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Summary

In this thesis we study models for market making, including the case where trades

are subject to a trade acceptance protocol, or ‘last look’ mechanism. We study

existing models of market making, adding rigour and adapting them in new ways

to the last look case. We also propose a number of novel continuous models

for market making that may be considered natural extensions of their discrete

counterparts, both with and without last look, which allow us to prove results

via spectral theory about the long-run value of market making.

The final chapter includes the paper ‘Using Echo State Networks to Approximate

Value Functions for Control Problems’ ([56]), the result of a collaborative project

between the author, another PhD student and their supervisors undertaken dur-

ing the PhD, which includes an application to the market making problem.
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Chapter 1

Introduction

In this thesis we study models for market making, including the case where trades

are subject to a trade acceptance protocol, or ‘last look’ mechanism. We study

existing models of market making and adapt them to the last look case and also

introduce and study new related models of our own.

Broadly speaking, this thesis sits in the field of ‘market microstructure’, a rel-

atively young area of mathematical finance. Since the 1990s the proportion of

orders in financial markets that are implemented in a discretionary and manual

manner by human traders has decreased significantly. Financial markets are in-

creasingly dominated instead by trading that is algorithmic and automated at

high-frequency. This has led to a surge in interest in microstructure models both

from practitioners and regulators and an ever increasing literature. See for ex-

ample [23], [67], [34], [25] and [16] for recent texts giving a good overview of the

range of techniques being employed. As computing power increases and machine

learning approaches become ever more prevalent, a field of ‘econopyhsics’ has also

emerged, combining a range of practical methodologies trained on and derived

from deep insights from models in mathematics and physics.

Our approaches are mostly rooted in applications of stochastic control to market

making problems. In Section 1.1 we begin by describing what is meant by market

making and in Section 1.2 we describe what we mean by ‘last look’ or trade

acceptance protocols and discuss why they are of interest. In Section 1.3 we take
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a brief tour of the most relevant existing literature and in Section 1.4 we set out

some mathematical preliminaries. Finally, in Section 1.5 we give an overview of

the rest of this thesis.

1.1 Market Making

This thesis is about market making and so we begin by attempting to define this

term. As Guéant notes in [51] this is not as easy as it may first appear as a result

of the electronification of markets and the emergence of high-frequency trading in

many of them blurring the boundaries of different types of trading. So we begin

by setting out an understanding of what we will mean by a market maker in the

remainder of this thesis.

Market makers are financial agents who post limit orders in financial markets,

indicating prices at which they would be willing to buy (bid) and sell (ask)

specified quantities of an asset, currency or other financial product. They hope

to profit by exploiting the difference between the bid and ask prices (the bid-ask

spread) without looking to take any long term position in the product they are

buying and selling. By posting passive limit orders they provide liquidity to a

financial market, making prices available to liquidity taking market participants

looking to buy or sell immediately. The profit they make from the round trip

trades they are able to make may be seen as a return for taking the risk of adverse

price movements, uncertain executions and the possibility of adverse selection in

markets with informed traders ([64], [48]).

On some financial exchanges, the role of a market maker might be a defined one,

where so called ‘designated’ market makers receive preferential transaction fees

(or sometimes even rebates) in exchange for a promise to continuously provide a

certain level of liquidity, regardless of underlying market conditions. Indeed this

is certainly the traditional view of market making, but a significant and increasing

proportion of liquidity in financial markets is now also provided by other agents

who employ market making strategies. They provide liquidity, seeking to make

a profit from their strategies without any formal obligation or agreement with

the trading venue. Also, some market makers may offer one-to-one facilities to

clients with buy and sell prices quoted. We will ignore this distinction and simply
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consider a market maker as any trader who is continuously providing limit orders

on both the bid and ask side or the order book.

The market maker generally only places passive limit orders but may also have

access to a stream of liquidity taking orders, which we will generally consider as

originating as orders from clients of an investment bank with genuine exogenous

demand for the product. In practice, however, it may be challenging or even

impossible for the market maker to guarantee the type of counterparty they will

trade with, and orders could also originate from other market makers or high

frequency traders seeking short term profits.

