medium. Our aim is to analyse existing and novel
Monte-Carlo (MC) algorithms, aimed at simulating the lead
eigenvalue associated with the underlying model. This quantity
is of principal importance in the nuclear regulatory industry
for which the NTE must be solved on complicated inhomoge-
nous domains corresponding to nuclear reactor cores, irradiative
hospital equipment, food irradiation equipment and so on. We
include a complexity analysis of such MC algorithms, noting
that no such undertaking has previously appeared in the litera-
ture. The new MC algorithms offer a variety of advantages and
disadvantages of accuracy vs cost, as well as the possibility of
more convenient computational parallelisation.

1. Introduction: The Neutron Transport Equation. In this paper, we continue the
stochastic analysis of the neutron transport equation (NTE), cf. [18, 16, 7], but now focusing
mainly on Monte-Carlo methods. We begin in this first section with a review of the classical
and recent contributions to the mathematical framework of the NTE, out of which we will
build completely new Monte-Carlo algorithms in the subsequent sections.

We recall that the NTE describes the flux of neutrons across a planar cross-section in an
inhomogeneous fissile medium (typically measured is number of neutrons per cm2 per second)
when the process of nuclear fission is active. Neutron flux is described as a function of time,
t, Euclidian location, r, neutron velocity, υ and neutron energy E. It is not uncommon
in the physics literature, as indeed we shall do here, to assume that energy is a function
of velocity, thereby reducing the number of variables by one. This allows us to describe the
dependency of flux more simply in terms of time and, what we call, the configuration variables
(r, v) ∈ D × V where D ⊆ R3 is a non-empty, open, smooth, bounded and convex domain
and V is the velocity space, which can now be taken to be V = {υ ∈ R3 : υmin ≤ |υ| ≤ υmax},
where 0 < υmin < υmax <∞.

Whilst the NTE is usually stated in the applied mathematics and physics literature in its
forwards form, we introduce it here in its backwards form. A fuller description of the rela-
tionship between the two is given in the accompanying papers [7] and [18]. The backwards
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NTE is given by

∂

∂t
ψt(r, υ) = υ · ∇ψt(r, υ)− σ(r, υ)ψt(r, υ)

+ σs(r, υ)

∫
V

ψt(r, υ
′)πs(r, υ, υ

′)dυ′ + σf(r, υ)

∫
V

ψt(r, υ
′)πf(r, υ, υ

′)dυ′,(1.1)

where the different components (or cross-sections as they are known in the nuclear physics
literature) have the following interpretation:

σs(r, υ) : the rate at which scattering occurs from incoming velocity υ,
σf(r, υ) : the rate at which fission occurs from incoming velocity υ,
σ(r, υ) : the sum of the rates σf + σs and is known as the total cross section,

πs(r, υ, υ
′)dυ′ : the scattering yield at velocity υ′ from incoming velocity υ,

satisfying
∫
V
πs(r, υ, υ

′)dυ′ = 1, and
πf(r, υ, υ

′)dυ′ : the neutron yield at velocity υ′ from fission with incoming velocity υ,
satisfying mf(r, υ) :=

∫
V
πf(r, υ, υ

′)dυ′ <∞.

Note that scattering is the physical process that occurs when a neutron comes into close
proximity with an atomic nucleus causing a change in velocity. A justification of the structure
of the backwards (and indeed the forwards) NTE form from the physics of nuclear scattering
and fission is given in a number of classical texts e.g. [9] and [26], see also [7] for a multi-
species treatment.

It is also usual to assume the additional boundary conditions

(1.2)


ψ0(r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

ψt(r, υ) = 0 for r ∈ ∂D if υ · nr > 0.

where nr is the outward facing normal of D at r ∈ ∂D and g : D×V → [0,∞) is a bounded,
measurable function which we will later assume has some additional properties. Roughly
speaking, this means that neutrons at the boundary which are travelling in the direction of
the exterior of the domain are lost to the system. The second of the two conditions in (1.2)
is often written ψt|∂D+ = 0, where ∂D+ := {(r, υ) ∈ D × V : r ∈ ∂D if υ · nr > 0}.
For mathematical reasons, in the forthcoming analysis, we will assume that

(H1): Cross-sections σs, σf, πs and πf are uniformly bounded away from infinity.

(H2): The mixed cross-sections satisfy

inf
r∈D,υ,υ′∈V

σs(r, υ)πs(r, υ, υ
′) + σf(r, υ)πf(r, υ, υ

′) > 0.

(H3): There exists an open ball B, compactly embedded in D, such that

inf
r∈B,υ,υ′∈V

σf(r, υ)πf(r, υ, υ
′) > 0.
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The maximum number of neutrons that can be emitted during a fission event with positive
probability (for example in an environment where the heaviest nucleus is Uranium-235, there
are at most 143 neutrons that can be released in a fission event, albeit, in reality it is more
likely that 2 or 3 are released). We will thus occasionally work with:

(H4): Fission offspring are bounded in number by the constant nmax > 1.

In particular this means that supr∈D,υ∈V mf(r, υ) ≤ nmax.

2. Neutron Transport Equation and its spectral asymptotics. It turns out that
equation (1.1) is ill-defined unless considered in an appropriate sense. There are in fact two
ways this can be done. The first approach is to formulate the problem as an abstract Cauchy
problem (ACP) in an appropriate Banach space; see e.g. [8, 9], which is typically the approach
taken in the applied mathematics literature. The second approach is to consider the mild
form of the equation. This approach has seen somewhat less attention, and lends itself better
to Monte-Carlo methods than the ACP. We focus on the latter as it is naturally the more
appropriate setting for Monte-Carlo considerations.

In order to present the so-called mild form of (1.1), let us momentarily introduce some
more notation: the deterministic evolution Ut[g](r, υ) = g(r + υt, υ)1{t<κDr,υ}, t ≥ 0, where
κDr,υ := inf{t > 0 : r + υt 6∈ D}, represents the advection semigroup associated with a single
neutron travelling at velocity υ from r, killed on exit from D.

Lemma 2.1 ([7]). Under (H1) and (H2), for g ∈ L+
∞(D×V ), there exist constants C1, C2 >

0 such that ψt[g], as given in (3.3), is uniformly bounded by C1 exp(C2t), for all t ≥ 0.
Moreover, (ψt[g], t ≥ 0) is the unique solution, which is bounded in time, to the so-called
mild equation (also called a Duhamel solution in the PDE literature):

(2.1) ψt[g] = Ut[g] +

∫ t

0

Us[(S + F)ψt−s[g]]ds, t ≥ 0,

for which (1.2) holds.

In the above, S is the corresponding scattering operator and F the fission operator, see [7] for
details. Theorem 5.3 in [7] also gives the leading order behaviour of the mild solution NTE,
mirroring similar results for the setting that NTE is cited as an abstract Cauchy problem
(c.f. Theorem 7.1 in [18] and [26]); for convenience we reproduce it here.

Theorem 2.2. Suppose that (H1) and (H2) hold. Then, for the semigroup (ψt, t ≥ 0)
identified by (2.1), there exists a λ∗ ∈ R, a positive1 right eigenfunction ϕ ∈ L+

∞(D × V )
and a left eigenmeasure which is absolutely continuous with respect to Lebesgue measure on
D × V with density ϕ̃ ∈ L+

∞(D × V ), both having associated eigenvalue eλ∗t, and such that
1To be precise, by a positive eigenfunction, we mean a mapping from D × V → (0,∞). This does not

prevent it being valued zero on ∂D, as D is an open bounded, convex domain.
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ϕ (resp. ϕ̃) is uniformly (resp. a.e. uniformly) bounded away from zero on each compactly
embedded subset of D × V . In particular, for all g ∈ L+

∞(D × V ),

(2.2) 〈ϕ̃, ψt[g]〉 = eλ∗t〈ϕ̃, g〉 (resp. ψt[ϕ] = eλ∗tϕ) t ≥ 0.

Moreover, there exists ε > 0 such that

(2.3) sup
g∈L+

∞(D×V ):‖g‖∞≤1

∥∥e−λ∗tϕ−1ψt[g]− 〈ϕ̃, g〉
∥∥
∞ = O(e−εt) as t→∞.

Figure 1. The geometry of a nuclear reactor core rep-
resenting a physical domain D, on to which the differ-
ent cross-sectional values of σs, σf, πs, πf are mapped
as numerical values.

The left-eigenfunction ϕ̃ is called the im-
portance map and offers a quasi-stationary
distribution of radioactive activity (unless
λ∗ = 0, in which case it is a stationary pro-
file). We shall refer to the right-eigenfunction
as the heat map and gives a principal rep-
resentation of flux which grows at rate λ∗.
In modern nuclear reactor design and safety
regulation, it is usually the case that vir-
tual reactor models such as the one seen
in Figure 2 are designed such that λ∗ = 0
(in fact, slightly above zero2) and the be-
haviour of ϕ̃ and ϕ within spatial domains
on the human scale remain within regulated
levels. Existing physics and engineering lit-
erature with focus on applications in the nu-
clear regulation industry, has largely been
concerned with different numerical methods
for estimating the value of the eigenvalue λ∗ as well as the eigenfunction ϕ and eigen-
measure ϕ̃(r, υ)drdυ. Further discussion on this aspect of the NTE can be found in
[18, 23, 10, 28, 19, 25, 26, 27, 2, 3, 8, 9]

In this article we look at various existing and new Monte-Carlo estimates of the principal
quantity λ∗, which opens the door to the much more complicated problem of numerically
constructing the eigenfunctions ϕ and ϕ̃. In particular, we are interested in how Monte-
Carlo methods based on the recently introduced so-called ‘many-to-one’ representation of
the solution to (2.1) compare to those based on the classical representation of the underlying
physical process. We will exploit the probabilistic perspective that has only recently been
developed in the accompanying papers [7, 18, 16]. In particular, we will use the probabilistic
perspective to build up complexity analysis of each of the Monte-Carlo methods that we
consider; considering the balance of computational cost against accuracy.

In the next section we consider the stochastic representation of solutions to (2.1). We develop
two principal identities for (ψt, t ≥ 0), firstly, in terms of the Neutron Branching Process

2As can be seen from [16], reproduced in Theorem 3.1 below, at criticality, the underlying process of fission
will die out with probability one, despite the semigroup (ψt, t ≥ 0) having an asymptotic limit.
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(NBP) and, secondly, in terms of the Neutron Random Walk (NRW). In Section 4 we show
how classical methods use the NBP representation of to simulate the lead eigenvalue λ∗,
as well as the new NRW representation of (ψt, t ≥ 0). In Sections 5 and 6, we provide a
complexity analysis of the two respective methods, which we believe does not currently exist
in the literature. From here, a mixture of conclusions can be drawn concerning the relative
benefits of the two methods. In Section 7 we show how the NRW Monte-Carlo method can
be adapted using a method of Doob h-transforms, which is a stochastic process version of the
method of importance sampling for random variables. This leads to the so-called h-NRW. In
Section 8 we consider the complexity of the natural Monte-Carlo method associated with the
h-NRW. Additionally we introduce a candidate class of functions to play the role of h, called
Urts functions. Finally, in Section 9 we discuss the relative benefits of each method and look
at some numerical experiments. Almost all of the proofs are deferred to the Appendix.

3. Stochastic representations of the NTE. To understand better why the mild equa-
tion (2.1) is indeed a suitable representation of the NTE, in particular for the purpose of
Monte-Carlo simulations, we need to understand how it is related to certain stochastic pro-
cesses. In fact there are two important representations in terms of stochastic processes we
summarise here.

3.1. The physical process. Consider a neutron branching process (NBP), which at time t ≥ 0
is represented by a configuration of particles which are specified via their physical location
and velocity in D×V , say {(ri(t), υi(t)) : i = 1, . . . , Nt}, where Nt is the number of particles
alive at time t ≥ 0. In order to describe the process, we will represent it as a process in the
space of the random counting measures

Xt(A) =
Nt∑
i=1

δ(ri(t),υi(t))(A), A ∈ B(D × V ), t ≥ 0,

where δ is the Dirac measure, defined on B(D × V ), the Borel subsets of D × V . The
evolution of (Xt, t ≥ 0) is a stochastic process valued in the space of atomic measures
M(D × V ) := {∑n

i=1δ(ri,υi) : n ∈ N, (ri, υi) ∈ D × V, i = 1, · · · , n} which evolves randomly
as follows.

A particle positioned at r with velocity υ will continue to move along the trajectory r + υt,
until one of the following things happens.

(i) The particle leaves the physical domain D, in which case it is instantaneously killed.
(ii) Independently of all other neutrons, a scattering event occurs when a neutron comes in

close proximity to an atomic nucleus and, accordingly, makes an instantaneous change
of velocity. For a neutron in the system with position and velocity (r, υ), if we write
Ts for the random time that scattering may occur, then independently of any other
physical event that may affect the neutron, Pr(Ts > t) = exp{−

∫ t
0
σs(r+ υs, υ)ds}, for

t ≥ 0.

When scattering occurs at space-velocity (r, υ), the new velocity is selected in V inde-
pendently with probability πs(r, υ, υ′)dυ′.
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(iii) Independently of all other neutrons, a fission event occurs when a neutron smashes into
an atomic nucleus. For a neutron in the system with initial position and velocity (r, υ),
if we write Tf for the random time that scattering may occur, then independently of
any other physical event that may affect the neutron, Pr(Tf > t) = exp{−

∫ t
0
σf(r +

υs, υ)ds}, for t ≥ 0.

When fission occurs, the smashing of the atomic nucleus produces lower mass isotopes
and releases a random number of neutrons, say N ≥ 0, which are ejected from the
point of impact with randomly distributed, and possibly correlated, velocities, say
{υi : i = 1, · · · , N}. The outgoing velocities are described by the atomic random
measure

(3.1) Z(A) :=
N∑
i=1

δυi(A), A ∈ B(V ).

When fission occurs at location r ∈ Rd from a particle with incoming velocity υ ∈ V ,
we denote by P(r,υ) the law of Z. The probabilities P(r,υ) are such that, for υ′ ∈ V , for
bounded and measurable g : V → [0,∞),∫

V

g(υ′)πf(r, v, υ
′)dυ′ = E(r,υ)

[∫
V

g(υ′)Z(dυ′)
]

=: E(r,υ)[〈g,Z〉].(3.2)

Note the possibility that Pr(N = 0) > 0, which will be tantamount to neutron capture
(that is, where a neutron slams into a nucleus but no fission results and the neutron is
absorbed into the nucleus).

In essence, one may think of the processX := (Xt, t ≥ 0) as a typed spatial Markov branching
process, where the type of each particle is the velocity υ ∈ V and the underlying Markov
motion is nothing more than movement in a straight line at velocity υ.

Remark 3.1. The NBP is thus parameterised by the quantities σs, πs, σf and the family of
measures P = (P(r,υ), r ∈ D, υ ∈ V ) and accordingly we refer to it as a (σs, πs, σf,P)-NBP.
It is associated to the NTE via the relation (3.2), however this association does not uniquely
identify the NBP. Said another way, the quantities σs, πs, σf, πf in the NTE do not uniquely
identify an underlying NBP. See Remark 2.1 of [18].

Later on, we will see that it is possible to simulate a NBP with only the parameters
σs, πs, σf, πf given. Such processes are not uniquely determined, however the aforementioned
cross-sections are sufficient to identify at least one NBP which is associated to the NTE
with those cross-sections. In that case, we will abuse our terminology and refer to it as a
(σs, πs, σf, πf)-NBP. �

Write Pδ(r,υ) for the the law of X when issued from a single particle with space-velocity
configuration (r, υ) ∈ D × V . More generally, for µ ∈ M(D × V ), we understand Pµ :=
Pδ(r1,υ1) ⊗ · · · ⊗ Pδ(rn,υn)

when µ =
∑n

i=1δ(ri,υi). In other words, the process X when issued
from initial configuration µ , is equivalent to issuing n independent copies of X, each with
configuration (ri, υi), i = 1, · · · , n.
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Like all spatial Markov branching processes, (X,P), where P := (Pµ, µ ∈ M(D × V )), re-
spects the Markov branching property with respect to the filtration Ft := σ((ri(s), υi(s)) :
i = 1, · · · , Ns, s ≤ t), t ≥ 0. That is to say, for all bounded and measurable g : D×V → [0,∞)
and µ ∈M(D×V ) written µ =

∑n
i=1 δ(ri,υi), we have Eµ[

∏Nt
i=1 g(ri(t), υi(t))] =

∏n
i=1 ut[g](ri, υi),

for t ≥ 0, ri ∈ D, υi ∈ V, where ut[g](r, υ) := Eδ(r,υ) [
∏Nt

i=1 g(ri(t), υi(t))].

What is of particular interest to us in the context of the NTE is what we call the expectation
semigroup of the neutron branching process. More precisely, and with pre-emptive notation,
we are interested in

(3.3) ψt[g](r, υ) := Eδ(r,υ) [〈g,Xt〉], t ≥ 0, r ∈ D̄, υ ∈ V,

for g ∈ L+
∞(D × V ), the space of non-negative uniformly bounded measurable functions on

D × V . Here we have made a slight abuse of notation (see 〈·, ·〉 as it appears in (3.2)) and
written 〈g,Xt〉 to mean

∫
D×V g(r, υ)Xt(dr, dυ).

To see why (ψt, t ≥ 0) deserves the name of expectation semigroup, it is a straightforward
exercise with the help of the Markov branching property to show that

(3.4) ψt+s[g](r, υ) = ψt[ψs[g]](r, υ) s, t ≥ 0.

The connection of the expectation semigroup (3.3) with the NTE (1.1) was explored in the
recent article [7, 18] (see also older work in [8, 22]). In contrast to the evolution of the
expectation semigroup associated to the linear functional 〈g,Xt〉, t ≥ 0, in (3.3), [18, 16] also
considered the stochastic evolution of the latter.

Theorem 3.1 ([18, 16]). For all g ∈ L+
∞(D×V ) such that, up to a multiplicative constant,

g ≤ ϕ, under the assumptions of Theorem 2.2, by normalising ϕ, ϕ̃ such that 〈ϕ, ϕ̃〉 = 1, we
have

lim
t→∞

e−λ∗t
〈g,Xt〉
〈ϕ, µ〉 = 〈g, ϕ̃〉W∞.

Pµ-almost surely, for µ ∈ M(D × V ), where W∞ is the almost sure limit of the martingale
(Wt, t ≥ 0) that is formed by taking g = ϕ. Moreover, W∞ = 0 almost surely if and only if
λ∗ ≤ 0, otherwise (Wt, t ≥ 0) is L2(Pµ)-convergent with Eµ[W∞] = 1 and Eµ[W 2

∞] <∞.

3.2. The many-to-one representation. There is a second stochastic representation of the
unique solution to (2.1). In order to describe it, we need to introduce the notion of a neutron
random walk (NRW).

A NRW on D, which is defined by its scatter rates, α(r, υ), r ∈ D, υ ∈ V , and scatter
probability densities π(r, υ, υ′), r ∈ D, υ, υ′ ∈ V such that

∫
V
π(r, υ, υ′)dυ′ = 1 for all

r ∈ D, υ ∈ V . Simply, when issued with a velocity υ, the NRW will propagate linearly
with that velocity until either it exits the domain D, in which case it is killed, or at the
random time Ts a scattering occurs, where Pr(Ts > t) = exp{−

∫ t
0
α(r + υt, υ)ds}, for t ≥ 0.

When the scattering event occurs in position-velocity configuration (r, υ), a new velocity υ′
is selected with probability π(r, υ, υ′)dυ′. If we denote by (R,Υ) = ((Rt,Υt), t ≥ 0), the
position-velocity of the resulting continuous-time random walk on D×V with an additional
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cemetery state {†} for when it leaves the domain D, then it is easy to show that (R,Υ) is a
Markov process. (Note, neither R nor Υ alone is Markovian.) We call the process (R,Υ) an
απ-NRW. It is worth remarking that when απ is given as a single rate function, the density
π, and hence the rate α, is uniquely identified by normalising of the given product form απ
to make it a probability distribution.

To describe the second stochastic representation of (2.1), we shall take

α(r, υ)π(r, υ, υ′) = σs(r, υ)πs(r, υ, υ
′) + σf(r, υ)πf(r, υ, υ

′) r ∈ D, υ, υ′ ∈ V.(3.5)

We also need to define

(3.6) β(r, υ) = σf(r, υ)

(∫
V

πf(r, υ, υ
′)dυ′ − 1

)
≥ − sup

r∈D,υ∈V
σf(r, υ) > −∞,

where the uniform lower bound is due to assumption (H1). The following result was estab-
lished in Lemma 6.1 of [7].

Lemma 3.2 (Many-to-one formula, [7]). Under the assumptions of Lemma 2.1, we have the
second representation

(3.7) ψt[g](r, υ) = E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt,Υt)1(t<τD)

]
, t ≥ 0, r ∈ D, υ ∈ V,

where τD = inf{t > 0 : Rt 6∈ D} and P(r,v) for the law of the απ-NRW starting from a single
neutron with configuration (r, υ).

Define β := supr∈D,υ∈V β(r, υ) and note that it is uniformly bounded. Let us now introduce
P† := (P†t , t ≥ 0) for the expectation semigroup of the απ-neutron random walk with potential
β, such as is represented by the semigroup (3.7), but now killed at rate (β−β). More precisely,
for g ∈ L+

∞(D × V ),

P†t [g](r, υ) = ψt[g](r, υ)e−βt

= E(r,υ)

[
e
∫ t
0 (β(Rs,Υs)−β)dsg(Rt,Υt)1(t<τD)

]
= E(r,υ)

[
g(Rt,Υt)1(t<k)

]
=: E†(r,υ) [g(Rt,Υt)] , t ≥ 0, r ∈ D, υ ∈ V,(3.8)

where

k = inf{t > 0 :

∫ t

0

(β − β(Rs,Υs))ds > e} ∧ τD,

and e is an independent exponentially distributed random variable with mean 1. We will
henceforth write P† := (P†(r,υ), r ∈ D̄, υ ∈ V ) for the associated (sub)probability measures
associated to E†(r,υ), r ∈ D̄, υ ∈ V . The family P† now defines a Markov family of probability
measures on the path space of the neutron random walk with cemetery state {†}; note, paths
are sent to the cemetery state either when hitting the boundary ∂D or the clock associated
to the killing rate β − β rings.
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Remark 3.2. It is worthy of discussion that the proof of Theorem 2.2 in [18] uses the rep-
resentation (3.8). Moreover, examination of the proof there reveals that, despite the setting
of (3.8) forcing a relationship between the value β and the cross sections in the NTE, this is
not needed in the proof. The only requirement is that β is uniformly bounded from above.
We will use this fact later on in this paper. �

4. Basic Monte-Carlo. In Appendix A we outline two algorithmic approaches (Algo-
rithms A.1 and A.2) for the Monte-Carlo simulation of an απ-NRW and a (σs, πs, σf, πf)-
NBP, which were denoted ((rt, vt), t ≤ tend) and (Xt, t ≥ 0), respectively. With either of
these simulators in hand, it is possible to build simple statistical estimators of the eigen-triple
(λ∗, ϕ, ϕ̃) based on certain easy limiting procedures that can be observed from Theorem 2.2.
For practical reasons noted below, we will in fact focus on estimation of eλ∗ , rather than λ∗
directly.

Below we introduce such statistical estimators. Notationally we use Ψk[g](t, r, υ) to mean
one of two statistics that can be built from either a NBP or NRW simulator, where t ≥ 0,
r ∈ D and υ ∈ V . In the case of NBP, we understand that either

(4.1) Ψk[g](t, r, υ) = Ψbr
k [g](t, r, υ) =

1

k

k∑
i=1

〈g,X i
t 〉,

where X i are independent simulations of the NBP described in Algorithm A.2, or

(4.2) Ψk[g](t, r, υ) = Ψrw
k [g](t, r, υ) =

1

k

k∑
i=1

e
∫ t
0 β(ris,vis)dsg(rit, v

i
t)1(t<tiend),

where ((rit, v
i
t), t ≤ tiend) are independent simulations of the απ-NRW described in Algorithm

A.1.

4.1. Estimating the lead eigenvalue. Taking account of Theorem 2.2, Algorithm A.1 can be
used to make the following estimates of λ∗, ϕ and ϕ̃, we have in both the NBP and NRW
setting that3

(4.3) lim
t→∞

lim
k→∞

(Ψk[g](t, r, υ))
1
t = eλ∗ ,

where the limit holds for any (r, υ) ∈ D × V and bounded measurable g : D × V → [0,∞).
Moreover, in the branching setting, if it is a priori known that λ∗ > 0, then thanks to
Theorem 3.1, if we take limits in t first, there is no need to involve cycles in the Monte-Carlo

3In the case where λ∗ is estimated directly, the corresponding estimate would be

lim
t→∞

lim
k→∞

1

t
log Ψk[g](t, r, υ) = λ∗,

however this estimate has the undesirable numerical property that for large k, t, there is a positive probability
that Ψk[g](t, r, υ) = 0, and this will cause problems when taking expectations.
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approach since (conditional on survival of the branching process, which is an event of positive
probability)

(4.4) lim
t→∞

(Ψk[g](t, r, υ))
1
t = eλ∗ ,

almost surely. Either way, we can base a Monte-Carlo approach on the fact that

(Ψk[g](t, r, υ))
1
t ≈ eλ∗

for k, t sufficiently large and an arbitrary initial configuration r ∈ D, υ ∈ V .

4.2. Estimating the lead eigenfunctions. Again, thanks to Theorem 2.2 and Algorithm A.1,
for (r, υ), (r0, υ0) ∈ D × V , in both the NBP and NRW setting we have

lim
t→∞

lim
k→∞

Ψk[g](t, r, υ)

Ψk[g](t, r0, υ0)
=

ϕ(r, υ)

ϕ(r0, υ0)
,

thereby giving an estimate for ϕ at (r, υ) up to a multiplicative constant (consistent for all
(r, υ) by keeping (r0, υ0) fixed).

Finally, for fixed (r, υ) ∈ D × V and bounded measurable g : D × V → [0,∞), if we assume
without loss of generality that 〈ϕ̃, 1〉 = 1, then

(4.5) lim
t→∞

lim
k→∞

Ψk[g](t, r, υ)

Ψk[1](t, r, υ)
= 〈g, ϕ̃〉,

for t and k sufficiently large, which gives an estimate for ϕ̃ at (r, υ) up to a multiplicative
constant. In the setting of the NBP we can again take advantage of Theorem 3.1 and note
that, when λ∗ > 0 and extinction does not occur,

(4.6) lim
t→∞

Ψbr
1 [g](t, r, υ)

Ψbr
1 [1](t, r, υ)

= 〈g, ϕ̃〉.

4.3. Occupation measure eigenfunction estimates at criticality. In the setting that it is a
priori known that λ∗ = 0, another approach to estimating ϕ, and more importantly ϕ̃,
involves the use of an occupation measure. Note that, on the one hand, for g ∈ L+

∞(D× V ),
thanks to Theorem 2.2, it is easy to show that

lim
t→∞

1

t

∫ t

0

ψs[g](r, υ)ds = 〈ϕ̃, g〉ϕ(r, υ).

This implies that one can build an alternative estimate of ϕ̃ by monitoring the empirical
occupation of simulations. Specifically, fixing r0 ∈ D, υ0 ∈ V and g ∈ L+

∞(D × V ),

(4.7) lim
t→∞

lim
k→∞

lim
M→∞

1

tM

M∑
m=1

Ψk[g](mt/M, r0, υ0) = 〈ϕ̃, g〉ϕ(r0, υ0).

10



The reader will note that, if we take for example g(r, υ) = gD0,V0(r, υ) = 1(r∈D0,υ∈V0), where
D0 is a small region of D and V0 a small region of V , the quantity

1

tM

M∑
m=1

Ψk[gD0,V0 ](mt/M, r, υ)

(for sufficiently large M,k, t) provides nothing more than a normalised histogram of occupa-
tion of the path of the NBP or NRW.

Strictly speaking, a fresh set of Monte-Carlo cycles needs to be performed for each ‘pixel
pair’ (D0, V0). Taking a histogram of occupation across all pixel pairs means that the Monte-
Carlo simulations on each pixel pair site are highly corollated. For example, in the setting of
the NRW, high occupancy in one region of D× V will necessarily imply lower occupancy in
other regions of D × V . Hence, the natural estimator induced by (4.7) has some immediate
deficiencies. On the other hand, for the NBP, although the occupancies of individual pixel
pairs are highly corollated, the phenomenon of branching ensures that the the underling
stochastic process explores the space D×V relatively well over multiple Monte-Carlo cycles.

Figure 2 gives an example of the occupation histogram given by g(r, υ) = 1(r∈D0,υ∈V ) where
D0 varies over small subsets of D. In this example, D is a square, with 4 circular ‘fuel rods’
where the fissile rates are substantially higher than in the surrounding domain. We also give
a second example with g(r, υ) = 1(r∈D0,υ∈V ′), where D0 varies over small subsets of D but
V ′ ⊂ V is a subset of velocities of V (hence the apparent smear of ‘heat’ in a particular
direction in the figure).

Figure 2. Estimates of ϕ̃(r, V ) :=
∫
V
ϕ̃(r, υ′)dυ′ represented as a ‘heat map’ (left), ϕ̃(r, V ′) :=

∫
V ′ ϕ̃(r, υ′)dυ′

for V ′ ⊆ V represented as a ‘heat map’ (middle) and some of the contributing underlying branching neutron
particles (right). The domain D is rectangular and the cross sections are constant except on four circular
domains, where fissile rates are greater.

5. Complexity Analysis of Basic NBP Monte-Carlo. We turn our attention now
to analysing the complexity of some of the algorithms presented in the previous section
in the setting that the chosen stochastic process is the physical NBP. Our principal focus
will be on the first one, which estimates λ∗. Our interest lies in the rate of convergence of
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the Monte-Carlo estimates from the previous section and the computational cost associated
therewith.
We start by looking at the mean-squared convergence of the Monte-Carlo estimator suggested
by (4.3). Its proof is given in Appendix D.

Theorem 5.1 (NBPMonte-Carlo convergence for λ∗). There exist constants κ[i] := κ[i](g, r, υ)
such that the following estimates hold for all t > 0 and k ≥ 1:

(i) If λ∗ = 0, then

Eδ(r,υ)
[( (

Ψbr
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ κ[1]t

k
+
κ[0]

t2
.