The market maker’s concerns may be complex, but there are two primary forces

driving their decisions. Firstly, their problem is principally one of pricing the cost

of holding inventory in an uncertain environment. The market maker is assumed

to hold no underlying belief about the long term performance of the asset and

is simply in the business of providing liquidity and profiting from the bid-ask

spread. Whilst holding a long inventory the market maker fears decreases in

the price of the asset, and they lose out from increases whilst they hold a short

position. Their primary concern is to charge a sufficient premium in their bid-ask

spread in order to cover these volatility risks.

A very significant secondary concern for the market maker is informational dis-

advantage. That is, they may be trading not with agents with an exogenous

demand uncorrelated with future price moves, but with agents who hold insider

knowledge about future price movements. In particular, in markets where high-

frequency trading is common, there is a risk of trading with counterparties who

have actual knowledge of price movements or demand over very short time hori-

zons. This knowledge may potentially be legitimate, for example knowledge of

their own planned future order flow, but it may also be more dubious or even

illegal, for example relating to insider trading, illegitimately acquired information

regarding news announcements or front-running client order flow amongst other

possibilities.

The growth of high frequency trading and an increasing accessibility of the mar-

kets to independent and non-institutional traders has amplified these concerns.

Without a mechanism to protect against this, market makers are vulnerable to
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a range of counterparties whose order flow they may consider toxic. Latency

arbitrageurs are one such possible counterparty, who have the potential to sig-

nificantly undermine the profitability of a market maker’s business by accessing

and trading on market updates at a very fast rate (perhaps only milliseconds). A

market maker has two choices in how to deal with this. They must either increase

their own spending on latency reducing technologies to reduce the informational

disadvantage, or introduce delays and trade acceptance (‘last look’) protocols to

minimise the impact of this disadvantage. The latter option has the advantage

that it may also protect simultaneously against other forms of toxic order flow

and is the choice we study in detail in Chapter 5 and so we introduce it in detail

in the next section.

1.2 Last Look

A trade acceptance protocol, or ‘last look’ mechanism, is a process by which a

market maker may decide to reject a trade after a certain hold time (typically be-

tween 20 and 200 milliseconds). This time allows the market maker to undertake

various checks, which could include security checks and other internal protocols,

and will typically also include a price update to check for any significant short

term movements in price.

Mathematically, we will consider market making on a product whose mid-price

is modelled by an arithmetic1 Brownian motion

dSt = σdWt.

Then our last look condition will be that if an order is submitted at time t it will

be confirmed at time t+ δt (at a price quoted at time t) if

−ξ1 < St+δt − St < ξ2,

and cancelled otherwise. In practice the last look horizon δt and the rejection

1The choice of arithmetic as opposed to geometric Brownian motion is motivated by math-
ematical simplicity, and justified by the short time horizons we will consider.
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boundaries ξ1 and ξ2 are to be agreed between the market maker and the client

and may be included in the terms and conditions of the market making contract.

In practice levels of transparency over the details of trade acceptance criteria

vary between liquidity providers, as does the length of time δt between order and

confirmation or rejection ([87], [69]). It may also be that either ξ1 or ξ2 could be

set to ∞ in which case the trade is unconditional in one or both directions. The

case ξ1 = ξ2 = ∞ would correspond to an entirely unconditional trade with no

last look criterion. The papers of [78], [79] and [20] have studied last look models

from a mathematical perspective, though last look models do not seem to have

attracted a very large academic attention in general and so the approach we take

to them in Chapter 5 is a novel one.

Another discrepancy between market makers is whether they offer last look facili-

ties which are ‘symmetric’ or ‘asymmetric’. The term ‘asymmetric’ here typically

implies that the last look feature always acts to protect the market maker against

adverse price moves, but not the liquidity taking client. That is, the trade ac-

ceptance criteria may be set to cancel trades on the ask side only when the price

increases over the last look window and on the bid side when it decreases.

In a ‘symmetric’ last look facility, trades would be cancelled when the market

moves significantly in either direction during the last look window, thus providing

protection to both parties. It should be noted that many other interpretations of

symmetry are possible and Oomen ([79]) considers various such interpretations.

The simplest definition is to take ξ1 = ξ2 (both on the bid and ask side), and this

is generally how we will proceed here. Other interpretations of symmetry might

require ξ1 ̸= ξ2 or different conditions on the bid and ask side, for example if the

aim is to balance reject rates in each direction, or the overall cost of rejections to

each party. According to a recent survey ([87]), of the top 50 liquidity providers,

32 currently offer symmetric facilities, 6 asymmetric and 3 no default position.2

Our primary focus is the symmetric case, but we also consider more general

conditions where possible.

In recent years the use of last look has found significant regulatory interest,

and in one case has led to a fine of $150 million and a subsequent high profile

29 providers did not disclose this information and some of those with default positions also
offer clients an option to apply different rejection criteria on request.
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employment tribunal case ([74]) for a major liquidity provider, demonstrating

both the complexity and inconsistencies in the theory and practice of regulation

in this area. See also [33] for a discussion of the extent to which these mechanisms

might be considered abusive or legitimate.

In foreign exchange a large proportion of major liquidity providers have signed

up to the FX Global Code ([30]), a voluntary code of practice setting out best

practice in all aspects of dealing. Last look is addressed in Principle 17 of the

code, where it is stated that

‘A Market Participant should be transparent regarding its last look practices in

order for the Client to understand and to be able to make an informed decision

as to the manner in which last look is applied to their trading. The Market

Participant should disclose, at a minimum, explanations regarding whether, and

if so how, changes to price in either direction may impact the decision to accept

or reject the trade, the expected or typical period of time for making that decision,

and more broadly the purpose for using last look.

If utilised, last look should be a risk control mechanism used in order to ver-

ify validity and/or price. The validity check should be intended to confirm that

the transaction details contained in the request to trade are appropriate from an

operational perspective and there is sufficient available credit to enter into the

transaction contemplated by the trade request. The price check should be intended

to confirm whether the price at which the trade request was made remains con-

sistent with the current price that would be available to the Client.’

Clearly, questions about the costs and fairness of last look are important and one

of our aims in Chapter 5 is to quantify the costs and benefits of last look facilities

in the context of existing market making models.

The regulatory position is moving quite fast in this area and during the period

in which this thesis has been written we are aware of various moves away from

asymmetric last look features, although trade acceptance protocols of some form

continue to be in use with most liquidity providers. Some providers, for example

XTX markets, who have also disseminated a range of useful practical research

informed by the vast data and insight they hold as a major liquidity provider, offer
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two ‘streams’, one where last look is applied and one where it is not. Clearly there

is a lot of scope for different types of facility to be matched to different clients

and may be varied according to the relationship between liquidity provider and

client. As XTX set out on their webpage ‘Disclosures on eFX Trading Practices’

([70]):

’Every counterparty has its own trading style and liquidity requirements, which

can vary greatly from counterparty to counterparty. XTX aims to tailor the liq-

uidity it provides to each counterparty on a case by case basis, so as to meet

each counterparty’s specific needs and requirements, while taking into account the

market impact and volume of their anticipated trading. In order to do this, XTX

provides two different types of liquidity streams...’

No doubt this area will continue to move at pace as the advantages and potential

abuses of such facilities become better understood and we hope that this work

will contribute to this progress. In the following section we review the existing

market making literature, with a particular focus on the papers whose work we

build on in later chapters.

1.3 Existing Models for Market Making

The model of Garman (1976) [47] is often considered the earliest model of market

making and is the first that attempts to work rigorously in the field of market

microstructure. The model has just a single monopolistic market maker, who

has full control over prices. They fix their prices at time 0 and keep them fixed

throughout the whole trading period, observing demand arriving according to a

Poisson process whose rate reacts linearly to the bid and ask prices they set. The

market maker starts with a certain cash holding B0 and inventory holding Q0

and acts in a risk-neutral way, seeking to maximise the expected profit whilst

avoiding either their cash or inventory holdings dropping to zero.

This model is extended by the model of Ho & Stoll (1981) [57], who allow the

market maker to change their bid and ask prices continuously over time. As in

[47], the demand functions are linear, but now the asset behaves as a Brownian

motion and the market maker is risk-averse with a concave utility function and

14



the authors use a stochastic optimal control technique to solve the problem.