(ii) If λ∗ > 0, then

Eδ(r,υ)
[( (

Ψbr
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ κ[2]

k
+
κ[0]

t2
.

(iii) If λ∗ < 0, then

Eδ(r,υ)
[( (

Ψbr
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ κ[3]e

−λ∗t

k
+
κ[0]

t2
.

Let C[0] := 〈ϕ̃, g〉ϕ(r, υ), and C[i] are given in Lemma C.1. If C[0] 6= 1, the inequalities hold
for all t, k sufficiently large when the constants are chosen, for any η > 0, to be:

κ[0] := 2
[
log
(
C[0]

)
eλ∗
]2

+ η

κ[i] := 2C[i]C
−2
[0] + η i = 1, 2, 3.

In particular, this implies that for each (r, υ) and g ∈ L+
∞(D × V ), there exists a sequence

k(t) increasing in t such that k(t)→∞ and such that

(5.1) lim
t→∞

Eδ(r,υ)
[( (

Ψbr
k(t)[g](t, r, υ)

)1/t − eλ∗
)2]

= 0

and the Monte-Carlo estimator suggested by (4.3) is asymptotically unbiased with mean-
squared convergence.

The above estimates suggest that in the critical and sub-critical cases there is a trade-off
between increasing t to reduce the second term on the right-hand side of the inequality, and
an increasing effect on the first term. By also increasing k, it is possible to make the error
sufficiently small.

We also want to understand the required computational cost for the associated degree of
accuracy in the preceding theorem. To compute the cost of the simulation, we need an
indexation for all the particles which have been present in the system. We can identify indi-
vidual neutrons according to their genealogies. A neutron in the n-th generation is labelled
u = (i0, · · · , in), meaning it is the in-th indexed offspring of the in−1-th indexed offspring of
. . . of the i0-th individual in the initial configuration.

12



Write U for the set of all possible labels. For each u ∈ U , write (r
(u)
t , υ

(u)
t )bu≤t<du for the

path of the particle u, where 0 ≤ bu < du ≤ ∞ stand for the birth and death times of u.
Recall that r(u) is piecewise linear; write bu = t

(u)
0 < t

(u)
1 < · · · for the jump times of υ(u)

t (the
moments when scatterings occur). For f, g ∈ L+

∞(D × V ), define the cost per simulation by

Ct[f, g] :=
∑
u∈U

g
(
r

(u)
bu
, υ

(u)
bu

)
1(bu≤t) +

∑
u∈U

∑
i≥1

f
(
r

(u)

t
(u)
i

, υ
(u)

t
(u)
i

)
1

(bu≤t,t(u)i ≤t)
,

for t ≥ 0.

The major part of the MC simulation suggested by (4.3) consists of simulating the variables
relevant to the scattering and fission events. The random functional (Ct[f, g](t), t ≥ 0),
with an appropriate choice of f, g, can be then used to evaluate the cost (if we assume the
computational effort of simulating any random variable is counted as one unit) of a single
simulation with a time horizon t. For instance, if we take f = 1 and g = 0, then C[1,0](t)
counts the total number of scattering events up to time t, which can be used as a rough
estimate of the CPU-time of the program; on the other hand, taking f = 0, g = 1 yields an
estimate for the memory cost as C[0,1](t) counts the number of particles that have appeared
before t.

The process (Ct[f, g], t ≥ 0) is a pure jump increasing process whose Doob–Meyer decom-
position can be written as C[f, g] = A + M , where M is a martingale with respect to the
natural filtration of X and A is the bounded variation compensator of C[f, g]. The latter
can be easily computed noting that rates at which scattering and fission occurs are given by
the cross sections, it is straightforward to derive

(5.2) At =

∫ t

0

〈σsπs[f ] + σfπf[g], Xs〉ds, t ≥ 0,

where for (r, υ) ∈ D × V and h ∈ L+
∞(D × V ),

(5.3) πs[h](r, υ) =

∫
V

h(r, υ′)πs(r, υ, υ
′)dυ′ and πf[h](r, υ) =

∫
V

h(r, υ′)πf(r, υ, υ
′)dυ′.

Such computations are not unfamiliar in the setting of branching Markov processes, super-
processes or fragmentation processes. See for example [14, 24, 4]. We are led very easily to
the following estimate of simulation cost per sample as a simple application of Theorem 2.2.
Doob’s Maximal inequality for the representation C[f, g] = M + A also gives, for example,

(5.4) Eδ(r,υ)
[

sup
s≤t

(
Cs[f, g]− At

)2] ≤ 4

∫ t

0

ψs[σsπs [f 2] + σfπf[g
2]](r, υ)ds, t ≥ 0.

This shows that the mean squared error of the growth of the cost function C[f, g] relative
to the compensator A mimics the growth of

Eδ(r,υ)
[
Ct[f, g]

]
= Eδ(r,υ) [At] =

∫ t

0

ψs[σsπs [f ] + σfπf[g]](r, υ)ds, t ≥ 0,

i.e. linear in time.
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Lemma 5.2 (NBP Expected simulation cost per sample). For f, g ∈ L+
∞(D × V ) we have

the following.

(i) If λ∗ = 0, then, as t→∞,

(5.5) Eδ(r,υ)
[
Ct[f, g]

]
∼〈σsπs[f ] + σfπf[g], ϕ̃〉ϕ(r, υ)t =: κ[4]t ,

(ii) If λ∗ > 0, then, as t→∞,

(5.6) Eδ(r,υ)
[
Ct[f, g]

]
∼〈σsπs[f ] + σfπf[g], ϕ̃〉ϕ(r, υ)

eλ∗t

λ∗
= κ[4]

eλ∗t

λ∗
,

(iii) If λ∗ < 0, then, as t→∞, Eδ(r,υ)
[
Ct[f, g]

]
↗ Eδ(r,υ)

[
C∞[f, g]

]
=: κ[5] <∞.

Of course, if we run k cycles of Algorithm A.2, the cost of these cycles is then a k-multiple
of that of a single cycle as stipulated in the above theorem. It is also worth noting that both
σsπs [f ] + σfπf [g] <∞ and σsπs [f 2] + σfπf [g2] <∞, for f, g ∈ L+

∞(D × V ).

We conclude with the following consequence of Theorem 5.1 and Lemma 5.2. Specifically, we
want to identify the optimal choice of k, t to minimise total computational cost for a given
level of accuracy. To this end, we define

Cost(k, t) = k × sup
f,g∈L+

∞(D×V ):‖f‖∞,‖g‖∞≤1

Ct[f, g]

Theorem 5.3 (NBP Monte Carlo complexity). There is a choice of k, t such that

(5.7) Eδ(r,υ)
[( (

Ψbr
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ ε2

with the following total simulation cost:

(i) If λ∗ = 0 then (5.7) holds in the limit as ε→ 0 with

Eδ(r,υ)
[
Cost(k, t)

]
≤ Cε−4,

for some C, and the optimal choice of k, t are given by t =
√

2κ[0]ε
−1 and k = κ[0]κ

−1
[1] t

3.
(ii) If λ∗ > 0 then (5.7) holds in the limit as ε→ 0 with

Eδ(r,υ)
[
Cost(k, t)

]
≤ C exp

(
λ∗
√
κ[0]ε

−1
)
,

for some C, and the optimal choice of k, t corresponds to t ≈ √κ[0]ε
−1 and k ≈

λ∗κ
1/2
[0] κ[2]ε

−3/2.
(iii) If λ∗ < 0 then (5.7) holds in the limit as ε→ 0 with

Eδ(r,υ)
[
Cost(k, t)

]
≤ C exp

(
|λ∗|√κ[0]ε

−1
)
,

for some C, and the optimal choice of k, t corresponds to t ≈ √κ[0]ε
−1 and k ≈

|λ∗|κ1/2
[0] κ[3]ε

−3 exp(|λ∗|t)/2.
14



Proof. (i) Following Theorem 5.1 and Lemma 5.2, it follows that we want to solve the
optimisation problem:

minimize: tk subject to:
tκ[1]

k
+
κ[0]

t2
≤ ε2, k, t > 0.

Introducing a Lagrangian variable ξ ≥ 0 to penalise the constraint, we see that we expect
the minimum to occur when

k +
κ[1]ξ

k
− 2κ[0]ξt

−3 = 0, t− tκ[1]ξ

k2
= 0.

Rearranging the second expression, and noting that t > 0, we deduce k2 = κ[1]ξ, and hence
substituting back into the first expression, that k = κ[1]κ

−1
[0] t

3. Substituting this into the
constraint, we deduce that t =

√
2κ[0]ε

−1, and the expression for the optimal cost follows
immediately.

(ii) Similarly to the previous case, we need to solve the problem:

minimize: eλ∗tk subject to:
κ[2]

k
+
κ[0]

t2
≤ ε2, k, t > 0.

Proceeding as above to introduce a Lagrangian penalisation, and optimising over t and k, we
deduce that 2ξκ[0] = λ∗kt3eλ∗t = 2κ[0]κ

−1
[2] k

2eλ∗t, and hence k = κ[2]κ
−1
[0] λ∗t

3/2. Substituting
into the constraint, we deduce that the optimal t satisfies t3ε2−κ[0]t−2κ[0]λ

−1
∗ = 0. It follows

for ε sufficiently small that t ≤ √κ[0]ε
−1 + η for some η > 0. Recalling that κ[0] is already

defined only up to some small constant, we can assume η = 0 and absorb an ε−3 term into
the same constant. The remainder of the argument then follows directly as above.

(iii) The case where λ∗ < 0 follows with an almost identical argument; in this case the
optimisation problem is:

minimize: k subject to:
κ[3]e

−λ∗t

k
+
κ[0]

t2
≤ ε2, k, t > 0,

and the answer follows from an essentially identical set of steps to (ii).

6. Complexity Analysis of Basic NRW Monte-Carlo. Next we turn our attention to
the setting of the Monte-Carlo simulation based on the NRW estimator, in other words, via
the representation (3.7). The picture in this setting is typically less competitive than in the
the NBP estimator setting, however, this approach will offer additional flexibility in terms
of possible algorithmic approaches to finding λ∗. Recall that β := supr∈D,υ∈V β(r, υ), and
introduce also β := infr∈D,υ∈V β(r, υ).

Theorem 6.1 (NRW Monte-Carlo convergence for λ∗). For all λ∗ ∈ R and g ∈ L+
∞(D×V )

there exists κ̃[1] > 0 and λ1 ∈ R such that

E(r,υ)

[(
(Ψrw

k [g](t, r, υ))1/t − eλ∗
)2]
≤ κ̃[1]

1

k
e(λ1−2λ∗)t +

κ[0]

t2
,

as t→∞. Moreover, (2λ∗ ∨ (λ∗ + β)) ≤ λ1 ≤ λ∗ + β.
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It is immediately obvious from the above result that, since λ1−2λ∗ ≥ 0 there is no setting in
which the NRW Monte-Carlo offers better asymptotic accuracy that the NBP Monte-Carlo
algorithm does. The reason for this is quite simple. It is a straightforward consequence of
the previously observed fact that a large majority of simulations for the NRW Monte-Carlo
estimator will return zero contribution to the estimate on account of the indicator in (3.7).
The constant κ̃[1] can be computed using convergence results in the appendix (see (D.6)) as
2e2λ∗ (ϕ1(r, v)〈ϕ̃1, g

2〉 − (ϕ(r, v)〈ϕ̃, g〉)21λ1=2λ∗) /C
2
[0]. Here ϕ1, ϕ̃1 are analogues of ϕ, ϕ̃ for a

related semigroup specified in the appendix.

In terms of computational cost, it is again a simple exercise to identify the analogue of
Lemma 5.2. In this setting we need only define the cost of each simulation by the function

(6.1) Ct[f ] =
∑
j

f(Rtj ,Υtj)1(tj≤t), t ≥ 0,

where 0 ≤ t0 < t1 < · · · are the scatter times of the process (R,Υ) and f ∈ L+
∞(D × V ).

As in the setting of Lemma 5.2, we can write C[f ] = A+M , where M is a martingale with
respect to the natural filtration of (R,Υ) and A is the bounded variation compensator of
C[f ]. As before, the scattering rates of (R,Υ) together with standard computations allow us
to write, for t ≥ 0,

(6.2) At =

∫ t∧τD

0

απ[f ](Rs,Υs)ds, t ≥ 0,

where π[h] is defined similarly to (5.3).

On account of the fact that

α(r, υ) = σs(r, υ)

∫
V

πs(r, υ, υ
′)dυ′ + σf(r, υ)

∫
V

πf(r, υ, υ
′)dυ′,

we can use the assumptions (H1) and (H2) to deduce that

sup
r∈D,υ∈V

α(r, υ) ≤ c,

for constant 0 < c < ∞. We can think of the trajectory of process (R,Υ) as a series of
randomly placed sticks laid end to end in the domain D. Suppose that S1, S2, · · · , SN are
the successive lengths of these sticks, where N is the last stick which touches the boundary of
D (with the understanding that N =∞ if this does not happen). The estimate above ensures
that we can construct a sequence of iid random variables, which are exponentially distributed
with rate 1, say e1, e2, · · · , such that Si ≥ υminei/c, for i = 1, · · · , N . It now follows that the
probability that the length of any given stick is bounded below by diam(D) = sup{|x− y| :
x, y ∈ ∂D} is uniformly bounded below by exp(−diam(D)c/υmin). Accordingly, it follows
that N is upper bounded by Γ, where Γ is a geometrically distributed random variable with
parameter exp(−diam(D)c/υmin). Moreover, we also have that

τD ≤ Γdiam(D)/υmin,

so that, in particular, supr∈D,υ∈V Eδ(r,υ) [τD] < ∞. We thus have the following result for the
computational cost.
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Lemma 6.2 (NRW Expected simulation cost). For f ∈ L+
∞(D × V )

lim
t→∞

E(r,υ)

[
Ct[f ]

]
= E(r,υ)

[∫ τD

0

απ[f ](Rs,Υs)ds

]
<∞.

We should of course note again that, if there are k cycles in the Monte-Carlo simulation,
then the cost grows no faster than proportional to k, irrespective of the time horizon.

As with the previous section, we conclude with a corollary which gives the complexity of the
Monte-Carlo algorithm. On this occasion

Cost(k, t) = k × sup
f∈L+

∞(D×V ):‖f‖∞≤1

Ct[f ],

for k ≥ 1, t ≥ 0.

Corollary 6.3 (NRW Monte Carlo complexity). There is a choice of k, t such that

(6.3) Eδ(r,υ)
[(

(Ψrw
k [g](t, r, υ))1/t − eλ∗

)2]
≤ ε2.

Moreover, (6.3) holds in the limit as ε→ 0 with

Eδ(r,υ)
[
Cost(k, t)

]
≤ C exp

(
(λ1 − 2λ∗)

√
κ[0]ε

−1
)
,

for some C > 0, and the optimal choice of k, t corresponds to t ≈ √κ[0]ε
−1 and k ≈ (λ1 −

2λ∗)
√
κ[0]κ̃[1]ε

−3 exp((λ1 − 2λ∗)t)/2.

Proof. From Lemma 6.2 we have, for all t > 0, Eδ(r,υ)
[
Cost(k, t)

]
≤ C ′k, for some constant

C ′, and hence the objective is to:

minimize: k subject to:
κ̃[1]e

(λ1−2λ∗)t

k
+
κ[0]

t2
≤ ε2, k, t > 0.