The model of Kyle (1985) [64] was one of the first to consider the way that market

makers should adjust their quotes in the presence of informed traders and has

been extended by many others ([2] [3] [4] [5] [18] [28] [29] [31] [63]). Another

important paper is that of Glosten and Milgrom (1985) [48] which considers

adjustments to market makers’ optimal bid-ask spreads that result from informed

traders and adverse selection. It also considers market depth - that is the quantity

of orders available at different price levels and how this is impacted by the actions

of informed traders.

The Kyle model and all of these extensions assume that market makers are risk-

neutral. They conclude that in equilibrium the utility of each market maker is

a martingale and that their optimal strategies are to set prices to be conditional

expectations of the asset’s fundamental value.

Although the market makers’ risk-neutrality makes the model tractable, it is not

consistent with behaviour observed in markets. There is significant empirical

evidence to show that most market maker’s behaviour exhibits risk-aversion in

such a way that causes their demand to mean revert around certain target levels

([63], [59]). Some attempts to extent the work of Kyle and others without the

risk-neutral assumption have been made in both discrete and continuous time,

but there are significant challenges that arise [90] [26]). In this work we take

a slightly different starting point which does not face the same challenges and

allows us to model market makers as risk-averse.

The model of Grossman and Miller (1988) [50] captures an important aspect of

the market maker’s rationale. Market makers as we define them do not hold any

long view about the future price movement of an asset and so have no inherent

incentive to enter the market. The risk of entering the market is a cost to them,

and [50] gives a fundamental quantification of the premium a market maker would

need to be paid in order to take on this risk. In particular a market maker for

an asset with volatility σ2, optimising for a utility function of the form U(x) =

− exp(−γx) will demand a premium of γσ2 to take the risk of holding (or shorting)

a unit of asset for a unit of time, a term we will see often in the work that

follows.
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The models we will consider in this thesis are mostly inspired by and build upon

work in a few key papers, firstly those of Avellaneda and Stoikov [1] (2008) and of

Guéant, Lehalle and Fernandez-Tapia [52] (2013) that we describe in more detail

in Sections 1.3.1 and 1.3.2 respectively. Some of our models also build closely on

the paper of Guéant [51] (2017). We do not describe that in detail here as the

model of Chapter 2 has so much in common with it.

The Avellaneda Stoikov framework [1] replaced a monopolistic market maker with

one that is infinitessimally small, so that the reference stock price is effectively

exogenous. They substitute optimal limit orders for optimal price quotes so

that it can be considered as a model of the Limit Order Book. Turning other

game theoretic models into a purely stochastic one provided a framework which

researchers in mathematical finance were a lot more comfortable and as a result

this became the foundation for many research papers. In particular we will take a

detailed look below at the model of Guéant, Lehalle and Fernandez-Tapia (2013)

[52] which we extend to the last look case in Chapter 5 and in Chapter 2 we

consider a model very closely related to the model in Guéant (2017) [51] but we

note also that there are many others who have built on the same work in a number

of related ways ([43], [53], [42], [24], [75], [22], [44], [21], [19], [9], [10]).

Models that build directly on the papers above are certainly the most popular

in the literature, though building on Avellaneda Stoikov and the work that has

followed it is not the only option. We note for example the contribution of Law

and Viens (2019) [66] who introduce a somewhat more complicated model with

orders classified into 12 different types that they claim captures more realistically

features of the Limit Order Book.

1.3.1 Avellaneda and Stoikov (2008)

In their paper [1], Avellaneda and Stoikov mathematically formalised a market

making problem and used techniques of stochastic optimal control in order to

characterise optimal quoting behaviour. In Section 5.1 we extend this model to

include last look and so set out here the main features of their model and the

results that we use in our extension.

The market maker seeks, from initial cash x and inventory q at time t, to maximise
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an exponential utility function

v(x, s, q, t) = Et[− exp(−γ(XT + qTST ))|ST = s, qt = q,Xt = x],

where T is a terminal time after which no further trading may take place. The

utility of holding a ‘frozen’ inventory of quantity q and making no trades until

time T can be expressed as3

v(x, s, q, t) = Et(− exp(−γ(x+ qST )) = − exp
(
− γ(x+ qs) +

γ2q2σ2(T − t)

2

)
.

The reservation bid price rb and the reservation ask price ra are defined

implicitly as

v(x− rb(s, q, t), s, q + 1, t) = v(x, s, q, t)

and

v(x+ ra(s, q, t), s, q − 1, t) = v(x, s, q, t).

Thus the reservation prices are the prices that make the market maker indifferent

between holding their current portfolio and holding their current portfolio plus

(bid) or minus (ask) one additional unit. Straightforward computations show

these can be expressed as

rb(s, q, t) = s+ (−1− 2q)
γσ2(T − t)

2
,

and

ra(s, q, t) = s+ (1− 2q)
γσ2(T − t)

2
.

The average of these two prices is referred to as the reservation price or indif-

ference price

r(s, q, t) = s− qγσ2(T − t).

Avelleneda and Stoikov then go on to consider a stochastic control problem,

where as control the market maker continuously chooses distances from the mid-

price

δb = s− pb,

3Here we have applied the moment generating function of the normal random variable ST −
s ∼ N(0, σ2(T − t))
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and

δa = pa − s,

to set their quotes pa and pb. The demand they observe depends on their quotes,

and orders are modelled to arrive as a Poisson process with arrival rates

λb(δb) = Ae−kδb ,

and

λa(δa) = Ae−kδa .

These choices, which have been used often in subsequent work, including in this

thesis, are given justification by Avellaneda and Stokov by reference to some

empirical studies of limit order books ([46], [49], [71] [85] [93]). The basic intuition

is that δa and δb represent the margin the market maker charges on each trade,

and the lower this margin the greater the demand they will achieve.

They consider a market maker wishing to again maximise their exponential util-

ity

u(x, s, q, t) = max
δb,δa

Et[− exp(−γ(XT + qTST ))],

where (Xt)t≤T and (qt)t≤T are now stochastic processes representing their running

cash and inventory. Optimally they find that the market maker should set their

bid and ask quotes pb and pa around the indifference price above, with bid and

ask quotes

pb(s, q, t) = s+ (−1− 2q)
γσ2(T − t)

2
− 1

γ
ln
(
1 +

γ

k

)
,

and

pa(s, q, t) = s+ (1− 2q)
γσ2(T − t)

2
+

1

γ
ln
(
1 +

γ

k

)
.

We note these are the indifference prices with an extra term

1

γ
ln
(
1 +

γ

k

)
added or subtracted.
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1.3.2 Guéant, Lehalle and Fernandez-Tapia (2013)

In the paper [52], a very similar set up to [1] is considered, although they impose

an inventory cap so that the market maker’s inventory always stays within q ∈
{−Q, ..., Q}. By making a change of variables they are then able to express the

system of HJB equations as a system of ordinary differential equations.

As in [1], the formulae derived for the optimal quotes depend on t. Whilst in

some contexts this might be natural, for example where positions are closed at the

end of the day, in other contexts it is not and [52] also considers the asymptotic

behaviour of the quotes. In particular they find that the optimal quotes in the

limit as T → ∞ to be

pb(s, q) = s− 1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f 0
q

f 0
q+1

)
,

and

pa(s, q) = s+
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f 0
q

f 0
q−1

)
.

where f 0 is the solution of a certain eigenvector problem and is given by

f 0 ∈ argmin
f∈R2Q+1\{0}

∑Q
q=−Q αq2f 2

q + η
∑Q−1

q=−Q(fq+1 − fq)
2 + ηf 2

Q + ηf 2
−Q∑Q

−Q f 2
q

,

where α = k
2
γσ2 and η = A(1 + γ

k
)−1+ γ

k .