This is essentially identical to the minimisation carried out in (iii) of Theorem 5.3, and the
result follows.

7. Importance sampling with NRW Monte-Carlo. One common method for improv-
ing the efficiency of Monte-Carlo estimation schemes is through the use of importance sam-
pling. Recalling, for example, (4.2), the term e

∫ t
0 β(ris,vis)ds1{t<tiend} in the estimator can be

interpreted as the weight of the ith particle. In particular, considering the simple case where
g ≡ 1, one wants to apply importance sampling to reduce the variance of this particle weight
as much as possible, by simulating paths from a suitably chosen probability distribution.
In this context, we will show that the correct way to think about importance sampling in
the case of the NTE is through the use of Doob’s h-transform. In this section, we show how
to h-transform the NRW, and prove that under mild assumptions, this gives an unbiased
estimate of the semi-group (ψt; t ≥ 0).
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Appealing to the Markov property together with Theorem 2.2, suppose we write Gt =
σ((Rs,Υs), s ≤ t) for t ≥ 0. Then, for 0 ≤ s ≤ t <∞,

E(r,υ)

[
e−λ∗te

∫ t
0 β(Ru,Υu)duϕ(Rt,Υt)

ϕ(r, υ)
1(t<τD)

∣∣∣∣Gs]
= 1(s<τD)e

−λ∗se
∫ s
0 β(Ru,Υu)du

× E(r′,υ′)

[
e−λ∗(t−s)e

∫ t−s
0 β(Ru,Υu)duϕ(Rt−s,Υt−s)

ϕ(r, υ)
1(t−s<τD)

]
(r′,υ′)=(Rs,Υs)

= 1(s<τD)e
−λ∗se

∫ s
0 β(Ru,Υu)due−λ∗(t−s)ψt−s[ϕ](Rs,Υs)/ϕ(r, v)

= 1(s<τD)e
−λ∗se

∫ s
0 β(Ru,Υu)duϕ(Rs,Υs)/ϕ(r, v).(7.1)

Together with the boundedness of ϕ and the Markov property this tells us that

e−λ∗te
∫ t
0 β(Ru,Υu)duϕ(Rt,Υt)

ϕ(r, υ)
1(t<τD), t ≥ 0,

is a martingale.

As such we can use this martingale to effect a change of measure on the path space of
(R,Υ) = ((Rt,Υt), t ≥ 0) via the relation

(7.2) Pϕ
(r,υ)(A, t < τD) = E(r,υ)

[
e−λ∗te

∫ t
0 β(Rs,Υs)dsϕ(Rt,Υt)

ϕ(r, υ)
1(A, t<τD)

]
= e−λ∗t

ψt[ϕ1A](r, υ)

ϕ(r, υ)

for all (r, υ) ∈ D × V and A ∈ σ((Rs,Υs), s ≤ t). The theory of Doob h-transforms dictates
that the process (R,Υ) under Pϕ

(r,υ), r ∈ D, υ ∈ V , is again a Markov process, see [6]. It
is conservative only if we can prove that Pϕ

(r,υ)(τ
D = ∞) = 1, for all (r, υ) ∈ D × V , which

is to say, the process (R,Υ) is trapped in D. However this is easily verified from (7.2) by
taking A to be the entire sample space and invoking the martingale property to deduce that
Pϕ

(r,υ)(t < τD) = 1, for all t ≥ 0. Moreover, since ϕ̃, ϕ ∈ L+
∞(D×V ), we can normalise ϕ̃ and

ϕ so that 〈ϕ̃, ϕ〉 = 1, for bounded and measurable g : D̄ × V → [0,∞) we have

lim
t→∞

Eϕ
(r,υ)[g(Rt,Υt)] = lim

t→∞
e−λ∗t

ψt[ϕg](r, υ)

ϕ(r, υ)
= 〈g, ϕϕ̃〉,

indicating that ϕϕ̃ is the stationary distribution of (R,Υ) under Pϕ
(r,υ), r ∈ D, υ ∈ V .

As is usual with such space-time changes of measure, the action of its infinitesimal generator,
say Lϕ, can be heuristically calculated by applying the h-transformation to the generator of
the process (R,Υ), say L, with potential β − λ∗ under P(r,υ), (r, υ) ∈ D̄ × V . Given the
discussion in Section 3.2, we have the action of the generator L satisfying

(7.3) Lf(r, υ) = υ · ∇f(r, υ) + α(r, υ)

∫
V

(f(r, υ′)− f(r, υ))π(r, υ, υ′)dυ′,
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for all f in the domain of L, written Dom(L); e.g. we can take f as continuous in r and
differentiable in υ. Hence, on D × V ,

Lϕf(r, υ) = (L + β − λ∗)ϕ f(r, υ)

=
1

ϕ(r, υ)
L(ϕf)(r, υ) + βf(r, υ)− λ∗f(r, υ)

= υ · ∇f(r, υ) +
υ · ∇ϕ(r, υ)

ϕ(r, υ)
f(r, υ) + βf(r, υ)− λ∗f(r, υ)

+
α(r, υ)

ϕ(r, υ)

∫
V

(f(r, υ′)− f(r, υ))ϕ(r, υ′)π(r, υ, υ′)dυ′

+ f(r, υ)
α(r, υ)

ϕ(r, υ)

∫
V

(ϕ(r, υ′)− ϕ(r, υ))π(r, υ, υ′)dυ′

= υ · ∇f(r, υ) +
(L + β − λ∗)ϕ(r, υ)

ϕ(r, υ)
f(r, υ)

+ α(r, υ)

∫
V

(f(r, υ′)− f(r, υ))
ϕ(r, υ′)

ϕ(r, υ)
π(r, υ, υ′)dυ′(7.4)

for all bounded and continuous f ∈ Dom(L). From Theorem 2.2, we can interpret (2.2) as
heuristically meaning that (L + β − λ∗)ϕ = 0. Taking this on face value, we get

Lϕf(r, υ) = υ · ∇f(r, υ) +

∫
V

(f(r, υ′)− f(r, υ))α(r, υ)
ϕ(r, υ′)

ϕ(r, υ)
π(r, υ, υ′)dυ′.

In other words, Lϕ corresponds to an (αϕ, πϕ)-NRW, where, for r ∈ D and υ ∈ V ,

αϕ(r, υ) = α(r, υ)

∫
V

ϕ(r, υ′)

ϕ(r, υ)
π(r, υ, υ′)dυ′ and πϕ(r, υ, υ′) =

ϕ(r, υ′)π(r, υ, υ′)∫
V
ϕ(r, υ′′)π(r, υ, υ′′)dυ′′

An interesting observation in light of this change of measure is that, appealing to (7.2), by
choosing g ∈ L+

∞(D × V ), for some c > 0, we have that

(7.5) ψt[g](r, υ) = Eϕ
(r,υ)

[
eλ∗t

ϕ(Rt,Υt)
−1

ϕ(r, υ)−1
g(Rt,Υt)

]
.

This leads to the thought experiment that, if we knew ϕ and λ∗ then we could make an
exact simulation of the right-hand side of (7.5) without any paths leaving the domain, and
consequently with potential efficiency benefits. In particular we would be able to adapt
Algorithm A.1, albeit using the components of the generator Lϕ. That is, the potential term
β is replaced by the constant λ∗, and we simulate a (αϕ, πϕ)-NRW instead of a (α, π)-NRW.
The problem with this thought experiment is, of course, that we are aiming to generate
Monte-Carlo estimates of ψt[g](r, υ) with a view to estimating the quantities λ∗ and ϕ.

The idea of the thought experiment is not lost however. Suppose instead we were to make
an educated guess for ϕ and λ∗. In particular, we would be interested in a guess that would
inform a Doob h-transformed process that we could simulate with relatively few (if any)
paths that leave the domain D. The next theorem formalises this idea (which also gives a
rigorous basis to the discussion above by setting h = ϕ).
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Theorem 7.1. Suppose that h ∈ L+
∞(D × V ) such that h ≥ 0 on D × V , h|∂D+ = 0 and

(7.6) inf
r∈D

∫
V

h(r, υ′)dυ′ > 0.

Define

(7.7) Jh(r, υ) = α(r, υ)

∫
V

(h(r, υ′)− h(r, υ))π(r, υ, υ′)dυ′,

fon D×V . Suppose that we denote by (Ti, i ≥ 0), the scattering times of (R,Υ) with T0 = 0.
Moreover, let Nt = sup{i : Ti ≤ t}. Then

(7.8)
dPh

(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

:= exp

(
−
∫ t

0

Jh(Rs,Υs)

h(Rs,Υs)
ds
) Nt∏

i=1

h(RTi ,ΥTi)

h(RTi ,ΥTi−1
)
1(t<τD)

characterises a neutron random walk whose expectation semigroup is given by

(7.9) ψht [g](r, υ) = Ut[g](r, υ) +

∫ t

0

Us
[
Jhψht−s[g]

]
(r, υ)dυ′.

where the scattering operator is given by

(7.10) Jhg(r, υ) =

∫
V

(g(r, υ′)− g(r, υ))α(r, υ)
h(r, υ′)

h(r, υ)
π(r, υ, υ′)dυ′

on D. Moreover,

ψt[g](r, υ)

= Eh
(r,υ)

[
exp

(∫ t

0

Jh(Rs,Υs)

h(Rs,Υs)
+ β(Rs,Υs)ds

) Nt∏
i=1

h(RTi ,ΥTi−1
)

h(RTi ,ΥTi)
g(Rt,Υt)1(t<τD)

]
(7.11)

for t ≥ 0 and if we additionally assume that

(7.12) inf
r∈D,υ∈V

lim
s→κDr,υ

|υ|(κDr,υ − s)
h(r + υs, υ)

> 0

where we recall that κDr,υ := inf{t > 0 : r+υt 6∈ D}, then the term 1(t<τD) in (7.8) and (7.11)
can be removed and (R,Υ) under Ph

(r,υ), r ∈ D, υ ∈ V , is conservative.

Remark 7.1. We also note from (7.9), i.e. the expectation semigroup of (R,Υ) under Ph
(r,υ),

r ∈ D, υ ∈ V , that it is formally associated to the generator

(7.13) Lhg(r, υ) = υ · ∇g(r, υ) +

∫
V

(g(r, υ′)− g(r, υ))α(r, υ)
h(r, υ′)

h(r, υ)
π(r, υ, υ′)dυ′

on D × V .
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Suppose, moreover, that we write T = υ · ∇. If we further assume that Th is well defined,
for example, one could typically assume that T is defined weakly in L2(D× V ), then we can
also write the term

(7.14)
h(r + υt, υ)

h(r, υ)
= exp (log h(r + υt, υ)− log h(r, υ)) = exp

(∫ t

0

Th(r + υs, υ)

h(r + υs, υ)
ds
)
.

As such, a piecewise application of (7.14) allows us to convert the right-hand side of (7.11)
into

(7.15) ψt[g](r, υ) = h(r, υ)Eh
(r,υ)

[
exp

(∫ t

0

Lh(Rs,Υs)

h(Rs,Υs)
+ β(Rs,Υs)ds

)
g(Rt,Υt)

h(Rt,Υt)
1(t<τD)

]
.

Similarly the change of measure (7.8) can be identified alternatively as

(7.16)
dPh

(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

:= exp

(
−
∫ t

0

Lh(Rs,Υs)

h(Rs,Υs)
ds
)
h(Rt,Υt)

h(r, υ)
1(t<τD)

It is worth remarking that the representation of the semigroup (ψt, t ≥ 0) in (7.15) takes
on a more convenient form that in (7.11). However, technically speaking, it requires more
assumptions on the function h. �

Proof of Theorem 7.1. Suppose we introduce ψht [g](r, υ) = Eh
(r,υ)[g(Rt,Υt)1(t<τD)], for

t ≥ 0, r ∈ D, υ ∈ V and g ∈ L∞(D × V ). Noting that we may otherwise write

ψht [g](r, υ) = E(r,υ)

[
exp

(
−
∫ t

0

Jh(Rs,Υs)

h(Rs,Υs)
ds
) Nt∏

i=1

h(RTi ,ΥTi)

h(RTi ,ΥTi−1
)
g(Rt,Υt)1(t<τD)

]
.

Using standard arguments centred around the Markov property applied at the first scattering
time, it is easy to show that (ψht , t ≥ 0) is an expectation semigroup.

Next, by conditioning on the first step of the NRW under P(r,υ), we get

ψht [g](r, υ)

= exp

(
−
∫ t

0

α(r + υs, υ) +
Jh(r + υs, υ)

h(r + υs, υ)
ds
)
g(r + υt, υ)1(t<κDr,υ)

+

∫ t

0

1(s<κDr,υ)α(r + υs, υ) exp

(
−
∫ s

0

α(r + υu, υ) +
Jh(r + υu, υ)

h(r + υu, υ)
du
)

∫
V

ψht−s[g](r + υs, υ′)
h(r + υs, υ′)

h(r + υs, υ)
π(r + υs, υ, υ′)dυ′ds.(7.17)

Next note that from the assumptions (H1) and (H2) and (7.6),

Jh(r, υ)

h(r, υ)
+ α(r, υ) =

α(r, υ)

h(r, υ)

∫
V

h(r, υ′)π(r, υ, υ′) ≥ 1

h(r, υ)
απ

∫
V

h(r, υ′)dυ′,
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where α = infr∈D,υ∈V α(r, υ) > 0 and π = infr∈D,υ,υ′∈V π(r, υ, υ′) > 0 Together with assump-
tion (7.12) and and (7.6), this ensures that

lim
t↑κDr,υ

∫ t

0

{
Jh(r + υs, υ)

h(r + υs, υ)
+ α(r + υs, υ)

}
ds =∞

for all r ∈ D, υ ∈ D. Since α is uniformly bounded from above, it follows that the indicators
in (7.17) are not necessary.

Now appealing to Lemma 1.2, Chapter 4 in [13], we can remove exponential potential terms
at the expense of introducing an additive potential term. After application of the aforesaid
lemma, we have

ψht [g](r, υ) = g(r + υt, υ)

+

∫ t∧κDr,υ

0

α(r + υs, υ)

∫
V

ψht−s[g](r + υs, υ′)
h(r + υs, υ′)

h(r, υ)
π(r + υs, υ, υ′)dυ′

−
∫ t∧κDr,υ

0

(
α(r + υs, υ) +

Jh(r + υs, υ)

h(r + υs, υ)

)
ψht−s[g](r + υs, υ)ds.(7.18)

Noting again that

(7.19) α(r, υ) +
Jh(r, υ)

h(r, υ)
= α(r, υ)

∫
V

h(r, υ′)

h(r, υ)
π(r, υ, υ′)dυ′

and recalling the definition (7.10), plugging (7.19) back into (7.18), we get

ψht [g](r, υ) = g(r + υt, υ) +

∫ t∧κDr,υ

0

Jhψht−s[g](r + υs, υ)dυ′

= Ut[g](r, υ) +

∫ t

0

Us
[
Jhψht−s[g]

]
(r, υ)dυ′.(7.20)

The equation (7.20) together with the semigroup property shows that the change of measure
(7.8) makes (R,Υ) under Ph

(r,υ), r ∈ D, υ ∈ V the law of a NRW whose expectation semigroup
is formally associated to the infinitesimal generator (7.13).

To verify conservativeness, it suffices to take g = 1 in (7.20) and note that, since J1 = 0,
then ψht [g](r, υ) = 1 is a solution to (7.20) for all t. Similarly to the mild equation (2.1), the
solution to (7.20) is unique (thanks to a simple application of Grönwall’s Lemma), see for
example [18]. Thus we have conservativeness.

As a small side remark, we note that the representation in Theorem 7.1 is an alternative
form of Feynman-Kac representation which works with multiplicative potentials instead of
exponential additive potentials. Examples where this has been used for other Markov systems
are discussed in [5, 21].
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8. Complexity analysis of h-NRW Monte-Carlo and the shape of h. Under the
assumptions of Theorem 7.1 (not necessarily including (7.12)) and Remark 7.1 in particular
through the representation (7.15), we see a third approach to simulating λ∗. More precisely,
with the estimate (4.3) we have the alternative estimator
(8.1)

Ψk[g](t, r, υ) = Ψh-rw
k [g](t, r, υ) = h(r, υ)

1

k

k∑
i=1

exp

(∫ t

0

Lh(ris, v
i
s)

h(ris, vis)
+ β(ris, v

i
s)ds

)
g(rit, v

i
t)

h(rit, vit)
1(t<tiend).

where ((rit, v
i
t), t ≥ 0) are independent copies of an αhπh-NRW, with

(8.2) αh(r, υ)πh(r, υ, υ′) = α(r, υ)
h(r, υ′)

h(r, υ)
π(r, υ, υ′), r ∈ D, υ, υ′ ∈ V.

(See Algorithm A.3 in the Appendix.)

Following the analysis in Section 6, we use similar calculations to control the variance and
cost of the estimator associated to (8.1). For variance control, we have the following result,
whose conclusion does not depend on the sign of λ∗.

Theorem 8.1 (h-NRW Monte-Carlo convergence for λ∗). Suppose that the assumptions of
Theorem 7.1, including (7.12), and of Remark 7.1 hold. Additionally, suppose

(8.3) sup
r∈D,υ∈V

Lh(r, υ)

h(r, υ)
<∞.

Then for g ∈ L+
∞(D × V ) such that g ≤ h, there exists a constant κ̃[2] > 0 such that

(8.4) Eh
(r,υ)

[( (
Ψh-rw
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ κ̃[2]e

(λ2−2λ∗)t

k
+
κ[0]

t2
,

as t→∞, where λ∗ + ς ≤ λ2 ≤ λ∗ + ς and

(8.5) −∞ ≤ inf
r∈D,υ∈V

(L + β)h(r, υ)

h(r, υ)
=: ς ≤ ς := sup

r∈D,υ∈V

(L + β)h(r, υ)

h(r, υ)
.

Next we turn our attention to the cost analysis in the spirit of Lemma 6.2.

Lemma 8.2 (h-NRW Expected simulation cost). Suppose that the conditions of Theorem
8.1 are met and additionally that ς > −∞. Then, for f ∈ L+

∞(D × V ) and some constant
Kf > 0,

lim sup
t→∞

e−(λ∗−ς)tEh
(r,υ)

[
Ct[f ]

]
< Kf , .

Moreover, Eh
(r,υ)

[
Ct[f ]

]
grows at most linearly in t if either ς = λ∗, or if the following are

satisfied:

(i) f ∈ L+
∞(D × V ) satisfies πh[f ](r, v) ≥ c0 > 0 for all (r, v) ∈ D × V ;

(ii) there exist Ω0 ⊆ D × V , p0 > 0 and δ > 0 such that
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(a)
∫

(r,v′)∈Ω0
πh(r, v, v′) dv′ ≥ p0;

(b) αh(r + vs, v) ≤ δ−1 for all s ∈ [0, δ], for all (r, v) ∈ Ω0.

Remark 8.1. Heuristically speaking, the upper bound in Theorem 8.1 is optimised by
choosing h = ϕ. Indeed, in that setting, (L+β)ϕ = λ∗ϕ on L2(D×V ). Hence, assuming this
is a pointwise equality, it follows that λ2 = 2λ∗, matching the lower bound for λ2, thereby
minimising the upper bound in (8.4). Note also that in the same setting, ς = λ∗ and hence
the growth of the expected cost is linear.
Of course, in practice the function ϕ is generally unknown, and a quantity that we want
to learn through Monte-Carlo methods. In the context of importance sampling, knowing ϕ
would be equivalent to knowing the optimal weights for the simulated random variable. �

The sufficient condition (7.12) is strongly indicative of linear behaviour of h for directional
derivatives towards the physical boundary of D. These features should be built into any first
estimate of h. We also note that the main theorem in underlying theory, i.e. Theorem 2.2,
requires that the domain D is convex. In other contexts, where the NTE is interpreted as
an abstract Cauchy problem on a Banach space, it sometimes additionally assumed that
the cross sections on D × V are also piecewise continuous, or even more simply, piecewise
constant. This is a very natural assumption for the application of nuclear reactor core design.
See for example Figure A.2 which shows a typical simulation in a slice of a nuclear reactor
core which has convex symmetries.

Let us assume momentarily that D is a convex polyhedra. That is to say, it is a domain
bounded by a finite number of tangent planes. Below we will construct two possible families
of choices of h. Both are built using a combination of hyperplanes.

Example 8.3 (Urts functions). For each υ ∈ V , one possible definition we can work with

h(r, υ) = c× distυ/|υ|(r, ∂D),

where, for ω ∈ S2, distω(r, ∂D) is the distance from r to the boundary of D along the ray
(r+ωt, t ≥ 0) and c > 0. Note that this is a piecewise linear function in r for fixed v. Indeed,
we can write this more precisely as

h(r, υ) = c× inf{t > 0 : r +
υ

|υ|t ∈ ∂D} = c|υ| inf{s > 0 : r + υs ∈ ∂D} = c|υ|κDr,υ.

Note that

(8.6)
|υ|(κDr,υ − s)
h(r + υs, υ)

=
κDr,υ − s
cκDr+υs,υ

=
1

c

and hence (7.12) is satisfied.

In two dimensions this appears to take the form of the minimum of hyperplanes touching
only the sides of ∂D that υ is directed towards (i.e. only r ∈ ∂D for which υ · nr > 0). See
the function on the left in Figure 3.
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D

υ υ

Figure 3. On the left h(r, υ) = c1distυ/|υ|(r, ∂D), on the right, is the case of an Urts function h(r, υ) =
c1distυ/|υ|(r, ∂D) ∧ c2distυ/|υ|(r + rυ, ∂D).

Recalling (7.10), this proposal for h thus imposes an instantaneous repulsive rate for r close
to boundary points r′ ∈ ∂D such that υ · nr′ > 0. However if r is positioned far from
the aforesaid boundary points but close to one of the boundary points r′ ∈ ∂D such that
υ ·nr′ < 0, we should also expect a milder repulsion from this boundary. We can thus adjust
our proposed approximation to ϕ by choosing it to be such that it receives a gentler repulsion
from the boundary which is diametrically opposed to the direction of travel. We thus propose
a first estimate of ϕ taking the linear form

(8.7) h(r, υ) = min{c1distυ/|υ|(r, ∂D) , c2dist−υ/|υ|(r + rυ, ∂D)},

where rυ can be dependent on υ or just taken as a fixed constant and c1, c2 > 0 are constants.

We call this family of approximations for ϕ Urts functions, named after the teepee-like
dwellings of the Mongolian Siberian Tsaatan tribes which are similarly shaped when D is a
two-dimensional convex polyhedral domain; see Figure 3. As before, it is easy to verify that
infr∈D

∫
V
h(r, υ′)dυ′ > 0. �

Unfortunately, neither of the previous two examples necessarily respect the condition (8.3).
To see why, suppose we consider the setting of an Urts function with c1 = c2 = 1. For (8.3)
to hold, we would need, in particular, that, for r ∈ ∂D and υ ∈ V such that υ · nr > 0 (i.e.
the velocity direction of υ is pointing out of the domain D), the limit

lim
s→0

Th(r − sυ/|υ|, υ) + Jh(r − sυ/|υ|, υ)

h(r − sυ/|υ|, υ)

= lim
s→0

(
α(r, υ)

∫
V

h(r − sυ/|υ|, υ′)
h(r − sυ/|υ|, υ)

π(r, υ, υ′)dυ′ − |υ|
h(r − sυ/|υ|, υ)

)
− α(r, υ)

= lim
s→0

(
α(r, υ)

∫
V

1

s
h(r − sυ/|υ|, υ′)π(r, υ, υ′)dυ′ − |υ|

s

)
− α(r, υ)(8.8)

needs to exist and be finite. Observe that in the last step we used the form of the function
h to deduce that h(r − sυ/|υ|, υ) = s for s small, r ∈ ∂D and υ ∈ V such that υ · nr > 0.
Note that this is potentially problematic because for υ′ in the integral on the right-hand side
above such that υ′ ·nr < 0, we have h(r, υ′) > 0, and hence the factor 1/s means that, in the
limit as s ↓ 0, if it exists, can be explosive. Indeed, on the one hand, for s sufficiently close

25



to zero,

lim
s→0

∫
{υ′·nr>0}

h(r − sυ/|υ|, υ′)
h(r − sυ/|υ|, υ)

π(r, υ, υ′)dυ′ = lim
s→0

∫
{υ′·nr>0}

(υ · nr)|υ′|
(υ′ · nr)|υ|

π(r, υ, υ′)dυ′ <∞.

On the other hand, for υ′ such that υ′ · nr < 0, we have that h(r, υ′) > 0 and hence, for s
sufficiently small, ∫

{υ′·nr<0}

h(r − sυ/|υ|, υ′)
h(r − sυ/|υ|, υ)

π(r, υ, υ′)dυ′ >
C

s
,

for some constant C > 0, which explodes as s → 0. On the other hand, so long as the
supremum in (8.8) is uniformly bounded above (i.e. the limit could be −∞), then (8.3) is
respected.

Example 8.4 (Lifted Urts functions). The previous discussion indicated a possible way of
building an Urts function such that the requirement (8.3) is satisfied. Another way to do
this is to violate the zero boundary condition that h(r, υ) = 0 when υ · nr > 0 and to take
the Urts function of Example 8.3 and add a small constant to it. That is to say,

h(r, υ) = ε+ min{c1distυ/|υ|(r, ∂D) , c2dist−υ/|υ|(r + rυ, ∂D)},

for some 0 < ε � 1 and c1, c2 > 0. For a lifted Urts function, the condition (7.12) is thus
not satisfied and, as a consequence, not all of the h-NRW will survive until the chosen time
horizon. �

Lemma 8.5. Suppose that the domain D ⊂ R2 is bounded by a regular polygon or circle,
and h is one of the urts functions described above. Then the conditions of (ii) of Lemma 8.2
to guarantee linearity of the total cost are satisfied.

Proof. For simplicity, we consider the case where D = [−L,L] × [−L,L]. The proof in
other cases is similar.
Fix η > 0, and define

Ω1 := ([−L+ η, L]× [−L+ η, L])× {v ∈ V : v/|v| = (cos(θ), sin(θ)), θ ∈ [9π/8, 11π/8]}
Ω2 := ([−L+ η, L]× [−L,L− η])× {v ∈ V : v/|v| = (cos(θ), sin(θ)), θ ∈ [13π/8, 15π/8]}

etc., and Ω0 := Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. Then it follows from each of the definitions of the urts
functions that h is bounded below on Ω0, and bounded above on D × V . Hence we deduce
that 2.(a) holds. Similarly, the fact that h is bounded below on Ω0, and above on D × V
guarantees that 2.(b) holds.

We conclude with the corresponding version of Corollary 6.3.

Corollary 8.6 (h-NRW Monte Carlo complexity). Suppose we satisfy all conditions of
Theorem 8.1 are satisfied, and we are in the case of Lemma 8.2 where Eh

(r,υ)

[
Ct[f ]

]
grows at

most linearly. Then there is a choice of k, t such that

(8.9) Eδ(r,υ)
[( (

Ψh-rw
k [g](t, r, υ)

)1/t − eλ∗
)2]
≤ ε2.
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Moreover, (8.9) holds in the limit as ε→ 0 with

Eδ(r,υ)
[
Cost(k, t)

]
≤ C exp

(
(λ2 − 2λ∗)

√
κ[0]ε

−1
)
,

for some C > 0, and the optimal choice of k, t corresponds to t ≈ √κ[0]ε
−1 and k ≈ (λ2 −

2λ∗)
√
κ[0]κ̃[2]ε

−3 exp((λ2 − 2λ∗)t)/2.

The proof follows in a similar manner to Corollary 6.3.

9. Discussion and numerical comparison of methods.

9.1. Towards Improved Monte-Carlo Methods for the NTE. The results of the previous
section (in particular Remark 8.1) suggests that extremely efficient methods for estimating
λ∗ can be developed if the eigenfunction ϕ is known. Unfortunately, finding the optimal ϕ
is generally at least as hard as finding the optimal λ∗, so this is not immediately helpful.
However, importance sampling can still be highly effective in reducing the variance of the
numerical scheme even when the function ϕ is not known. The key question is how to
construct informative functions h which might approximate ϕ well.

Moreover, in practical implementations, the naive approach suggested in Theorem 5.3 is
generally not amenable in practice. Considering the asymptotic results given here, one first
observes that it is heavily desirable to be in the λ∗ = 0 regime, which has linear growth,
rather than the cases when λ∗ 6= 0, which both have exponential growth in complexity for a
given level of accuracy. It follows that it is numerically beneficial to try to get the system to
an equilibrium state, for example, by introducing additional killing or branching (although
the optimal rate is of course unknown, it could, for example, be estimated numerically from
simulations). Moreover, numerical methods which try to mollify excess particle deaths or
births through repopulating from the existing population can also be effective at keeping the
system close to equilibrium. Such methods lead naturally to considering interacting particle
systems (e.g. [11]), and Sequential Monte Carlo (SMC) methods ([12]). In most commercially
available software, numerical implementations follow a modified version of classical SMC
methods where particles are randomly selected from a ‘birth store’, representing the current
particle population, with unused particles being stored for possible later use. We are not
aware of any theoretical justification or analysis of these methods, but it would seem that
they would bear significant similarity to standard SMC methods, and we would expect similar
theoretical behaviour.

The benefits of combining SMC methods with importance sampling has been investigated
by (e.g. [29]). It is in this combination that we expect the results in Sections 7 and 8 to be of
most benefit. Specifically, we would anticipate using SMC methods to sample/resample from
a population of particles, which themselves undergo motion according to an h-transformed
version of the NRW. We aim to write more about this in forthcoming work.

A further difficulty that arises in the use of h-transformed motion for the estimation of λ∗
is that the estimates can be dominated by large-deviation effects. Specifically, although the
estimates remain unbiased, for large t a substantial contribution to the expectation in (7.11)
comes from rare particles with large weights (the exponential, product and indicator terms
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in the expression). For example, [20], in a slightly different setting, connects the limiting
value λ to a maximisation problem, which in our setting reads as:

λ∗ ≥ lim
T→∞

{
Eh [β(RT ,ΥT )]− 1

T
Eh
[
log

(
dPh

dP

∣∣∣∣
T

)]}
.

Moreover, the optimal choice of h = ϕ will attain equality in this expression. By manipulation
of this expression, it should be possible to develop iterative schemes which improve h to get
better estimates of λ∗. In a different setting, this is the approach taken recently by [17]. We
leave the complete discussion of how these methods may be implemented in the case of the
NTE to future work.