Further, by instead considering a related eigenvector problem in L2(R) approxi-
mations for the closed form bid and ask quotes are found as

pb(s, q) = s− 1

γ
ln
(
1 +

γ

k

)
+

2q + 1

2

√
σ2γ

2kA

(
1 +

γ

k

)(1+ k
γ
)

,

and

pa(s, q) = s+
1

γ
ln
(
1 +

γ

k

)
− 2q − 1

2

√
σ2γ

2kA

(
1 +

γ

k

)(1+ k
γ
)

.
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1.4 Mathematical Preliminaries

1.4.1 The Dynamic Programming Principle and HJB Equa-

tions

The main mathematical tools that we will consider and make use of are those of

stochastic optimal control. We present an overview of the key ideas of dynamic

programming and HJB equations that are essential for the thesis. Readers looking

for a more thorough introduction to the subject could consult [82] or [77] or the

relevant sections of [76]. The book by Cartea et al. [23] also includes a good

introduction in the context required to understand algorithmic trading problems

of a variety of types, including the market making problems we consider in detail

later on.

We follow the notation of [82] in this section and suppose we consider a control

problem in a form that will occur repeatedly through this thesis, where the state

of the system is determined by a stochastic differential equation (SDE)

dXs = b(Xs, αs)ds+ σ(Xs, αs)dWs,

where X may take values in Rn and W may be a d-dimensional Brownian mo-

tion.

Where we consider infinite horizon problems, this model should not depend on

time (so as to capture stationarity) whereas in a time-dependant problem we

could also consider

dXs = b(Xs, αs, t)ds+ σ(Xs, αs, t)dWs. (1.1)

In any case, the Brownian motion W is defined on a filtered probability space

(Ω,F ,F = (Ft)t≥0, P ) satisfying the usual conditions and the control α = (αs) is a

progressively measurable process (with respect to F), valued in a set of admissible

controls A ⊂ Rm.

We suppose that the measurable functions b : Rn × A → Rn and σ : Rn × A →
Rn×d satisfy a uniform Lipshitz condition in A. That is ∃K ≥ 0,∀x, y,∈ Rn,∀a ∈
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A,

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K|x− y|.

Then, denoting by A the set of control processes α such that

E
[∫ T

0

|b(0, αt)|2 + |σ(0, αt)|2dt
]
< ∞,

the existence of a strong solution {Xs,
t,x , t ≤ s ≤ T} to the SDE (1.1) is assured

for any α ∈ A and any initial condition (t, x) ∈ [0, T ]×Rn. When we work with a

finite horizon problem, the gain function can be defined, for suitable measurable

functions f : [0, T ]× Rn × A → R and g : Rn → R, as

J(t, x, α) = E
[∫ T

t

f(s,X t,x
s , αs)ds+ g(X t,x

T )

]
,

for all (t, x) ∈ Rn. The objective is to maximise over control processes this gain

function J to give the value function

v(t, x) = sup
α∈A

J(t, x, α). (1.2)

Given initial condition (t, x) ∈ [0, T ) × Rn, a control α̂ is optimal if v(t, x) =

J(t, x, α̂). We are mostly interested in Markovian controls, that is a control

process α of the form αs = a(s,X t,x
s ) for a measurable function a : [0, T ]×Rn → A.

We refer the reader to [82] for a description of the infinite time horizon case as

well as a fuller account of the theory in the finite time horizon case.

We can now state the dynamic programming principle (DPP) as follows. For any

stopping time θ valued in [t, T ] we have

v(t, x) = sup
α∈A(t,x)

E
[∫ θ

t

f(s,X t,x
s , αs)ds+ v(θ,X t,x

θ )

]
.

A proof of a slightly stronger DPP can be found in [82] and further descriptions

of this key technique of stochastic control can also be found in many places,

including [41],[92] and [15]. The DPP is also known as the Bellman principle

and dates back to the work of Bellman from 1952 ([6], [7]). The interpretation is

that we can split the optimisation problem into two parts. Firstly we look for an
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optimal control from the stopping time θ given that the process is in the state

X t,x
θ . That is, we compute v(θ,X t,x

θ ). Then we maximise over controls acting on

[t, θ] the quantity

E
[∫ θ

t

f(s, ,X t,x
s , αs)ds+ v(θ,Xθt,x)

]
.