In the rest of this section we provide some basic numerical experiments4 that demonstrate
the convergence rates observed in the previous sections. We concentrate on an analytically
tractable one-dimensional case, as well as a two dimensional setting, which is not analytically
tractable. We conclude with some discussion of the relative strengths and weaknesses of the
methods.

9.2. One dimensional slab reactor. We consider a particular example where D is an open
interval. Up to some linear transformation of the variables, we can always assume that
D = {(r1, r2, r3) : −L < r1 < L} for some fixed (r2, r3) ∈ R2 and L ∈ (0,∞). Clearly in
this case (ψt, t ≥ 0) is merely a function of the first coordinate. We can therefore suppress
the dependency on the second and third coordinates and reduce the problem entirely to
its one dimensional form. In other words, we can reduce the entire problem to the setting
D = (−L,L).

The interest of this example lies in that computations of the leading eigenvalue and the
associated eigenfunctions in this case are tractable so that we can compare numerical results
with theoretical values. Throughout this section, we assume that

V = {−υ0, υ0}, σs(r, υ) ≡ σs, σf(r, υ) ≡ σf,(9.1)
πs(r, υ, υ

′) = δ−υ(dυ′), πf(r, υ, dυ′) = 2δυ(dυ′)

where υ0, σs, σf ∈ (0,∞). Note, as a small technical matter, because the velocity space V
consists of just two elements, we need to replace πs(r, υ, υ′)dυ′ by πs(r, υ, dυ′) and a similar
replacement for πf. Observe that we have σ = σs +σf and the two measures πf(r, υ, dυ′) and
πs(r, υ, dυ′)′ are singular with respect to one another. Note that under Assumption (9.1) the
operator A = T + S + F takes the following simple form:

(9.2)


Tf(r, υ) = υ · ∇f(r, υ) (transport)

Sf(r, υ) = σs
(
f(r,−υ)− f(r, υ)

)
(scattering)

Ff(r, υ) = σf
(
2f(r, υ)− f(r, υ)

)
= σff(r, υ) (fission)

4The numerical simulations have all been implemented in Python. The code can be downloaded from
people.bath.ac.uk/mapamgc/.
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for all f ∈ L+
2 (D × V ) and (r, v) ∈ D × V , where p ∈ (1,∞).

The main condition of Theorem 2.2 requires that σf(2− 1) = σf > 0, which is automatically
the case. Moreover, Theorem 8.1 of [7] allows us to otherwise identify the eigentriple (λ∗, ϕ, ϕ̃)
via the relations

(9.3) 〈ϕ̃, Ag〉 = λ∗〈ϕ̃, g〉 and 〈f, Aϕ〉 = λ∗〈f, ϕ〉, f, g ∈ L+
2 (D × V ),

where the eigenfunctions are identified this way only uniquely within L+
2 (D × V ) (which is

sufficient for our purposes to identify the eigenfunctions in L+
∞(D × V )).

Proposition 9.1. The leading eigenvalue λ∗ and the associated eigenfunctions ϕ, ϕ̃ as
specified in Theorem 2.2 are given as follows.

(i) If θ := υ0/2Lσs > 1, let x∗ be the unique non negative solution to the equation

(9.4)
sinh(x)

x
= θ.

Then the leading eigenvalue is given as

(9.5) λ∗ = σf − σs −
√
σ2
s +

(
υ0x∗
2L

)2
.

And we have

ϕ(r, υ) = φ(r)1{υ=υ0} + φ(−r)1{υ=−υ0}, ϕ̃(r, υ) = φ(−r)1{υ=υ0} + φ(r)1{υ=−υ0},

where

(9.6) φ(r) =
sinh

(
1
2
x∗(1− r

L
)
)

sinh(1
2
x∗)

, r ∈ (−L,L).

(ii) If θ := υ0/2Lσs = 1, then the leading eigenvalue is given as

(9.7) λ∗ = σf − 2σs.

And we have

ϕ(r, υ) = φ(r)1{υ=υ0} + φ(−r)1{υ=−υ0}, ϕ̃(r, υ) = φ(−r)1{υ=υ0} + φ(r)1{υ=−υ0},

where

(9.8) φ(r) = 1− r

L
, r ∈ (−L,L).

(iii) If θ := υ0/2Lσs < 1, then let x∗ be the smallest non negative solution to the equation

(9.9)
sin(x)

x
= θ.
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Then the leading eigenvalue is given as

(9.10) λ∗ = σf − σs − sgn(cos(x∗))
√
σ2
s −

(
υ0x∗
2L

)2
.

And we have

ϕ(r, υ) = φ(r)1{υ=υ0} + φ(−r)1{υ=−υ0}, ϕ̃(r, υ) = φ(−r)1{υ=υ0} + φ(r)1{υ=−υ0},

where

(9.11) φ(r) =
sin
(

1
2
x∗(1− r

L
)
)

sin(1
2
x∗)

, r ∈ (−L,L).

Before turning to the proof of this proposition, there are a number of remarks we should
make.

First, note that the condition θ = 1 can be written υ0/σs = 2L, thus the different forms of the
lead eignenfunction correspond intuitively as to whether the average distance that a particle
travels between scatterings is greater than, or less than, the width of the strip. Second, the
symmetric form of ϕ above can be readily seen from the invariance of the system under the
reflection (r, v) 7→ (−r,−v). Third, as seen in the previous discussion, the eigenfunctions ϕ
and ϕ̃ are unique up to a multiplicative constant. Here, we fix this constant by requiring
ϕ(0, υ0) = ϕ̃(0,−υ0) = 1.

9.3. Numerical experiments with the one dimensional slab reactor. For this setting, we can
easily develop numerical solutions for the NBP, NRW and h-NRW, albeit that we must decide
which h function to work with in advance. As V consists of just two elements, the setting of
Urts functions is easy to work with.

For convenience, assume that υ0/2Lσs < 1, then we will work with an Urts function of the
form

(9.12) h1(r, υ0) =

(
r + L+

υ0

σs

)
∧ (L− r) and h1(r,−υ0) = (r + L) ∧

(
L− r +

υ0

σs

)
,

for −L < r < L. In that case, from (3.6), we have that β(r, υ) = σf. Note, moreover, that,
for example, when (r, υ) = (L, υ0),

Lh1(L, υ0) = (A− β)h1(L, υ0) = −υ0 + σs (h1(L,−υ0)− h1(L, υ0)) = 0.

Hence, we can easily verify that

sup
r∈D,υ∈{−υ0,υ0}

Lh1(r, υ)

h1(r, υ)
<∞.

We will also consider the choices of the Urt functions proposed similar to Examples 8.3.

(9.13) h2(r, υ0) = L− r and h3(r, υ0) =

(
r + L+

υ0

σs

)
(L− r),
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and hi(r,−υ0) = hi(−r, υ0), for i = 2, 3.

NBP estimators. Recall from Theorem 5.1 that the branching estimator Ψbr
k [g](t, r, υ)

has different behaviours for supercritical, critical and subcritical systems. While estimations
improve as time grows in a supercritical situation, this is not the case for subcritical systems
(Fig. 4) since most genealogies have become extinct at large times. Moreover, simulations
(Fig. 5) suggest that in the supercritical case for fixed k the convergence rate is indeed 1/t.
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Figure 4. Supercritical vs. subcritical. Estimates of λ∗ from the branching estimator in a supercritical
case (left) and a subcritical one (right).

Next, we illustrate how our estimates of the simulation costs can be applied in this setting
with two natural choices of (f, g): one being f = 0 and g = 1, which, as discussed previously,
estimates the memory cost as the function C[0,1](t) counts precisely the number of particles
that have appeared before time t, the other chosen to be f = 1 and g = 0 for an estimate
of the CPU-time. Recall that in the supercritical case Lemma 5.2 predicts an exponential
growth at rate λ∗. Note also that in the current setting, the various constants appearing in
Lemma 5.2 can be easily computed from the solutions given in Proposition 9.1. See Fig. 6
and 7 for the numerical results.

NRW and h-NRW estimators. Since the particles are typically killed on the boundary
after some period of time, the basic NRW estimator Ψrw

k [g](t, r, υ) performs worse than the
branching estimator (Fig. 8).

The h-NRW estimators depends on the choice of h. We see this by considering three cases
based on (9.12) and (9.13). See Fig. 9 for a plot of the h’s and a comparison of the estimators
they yield. The pictures there suggest that both h1-NRW and h3-NRW estimators outper-
formed the NBP estimator in this example. Note also, based on the discussion in the previous
section, that the ‘poor’ choice of h, viz. h2, systematically underestimates the estimate of λ∗.

9.4. A two dimensional reactor with four rods. We compare the results above with a 2D
particle simulation. In this case, we model our environment as a square reactor with 4 rods,
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Figure 5. Convergence rate of branching estimators. (Left) Estimates of λ∗ from the branching
estimator 1

tΨ
br
k [g](t, r, υ)in a supercritical situtation; the dashed line depicts the value of λ∗ and different

lines correspond to experiments with different values of k. (Right) The function t 7→ ( 1
tΨ

br
k [g](t, r, υ)− λ∗)2

in log-log scale; the slope is approximately −2.00.
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Figure 6. Supercritical vs. subcritical. Mean memory costs in a supercritical case (left) and a subcritical
case (right) for the NBP. In the supercritical case, this is compared to the prediction derived from (5.6).
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t logC[0,1](t) averaged over 500 simulations of the

NBP. The blue line depicts the predicted growth rate given in the RHS of (5.6) and the green line indicates
the value of λ∗. (Right) The orange curve is the plot of t 7→ 1

t logC[1,0](t) averaged over 500 simulations
of the NBP. The blue line depicts the predicted growth rate given in the RHS of (5.6) and the green line
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surviving particles at large times. The true eigenvalue here is λ∗ ≈ −0.00118.

33



−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.5

1.0

1.5

2.0 Eigenfunction

h1(x)

h2(x)

h3(x)

10 15 20 25 30 35 40

Time

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

E
ig

en
va

lu
e NBP

h1

h2

h3

λ∗

Figure 9. h-NRW estimators. (Left) Plots of three different choices of h compared to the true eigen-
function (in blue). (Right) Comparison of these three h-NRW eigenvalue estimators, together with the NBP
estimator (k = 1000 simulations).

where most branching happens, and with particles killed on exit from the square. We assume
all scattering events are uniform, and the particles have constant speed.

Numerically, the picture is similar to the 1D case. The basic NRW estimator suffers from
the rapid loss of the particles (Fig. 8). For the h-NRW, we use the choice of h given in (8.7).
Estimates over time for the eigenvalue by the branching estimator and the h-NRW estimator
can be found in Fig. 10.

In Figure 10 we see the advantages and disadvantages of the h-transform method. In the
simplest case (left), where particles are simulated until death, the NRW suffers from extinc-
tion of its particles, even though a large number of particles (50.000) are initially simulated.
As a result, the estimate of λ∗ is very unreliable, and there is little hope to get the particles
close to equilibrium before most particles die out. The h-NRW case does much better on this
count, with particles surviving until large times, however the particles in this case suffer from
weight degeneracy, where a few particles have large weight (the exponential, product and
indicator terms in (7.11)), and many particles have comparatively small weight. As a result,
the final computations of the average will be dominated by the small number of particles
with large weight, leading to wasted computational effort.

To mitigate the weight degeneracy of the particles, we implement a particle filter algorithm.
Roughly speaking, this means that at fixed times, we look at our collection of particles, and
randomly choose to discard/keep particles based on the weight of individual particles, for
example, by choosing particles in the next generation by independently particles from the
current population proportional to their current weights. Such algorithms are well studied,
see for example [11], or [1]. In this case, the h-transform methods appear to be slightly
more stable than the particle filter, although it is hard to judge the accuracy here due to
the lack of an analytical solution. In addition, in our implementation of this method, the
h-transform approach is substantially slower, due to the complexity of simulating paths from
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Figure 10. h-NRW estimators for 2D reactor. With the choice of h given in (8.7). Here we choose
η = 0.02, C = 0.1. (Left) The estimates for the NBP, NRW and h-NRW cases. The particles in the NRW
(started with 50,000 particles) all die out by time 20. The h-transform estimate is based on 200 particles,
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due to weight-degeneracy of the particles. (Right) The eigenvalue estimated using a particle filter approach.
Particles are resamples based on the weight of current particles to minimise the effects of weight degeneracy.
The ‘moderate h-NRW’ uses a mild version of the h-transform which is closer to the NRW.

the conditioned process, compared to the NBP. However in commercial implementations,
the complexity of the NBP will increase as the environment gets more sophisticated, and so
conditioning may become more competitive with the NBP approach, particularly when com-
bined with smarter ways to calibrate the h function. We leave details of these improvements
as the subject of future work.

APPENDIX A: MONTE-CARLO ALGORITHMS

In this appendix, we highlight briefly the approach to simulating a NRW, a NBP and a
NRW with importance sampling (respectively), which themselves feed into the basic Monte-
Carlo algorithms in Section 4 and Section 7. We assume that the basic data of D, V and
σs, πs, σf, πf are all given.

A.1. Simulating απ-NRW. We start by defining the distributions,

µsr,υ(u,∞) := e−
∫ u
0 α(r+υs,υ)ds u ≥ 0, r ∈ D, υ ∈ V

and
ηsr,υ(dυ

′) = π(r, υ, υ′)dυ′, r ∈ D, υ, υ′ ∈ V.
The algorithm below for generating a NRW will take as input the starting position and
velocity, (r, v), and the terminal time t. For later use, we will also allow the particle to start
at a positive time t0 ∈ [0, t).

Algorithm A.1 (Simulation of an απ-NRW). Given an initial configuration (r, υ), an
initial time t0 and a time horizon t:
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Step 1: Set n = 0, (r0, v0) = (r, υ) ∈ D × V .

Step 2: Given the value of tn, rn, vn, sample δn+1 with law µsrn,vn and set

tn+1 = tn + δn+1, rn+1 = rn + vnδn+1.

Step 3: Check if rn+1 ∈ D and tn+1 < t. If true, sample vn+1 with law ηsrn+1,vn, increase n
by one and go to Step 4. If false, set

tend = min{tn + inf{s > 0 : rn + vns /∈ D}, t}.

Step 4: Return ((tk, rk, vk), 0 ≤ k ≤ n) and tend.

We note that there are further algorithmic simplifications within the above description. For
example, sampling from the distribution µsr,υ can be done as follows. Suppose that e is a unit
mean exponential random variable. For each r ∈ D and υ ∈ V , the law µr,υ(·) agrees with
that of inf{t > 0 :

∫ t
0
β(r+υs, υ)ds > e}. In the case that β is bounded above by a constant,

this is further simplified through the use of a simple rejection sampling algorithm.

The above algorithm returns a sequence of variables z := {((tk, rk, vk), 0 ≤ k ≤ n), tend},
for some n, and a final time tend ≤ t. Together these fully determine the trajectory, say
((rzs, v

z
s), s < tend), of a neutron random walk, in the following way:

(A.1) rzs = rk + vk(s− tk) and vzs = vk, if tk ≤ s < tk+1 ∧ tend,

where we take tn+1 = ∞. By simulating many particles in this manner, the value of the
semigroup may be estimated via (4.2).

A.2. Simulating (σs, πs, σf,P)-NBP when only σs, πs, σf, πf is given. Building on
Section A.1, we have the following algorithm which generates the branching particle system.
We need the following notation. Let z be a trajectory as defined above. Then we define a
measure on [tz0,∞) ∪ {∞} by:

µfz((u,∞) ∪ {∞}) := e
−

∫ u∧tzend
tz0

σf(rzs,vzs)ds, u ≥ tz0

and a measure on V by

ηfz,t(dυ
′) =

πf(rzt , v
z
t , υ
′)dυ′

πf(rzt , vzt , V )
, υ′ ∈ V.

In order to simulate a NBP with given data σs, πs, σf, πf, we need to supply additional
information, as the family of densities πf(r, υ, ·), r ∈ D, υ ∈ V only tells us the mean
behaviour of the point process of outgoing fission velocities, whose probabilities were denoted
by P(r,υ), r ∈ D, υ ∈ V . Moreover, there is no unique way to choose P(r,υ), r ∈ D, υ ∈ V
given πf(r, υ, ·), r ∈ D, υ ∈ V .

36



This does not present a problem however, to the contrary it presents an opportunity. As all
of our estimators that are based on the NBP are built around the notion of mean growth, we
are at our liberty to choose a convenient (P(r,υ), r ∈ D, υ ∈ V ), and, as we shall see below,
an obvious choice is that of a Poisson random field with intensity density given by πf(r, υ, ·),
r ∈ D, υ ∈ V . As a small remark, this choice is unrealistic as a physical model given the
assumption (H2), however for the synthetic purposes of Monte-Carlo simulation, it is very
convenient both practically and mathematically.

Below, we give the algorithm to produce the paths of the NBP. Note that, unlike the NRW,
the output of the NBP is a random number of trajectories that may have birth times
bi = ti0 and death times tiend which may be strictly postive, and strictly before the end
time t. The object returned will therefore be a set of trajectories (via (A.1)) of the form
{((tik, rik, vik), 0 ≤ k ≤ ni), tiend}Ni=1, where N is the (random) total number of particles in the
branching process.

Algorithm A.2 (Simulation of a (σs, πs , σf, πf)-NBP). Given an initial configuration
(r1, υ1), · · · (r`, υ`) and a time horizon t:

Step 1: Set `0 = `, bi = 0, i = 1, · · · , `0, X0 = {(r1, υ1, b1), · · · , (r`, υ`, b`)} and n = 0.

Step 2: For each i ∈ {1, . . . , `n} and corresponding (ri, υi, bi) ∈ Xn such that bi < t, run
Algorithm A.1 to produce a σsπs-NRW with initial configuration (ri, υi), birth time bi and
terminal time t. Denote the resulting NRW by zi,n := {((ri,nk , ti,nk , vi,nk ), 0 ≤ k ≤ mi,n), ti,nend}.
Step 3: For each i ∈ {1, . . . , `n} and corresponding (ri, υi, bi) ∈ Xn such that bi < t, sample
γi,n with law µfzi,n and then, if γi,n ≤ ti,nend:

1. Sample ξi,n independent variables ui,n1 , . . . , ui,n
ξi,n

with probability density ηfzi,n, where ξ
i,n

is Poisson distributed with parameter πf(ri,nγi,n , v
i,n
γi,n

, V ); and
2. Trim the path zi,n at time γi,n, that is, set m̃i,n to be the largest integer k ≤ mi,n such

that ti,nk ≤ γi,n, and redefine zi,n := {((ri,nk , ti,nk , vi,nk ), 0 ≤ k ≤ m̃i,n), γi,n}.

Step 4: Let Xn+1 be the set: {(ri,n
γi,n

, ui,nj , γ
i,n); 1 ≤ i ≤ `n, 1 ≤ j ≤ ξi,n, ti,n0 < t}. Set

`n+1 := |Xn+1|.
Step 5: If `n+1 > 0, go to Step 2. Otherwise stop and return X = {zi,n; 1 ≤ i ≤ `n, n ∈ N}.

In this algorithm, we then estimate the semigroup using (4.1), so we have (in the notation
of the algorithm above):

Ψk[g](t, r, υ) =
1

k

∑
z∈X

g(rzt )1(tzend≥t).
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Figure 11. An example of a slice through a mock nu-
clear reactor design in which some neutron path simu-
lations are depicted. The reactor core displays symme-
try.

Let us make some practical notes on the sim-
ulation of a (σs, πs, σf, πf)-NBP, pertaining
in particular to how such simulations are
performed in industrial software. The geo-
metric structure of a virtual reactor will be
designed on a special CAD tool. After that,
according to the physical properties of the
materials used, the values of the four cross-
sections (σs, πs, σf, πf) are mapped from
data libraries into the different geometri-
cal regions. This generates numerically the
piecewise constant functions (σs, πs, σf, πf)
across the entire space-velocity domain D×
V . The construction of this numerical rep-
resentation of the cross-sections in a virtual
nuclear reactor can be stored in a file whose
size5 is as little as 150MB. Thereafter, the
NBP simulation calls upon the values in this file as it samples from e.g. µfr,υ and ηfr,υ.

A.3. Simulating απ-NRWMonte-Carlo with importance sampling. In conclusion,
a second proposed efficiency to the Monte-Carlo simulation of solutions to the NTE is to
make an educated guess at the shape of ϕ, the function h and then to adapt Algorithm A.1
as follows.

Algorithm A.3.

Run Step 1 - 4 of Algorithm A.1 replacing the quantities α, β and π by

αh(r, υ) =
α(r, υ)

∫
V
h(r, υ′)π(r, υ, υ′) dυ′

h(r, υ)
, βh(r, υ) =

Jh(r, υ)

h(r, υ)
+ β(r, υ)

and
πh(r, υ, υ′) =

h(r, υ′)∫
V
h(r, υ′)π(r, υ, υ′) dυ′

π(r, υ, υ′),

noting that tend = t always.

In this case, the Monte-Carlo estimate of the operator Ψk[g] is then given by (8.1).

APPENDIX B: A MANY-TO-TWO LEMMA FOR NBP

Recall the notation of (3.1) and define, for r ∈ D, υ ∈ V , f, g ∈ L+
∞(D × V ),

(B.1) ηf[f, g](r, υ) = σf(r, υ)E(r,υ)

[
N∑

i,j=1,i 6=j
f(υi)g(υj)

]
.

5This is information which has been shared with us by our industrial partner at the ANSWERS group in
Jacobs.
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As an abuse of notation, we will also write, for r ∈ D, υ ∈ V , f ∈ L∞(D × V ),

ηf[f ](r, υ) := ηf[f, f ](r, υ) = σf(r, υ)E(r,υ)

[
N∑

i,j=1,i 6=j
f(υi)f(υj)

]
.

We have the following two point correlation formula (also called the many-to-two formula;
cf [15]).

Lemma B.1 (Many-to-two). Suppose that f, g ∈ L+
∞(D × V ). Then

Eδ(r,υ)

[
〈f,Xt〉〈g,Xt〉

]
= ψt[fg](r, υ) +

∫ t

0

ψs

[
ηf[ψt−s[f ], ψt−s[g]]

]
(r, υ)ds.(B.2)

Proof. The proof follow the arguments in Harris & Roberts [15], which can be easily
adapted to the current context.

As a first step, we note that, for h ∈ L+
∞(D × V ) and H : R+ × D × V → R+ continuous

and bounded, the function

ut(r, υ) := E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsh(Rt,Υt)1(t<τD)

]
+ E(r,υ)

[∫ t∧τD

0

H(s, Rs,Υs)e
∫ s
0 β(Ru,Υu)duds

]

= ψt[h](r, υ) + E(r,υ)

[∫ t∧τD

0

H(s, Rs,Υs)e
∫ s
0 β(Ru,Υu)duds

]
,(B.3)

for t ≥ 0, r ∈ D and υ ∈ V , uniquely solves the integral equation

(B.4) ut(r, υ) = Ut[h](r, υ) +

∫ t

0

Us
[
H(s, ·) + (S + F)ut−s

]
(r, υ)ds.

We only sketch the proof of this fact for the sake of brevity. To see why this is the unique
solution, it suffices to return to the proof of e.g. Lemma 6.1 in [7] and note that the approach
given there works equally well here. That is to say, we first condition the right-hand side of
(B.3) on the first fission or scattering event, whichever comes first, to generate a recursion
in u. This can then be manipulated further with the help of Lemma 1.2, Chapter 4 in [13]
to obtain (B.4). Finally uniqueness of the latter follows by a standard argument appealing
to Grönwall’s Lemma.

To complete the proof of (B.2), it suffices to consider the case f = g, as the general form
will follow from the polarisation

Eδ(r,υ)

[
2〈f,Xt〉〈g,Xt〉

]
= Eδ(r,υ)

[
〈f + g,Xt〉2

]
− Eδ(r,υ)

[
〈f,Xt〉2

]
− Eδ(r,υ)

[
〈g,Xt〉2

]
.

To this end, denote by wt(r, υ) = Eδ(r,υ)[〈g,Xt〉2], for t ≥ 0, r ∈ D, υ ∈ V . For convenience,
write Πt(r, υ) = exp(

∫ t
0
σ(r + `υ, υ)d`), for r ∈ D, υ ∈ V . Once again, by conditioning on
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the first scattering or fission event and then applying Lemma 1.2, Chapter 4 in [13], we get

wt(r, υ) = Ut[g2](r, υ) +

∫ t

0

Us

[
σsΠs

∫
V

wt−s(r, υ
′)πs(·, ·, υ′)dυ′

]
(r, υ)ds

+

∫ t

0

Us

[
σfΠsE(r,υ)

[
N∑

i,j=1,i 6=j
ψt−s[g](·, υi)ψt−s[g](·, υj) +

N∑
i=1

wt−s[g](·, υi)
]]

(r, υ)ds

= Ut[g2](r, υ) +

∫ t

0

Us[(S + F)wt−s](r, υ)ds+

∫ t

0

Us
[
ηf[ψt−s[g]]

]
(r, υ)ds.

Using the representation of the solution to (B.3) with h = g2 and H(s, ·, ·) = ηf[ψt−s[g]], we
get (B.2).

APPENDIX C: NBP MONTE-CARLO CONVERGENCE

Proof of Theorem 5.1. The estimator Ψbr
k as defined in (4.1) is unbiased. Essentially

the proof is based around a study of its variance, which amounts to studying the variance of
the branching system, since

(C.1) Eδ(r,υ)

[(
Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
=

1

k

(
Eδ(r,υ)[〈g,Xt〉2]− ψt[g](r, υ)2

)
.

We shall rely upon the many-to-few formula in Lemma B.1 to compute the above. Accord-
ingly, we now claim as an intermediate step.

Lemma C.1. We have for all t ≥ 0, k ∈ N,

Eδ(r,υ)

[(
Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
(C.2)

=
1

k

{
ψt[g

2](r, υ) +

∫ t

0

ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds− ψt[g](r, υ)2

}
.

Subsequently, it has the following asymptotics as t→∞.

(i) If λ∗ = 0, then for fixed k,

lim
t→∞

k

t
· Eδ(r,υ)

[(
Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
= 〈ηf[ϕ], ϕ̃〉〈g, ϕ̃〉2ϕ(r, υ) := C[1](g, r, v) .

(ii) If λ∗ > 0, then for fixed k,

lim
t→∞

e−2λ∗tk · Eδ(r,υ)

[(
Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
= 〈g, ϕ̃〉2

(∫ ∞
0

e−2λ∗sψs
[
ηf[ϕ]

]
(r, υ)ds− ϕ(r, υ)2

)
:= C[2](g, r, v) ∈ [0,∞).

(iii) If λ∗ < 0, then for fixed k,

lim
t→∞

e−λ∗tk · Eδ(r,υ)

[(
Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
= ϕ(r, υ)

{
〈g2, ϕ̃〉+

∫ ∞
0

e−λ∗s〈ϕ̃, ηf
[
ψs[g]

]
〉ds
}

:= C[3](g, r, v) ∈ [0,∞).
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Proof. The display (C.2) is an easy consequence of (B.2). We turn to the asymptotics.
Appealing to (2.3), we have for any f ∈ L+

∞(D × V ) and δ > 0, there exists some constant
K ∈ (0,∞) and some t0 = t0(δ) such that

(C.3) sup
t≥0
‖e−λ∗tψt[f ]‖∞ ≤ K‖f‖∞ and ‖e−λ∗tψt[f ]−〈f, ϕ̃〉ϕ‖∞ ≤ δ‖f‖∞, for all t ≥ t0.

On the other hand, it follows from (B.1) that ηf is a symmetric bilinear form, hence

(C.4) |ηf[f ](r, υ)− ηf[h](r, υ)| = |ηf[f − h, f + h](r, υ)| ≤ C‖f − h‖∞(‖f‖∞ + ‖h‖∞),

where in the last inequality we have used the fact that ‖σf‖∞ <∞ and the offspring number
is also uniformly bounded by some constant B, so that in above C := ‖σf‖∞B < ∞. In
particular, taking h = 0 yields

(C.5) ‖ηf[f ]‖∞ ≤ C‖f‖2
∞.

Also, we clearly have

(C.6) f, g ∈ L∞, f ≤ g ⇒ ψt[f ] ≤ ψt[g], t ≥ 0.

Let us look at the supercritical case, i.e. λ∗ > 0. The arguments consist in extracting the
dominant growth rate from (C.2) as t→∞. To that end, we first split the integral in (C.2)
into two parts:∫ t

0

ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds =

∫ t

t−t0
ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds+

∫ t−t0

0

ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds.

Note that the first term on the right-hand side is of order o(e2λ∗t). Indeed,∫ t

t−t0
ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds ≤

∫ t

t−t0
ψs

[
ηf
[
K‖g‖∞eλ∗(t−s)

]]
(r, υ)ds by (C.3)

≤
∫ t

t−t0
ψs

[
CK2‖g‖2

∞e
2λ∗(t−s)

]
(r, υ)ds by (C.5)

≤ CK3‖g‖2
∞e

2λ∗t

∫ t

t−t0
e−λ∗sds by (C.6) and (C.3)

= o(e2λ∗t), as t→∞.
On the other hand, for the second term, we have∣∣∣ ∫ t−t0

0

ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds− 〈g, ϕ̃〉2

∫ t−t0

0

e2λ∗(t−s)ψs
[
ηf[ϕ]

]
(r, υ)ds

∣∣∣
≤
∫ t−t0

0

ψs

[∣∣∣ηf[ψt−s[g]
]
− ηf

[
〈g, ϕ̃〉eλ∗(t−s)ϕ

]∣∣∣](r, υ)ds

≤
∫ t−t0

0

ψs

[
e2λ∗(t−s)δCK‖g‖∞(‖g‖∞ + |〈g, ϕ̃〉|‖ϕ‖∞)

]]
ds by (C.3), (C.4)

≤ δCK‖g‖∞(δ‖g‖∞ + 2|〈g, ϕ̃〉|‖ϕ‖∞)e2λ∗t

∫ t−t0

0

e−λ∗sds by (C.3)

= O(δe2λ∗t), as t→∞.
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Since δ is arbitrary, when combined with the fact that the integral∫ ∞
0

e−2λ∗sψs[ηf[ϕ]](r, υ)ds ≤ CK‖ϕ‖2
∞

∫ ∞
0

e−λ∗sds <∞,

the above implies∫ t−t0

0

ψs

[
ηf[ψt−s[g]]

]
(r, υ)ds t→∞∼ 〈g, ϕ̃〉2e2λ∗t

∫ ∞
0

e−2λ∗sψs[ηf[ϕ]](r, υ)ds.

The asymptotics in the supercritical case then easily follows. Next, we consider the subcritical
case, i.e. λ∗ < 0. We start with a change of variable:∫ t

0

ψs

[
ηf
[
ψt−s[g]

]]
(r, υ)ds =

∫ t

0

ψt−s
[
ηf
[
ψs[g]

]]
(r, υ)ds.

Note that by (C.3) and (C.5),∫ t

t−t0
ψt−s

[
ηf
[
ψs[g]

]]
(r, υ)ds ≤ CK2‖g‖2

∞

∫ t

t−t0
e2λ∗s+λ∗(t−s)ds = o(eλ∗t), as t→∞,

since λ∗ < 0. On the other hand, applying (C.3) to ψt−s and ηf
[
ψs[g]

]
, noting the latter is

bounded by CK2e2λ∗s‖g‖2
∞ as consequence of (C.5) and (C.6), we get∣∣∣∣ ∫ t−t0

0

ψt−s
[
ηf
[
ψs[g]

]]
(r, υ)ds− eλ∗tϕ(r, υ)

∫ t−t0

0

e−λ∗s〈ϕ̃, ηf
[
ψs[g]

]
〉ds
∣∣∣∣

≤
∫ t−t0

0

δeλ∗(t−s)
∥∥ηf[ψs[g]

]∥∥
∞ds

≤
∫ t−t0

0

δeλ∗(t+s)CK2‖g‖2
∞ds = O(δeλ∗t), as t→∞.

Arguing as in the previous case, we conclude that∫ t

0

ψt−s
[
ηf
[
ψs[g]

]]
(r, υ)ds t→∞∼ eλ∗tϕ(r, υ)

∫ ∞
0

e−λ∗s〈ϕ̃, ηf
[
ψs[g]

]
〉ds,

which in turn implies the result in the subcritical case. The proof in the critical case follows
from similar arguments and is therefore omitted.

We begin by noting the following estimates, which follow from the concavity of the function
ht(x) := x1/t. Fix x0 ∈ (0,∞), and consider x ≥ 0. Then

0 ≤ ht(x)− ht(x0) ≤ (x− x0)
x

1/t−1
0

t
, x ≥ x0

0 ≤ ht(x0)− ht(x) ≤ (x0 − x)x
1/t−1
0 , x ≤ x0
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From which we deduce the inequality for all x ≥ 0

(ht(x)− ht(x0))2 ≤ (x− x0)2

(
x

1/t−1
0 max

{
1,

1

t

})2

.

Now returning to the estimation of the lead eigenvalue, by appealing to the above inequality
and (x+ y)2 ≤ 2x2 + 2y2 we get

E
[( (

Ψbr
k [g](t, r, υ)

)1/t − eλ∗
)2]

≤ 2

min{1, t2}
E
[(

Ψbr
k [g](t, r, υ)− ψt[g](r, υ)

)2]
ψt[g](r, υ)2−2/t

+ 2
(

(ψt[g](r, v))1/t − eλ∗
)2

.

(C.7)

The proof of Theorem 5.1 now follows from the above inequality, (2.3) and the estimates in
(i) - (iii) of Lemma C.1.

APPENDIX D: NRW MONTE-CARLO CONVERGENCE

We need the following intermediate result, before turning to the proof of Theorem 6.1.

Lemma D.1. Under the conditions of Theorem 6.1, we have

(D.1) max(2λ∗, λ∗ + β) ≤ λ1 ≤ λ∗ + β.

Proof. We have, on the one hand, that

ψ1
t [g

2](r, υ) := E(r,υ)

[
e
∫ t
0 2β(Rs,Υs)dsg(Rt,Υt)

21(t<τD)

]
≤ eβ̄tE(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt,Υt)

21(t<τD)

]
= eβ̄tψt[g

2](r, υ)(D.2)

On the other hand, by Jensen’s inequaltiy,

ψ1
t [g

2](r, υ) ≥ E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt,Υt)1(t<τD)

]2

= ψt[g](r, υ)2(D.3)

and also that

ψ1
t [g

2](r, υ) ≥ eβtE(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt,Υt)

21(t<τD)

]2

= eβtψt[g
2](r, υ)(D.4)

By taking logarithms, dividing by t and then taking t→∞ using Theorem 2.2 in (D.2) and
(D.3), (D.4) respectively, yields the desired bounds.

Proof of Theorem 6.1. In a similar spirit to (C.1), we note that

E(r,υ)

[(
Ψrw
k [g](t, r, υ)− ψt[g](r, υ)

)2]
=

1

k

(
E(r,υ)

[
e
∫ t
0 2β(Rs,Υs)dsg(Rt,Υt)

21(t<τD)

]
− ψt[g](r, υ)2

)
.(D.5)

43



Next we note that ψ1
t [g

2], which was previously defined in (D.2), behaves similarly to ψt[g],
albeit that the potential β is replaced by 2β and g by g2. Invoking Theorem 2.2, taking note
of Remark 3.2, we thus conclude that there exists a λ1 with accompanying eigenfunctions ϕ1

and ϕ̃1 in L+
∞(D × V ) such that

(D.6) sup
g∈L+

∞(D×V ):‖g‖∞≤1

∥∥e−λ1t(ϕ1)−1ψ1
t [g

2]− 〈ϕ̃1, g
2〉
∥∥
∞ = o(e−εt) as t→ +∞.

Taking advantage of (C.7), the desired conclusion follows with the help of (D.6) and Lemma
D.1 .

APPENDIX E: h-NRW MONTE-CARLO CONVERGENCE

Proof of Theorem 8.1. In that case, we note from the proof of Theorem 6.1, that the
crux of the argument there boils down to the estimate (C.7) together with the analogue of
(D.5), which reads

Eh
(r,υ)

[(
Ψh-rw
k [g](r, υ)− ψt[g](r, υ)

)2
]

=
1

k

(
Eh

(r,υ)

[
exp

(
2

∫ t

0

Lh(Rs,Υs)

h(Rs,Υs)
+ β(Rs,Υs)ds

)
g(Rt,Υt)

2

h(Rt,Υt)2
1(t<τD)

]
− ψt[g](r, υ)2

)
≤ 1

k

(
Eh

(r,υ)

[
exp

(
2

∫ t

0

Lh(Rs,Υs)

h(Rs,Υs)
+ β(Rs,Υs)ds

)
1(t<τD)

]
− ψt[g](r, υ)2

)

=
1

k

(
E(r,υ)

[
exp

(∫ t

0

Lh(Rs,Υs)

h(Rs,Υs)
+ 2β(Rs,Υs)ds

)
h(Rt,Υt)

h(r, υ)
1(t<τD)

]
− ψt[g](r, υ)2

)(E.1)

where we have used that g ≤ h.

To complete the proof, appealing to (8.3), we can follow the reasoning in the proof of Theorem
6.1 and Lemma D.1. In particular, if we write

ς := sup
r∈D,υ∈V

(L + β)h(r, υ)

h(r, υ)
≤ sup

r∈D,υ∈V

Lh(r, υ)

h(r, υ)
+ β <∞,

and
ς := inf

r∈D,υ∈V

(L + β)h(r, υ)

h(r, υ)
,

then there exists a λ2 satisfying λ∗+ ς ≤ λ2 ≤ λ∗+ ς. such that the desired result holds.

Proof of Lemma 8.2. We can take inspiration from the proof of Lemma 6.2, which is
given immediately preceding the statement of the lemma. In particular considering (6.2),
when we are under the assumptions of Theorem 8.1, appealing to (8.2), for f ∈ L+

∞(D× V )
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the cost function (6.1) satisfies

Eh
(r,υ)

[
Ct[f ]

]
= Eh

(r,υ)

[∫ t

0

1(s<τD)αhπh[f ](Rs,Υs)ds
]

(E.2)

= Eh
(r,υ)

[∫ t

0

1(s<τD)α(Rs,Υs)

∫
V

f(Rs, υ
′)
h(Rs, υ

′)

h(Rs,Υs)
π(Rs,Υs, υ

′)dυ′ds
]

=
1

h(r, v)
E(r,υ)

[ ∫ t

0

1(s<τD)e
−

∫ s
0

Lh
h

(Ru,Υu)duα(Rs,Υs)∫
V

f(Rs,Υs)h(Rs, υ
′)π(Rs,Υs, υ

′)dυ′ds
]

≤ ||αhf ||∞
h(r, υ)

∫ t

0

E(r,υ)

[
e
∫ s
0 β(Ru,Υu)du1(s<τD)e

−
∫ s
0

(L+β)h
h

(Ru,Υu)du
]
ds(E.3)

where we have used (7.16). Recalling the definition in (8.5), as well as the conclusion of
Theorem 2.2, it is straightforward to estimate from (E.3) that

lim sup
t→∞

e−(λ∗−ς)tEh
(r,υ)

[
Ct[f ]

]
<∞.

In the event that λ∗ = ς, we need to be a little more careful and note that the integrand is
asymptotically a constant, and, in that case, the expected cost grows no faster than linearly.

In the second case, where the conditions on the domain are satisfied, then the argument
follows by careful consideration of (E.2). We first define U f

n := {(r, v)|αhπh[f ] ∈ [n, n+ 1)}.
Note that as a consequence of the lower bound on f , scatter events on this set happen with
rate at least nc−1

0 . Moreover, given there is a scatter event in U f
n , the scatter event will result

in scatter to Ω0 with probability at least p0. For a fixed time s, we write τs := sup{u ≤
s|(Ru,Υu) 6= (Rs − (s− u)Υs,Υs), the time of the most recent scatter event. Then let

Ant := {(Rs,Υs) ∈ Ω0 for all s ∈ [τt, t], and (Rτt−,Υτt−) ∈ U f
n}

that is, the event that at time t, the process is in Ω0, and has been in Ω0 since the most
recent scatter event, which happened in the set U f

n . Note that the sets Ant are disjoint for
fixed t.

As a consequence of the assumption on αh, we can find ε = ε(δ) > 0 such that, conditional
on starting at any (r, v) ∈ Ω0, then the expected time to the next jump is at least ε. Then
we have the (approximate!) inequality:

Eh(r,v)

[∫ t∧τD

0

1Ans ds

]
≥ Eh(r,v)

[∫ t∧τD

0

1(Rs,Υs)∈Ufn ds
]

(1 + εc−1
0 p0n)

where the identity follows from the fact that the process jumps out of the set U f
n into Ω0 at

rate at least c−1
0 p0n, and once it is there, spends on average at least ε time units.

Since we must have ∑
n≥0

Eh(r,v)

[∫ t∧τD

0

1Ans ds

]
≤ t
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we conclude that ∑
n≥0

n · Eh(r,v)

[∫ t∧τD

0

1(Rs,Υs)∈Ufn ds

]
≤ Ct

for some constant C. Substituting this estimate into (E.2) gives the desired conclusion.

APPENDIX F: THE ONE-DIMENSIONAL SLAB REACTOR

Proof of Proposition 9.1. Denote by Λ the set of eigenvalues for which there exists
ϕ̃ ∈ L+

∞(D × V ) and ϕ ∈ L+
∞(D × V ) such that (9.3) holds. According to Theorem 2.2,

λ∗ ∈ Λ and λ∗ = sup Λ.

Suppose that λ ∈ Λ and let χ be the associated eigenfunction: Aχ = λχ. Let us write
f+(r) = χ(r, υ0) and f−(r) = χ(r,−υ0). Using (9.2), we can build candidates for χ in
L+

2 (D × V ) from the pointwise relations

(F.1)
d

dx

(
f+

f−

)
= Mλ

(
f+

f−

)
, where Mλ =

1

υ0

(
λ− σf + σs −σs

σs −(λ− σf + σs)

)
,

together with the boundary conditions

(F.2) f+(L) = f−(−L) = 0

To solve (F.1) and (F.2), let us first suppose that

(F.3) (λ− σf + σs)
2 6= σ2

s ⇐⇒ λ 6= σf or λ 6= σf − 2σs,

In this case, Mλ has two distinct eigenvalues ±αλ, where

(F.4) αλ =
√
−Det(Mλ) =

1

υ0

√
(λ− σf + σs)2 − σ2

s ∈ R+ ∪ iR+.

Then by elementary results for ODEs, for fixed λ, the solutions to (F.1), (F.2) take the
following form

(F.5) f+(r) = C(e−αλr − eαλr−2αλL), f−(r) = C ′(eαλr − e−αλr−2αλL),

where C,C ′ ∈ R \ {0}. Differentiating (F.5), we find

d

dx

(
f+

f−

)
=

(
−αλ coth(2αλL) − C

C′
αλ

sinh(2αλL)
C′

C
αλ

sinh(2αλL)
αλ coth(2αλL)

)(
f+

f−

)
Comparing this with (F.1), we get

(F.6)
C

C ′
=
C ′

C
,

C ′

C

αλ
sinh(2αλL)

=
σs
υ0

and αλ coth(2αλL) = −λ− σf + σs
υ0

.

This first identity yields C/C ′ = 1 or −1. This then implies

(F.7)
∣∣∣∣ 2αλ
sinh(2αλL)

∣∣∣∣ =
2σs
υ0

.
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Recall that αλ ∈ R+∪iR+. If αλ ∈ R+, then (F.7) has a solution if and only if θ = υ0/(2σs) ≥
1. Moreover, if θ > 1, (F.7) has a unique solution in [0,∞). Denote by x∗ this unique solution.
It follows from (F.7) that αλ = x∗

2L
. Since x/ sinh(x) ≥ 0 for x ∈ R, (F.6) implies that

C = C ′ and λ− σf + σs < 0.

We then deduce from (F.4) that in the case where θ > 1, we have

αλ =
x∗
2L

and λ = σf − σs −
√
σ2
s +

(υ0x∗
2L

)2

.

Plugging this into (F.5) and renormalising f+, f− by taking C−1 = f+(0), we obtain the
formula (9.5) and (9.6) in the case θ > 1. Next, suppose that αλ ∈ iR+. In that case, (F.7)
has a solution if and only if θ = υ0/(2σs) ≤ 1. Moreover, if θ < 1, (F.7) has a finite number
of solutions in iR+, which we denote as ixk, 1 ≤ k ≤ n, with 0 < x1 < x2 < · · · < xn. By a
similar argument as before, for each xk, 1 ≤ k ≤ n, we get

αλ =
xki
2L

, λ = σf − σs − sgn(cot(xk))

√
σ2
s −

(υ0xk
2L

)2

and
C

C ′
= sgn(cot(xk)).

Moreover, we have x1 ∈ (0, π). Therefore, in the case θ < 1, λ∗ = max Λ is given by (9.10)
and we deduce the forms of the corresponding ϕ, ϕ̃ from (F.5).

Finally, we consider the case where (λ− σf + σs)
2 = σ2

s. An elementary computation shows
that (F.1) and (F.2) have a solution in this case if and only if θ = 1. In that case, the solution
is given by

λ = σf − 2σs, f+(r) = 1− r

L
and f−(r) = 1 +

r

L
.

Together with our earlier remarks regarding the relationship between ϕ and ϕ̃, this concludes
the proof.
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