In a great deal of the work in this thesis we will make use of an infinitesimal ver-

sion of the dynamic programming principle, known as the dynamic programming

equation, or Hamilton Jacobi Bellman (HJB) equation. By considering the time

θ = t + h and considering carefully the limit as h → 0 it can be shown (see for

example [82]) that the value function v should satisfy, ∀(t, x) ∈ [0, t) × Rn, the

HJB equation

−∂v

∂t
(t, x)− sup

a∈A
[Lav(t, x) + f(t, x, a)] = 0,

where La is the operator associated to the diffusion (1.1) for the constant control

a, defined by

Lav = b(x, a).Dxv +
1

2
tr(σ(x, a)σ′(x, a)D2

xv).

The regular terminal condition associated to this PDE is

v(T, x) = g(x), ∀x ∈ Rn,

which results immediately from the definition of the value function (1.2).

1.4.2 Utility functions and Risk Sensitive Control

Following [41] we let Φ denote a random variable and imagine that some values

of Φ may be more significant than others so that rather than simply considering

the expected value of Φ we consider a risk sensitive criterion

E[F (Φ)],

where F is a non-linear function. In particular in this work we are interested in

the case where

F (Φ) = exp(ρΦ),
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for ρ ̸= 0. In the language of economics, thinking of F as a utility function, this

choice is a CARA utility function. That is, if we consider the commonly used

measure of absolute risk aversion (ARA)

rF (Φ) =
|F ′′(Φ)|
|F ′(Φ)|

,

then we have that rF (Φ) = |ρ| , a constant. That is to say that the risk/utility

function F has constant absolute risk aversion (CARA). Now let us define the

certainty equivalent expectation

E0(Φ) = F−1(E[F (Φ)]),

which in our CARA case then takes the form

E0(Φ) = ρ−1 log(E[exp(ρΦ)]). (1.3)

We will only consider utility functions of CARA form, as is most common in

the literature our work builds upon. We note however that other choices are

sometimes taken. For example, Fodra and Labadie [43] also consider the risk-

neutral case as well as a risk-neutral case with a penalisation on the terminal

inventory, and Cartea, Jaimungal and Penalva along with various co-authors also

consider an objective function that is the expected value of profit and loss less a

running penalty on inventory ([23] [21] [22] [24]).

Returning to (1.3) and applying Taylor expansions we note that

lim
ρ→0

E0(Φ) = lim
ρ→0

ρ−1 log[1 + ρE(Φ) +
ρ2

2
E(Φ2) +O(ρ3)]

= lim
ρ→0

ρ−1
[
ρE(Φ) +

ρ2

2
E(Φ2)− 1

2
[ρE(Φ)]2 +O(ρ3)

]
= E(Φ) + lim

ρ→0

[ρ
2
Var(Φ) +O(ρ2)

]
,

which means that for small |ρ| that E0(Φ) is approximately a weighted combina-

tion of the mean and the variance. In our applications in Chapters 2, 3 and in

particular in Chapter 4 we will work with expressions of these forms, and when

considering the long run behaviour of the systems we study we will also be in-
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terested in some large deviation properties, which we will introduce in the next

section.

1.4.3 Large Deviations

By way of introduction to the results of large deviations theory we consider a toy

example that we have borrowed from den Hollander [58]. Let X1, X2, ... be i.i.d.

random variables defined by

P
(
X1 =

1

2

)
= P

(
X1 =

3

2

)
=

1

2
, (1.4)

and define Sn =
∑n

k=1 Sk.

Suppose we are interested in the long run behaviour as n → ∞ of

E
((

1

n
Sn

)n)
. (1.5)

A strong law of large numbers applies and tells us that almost surely 1
n
Sn → 1 and

so naively we might expect that 1
n
logE

((
1
n
Sn

)n) → 0, but this intuition turns

out not to be correct. The real result is a consequence of Cramér’s Theorem,

which goes back to [32].

Theorem 1.4.1 Cramér’s Theorem

Let (Xi) be i.i.d. random variable satisfying

φ(t) = E(etX1) < ∞ ∀t ∈ R.

Let Sn =
∑n

k=1 Sk. Then, for all a > E(X1),

lim
n→∞

1

n
logP(Sn ≥ an) = −I(a),

where

I(z) = sup
t∈R

[zt− logφ(t)].

Proof See Theorem I.4 in [58].
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Remark 1.4.2 The same statement as Theorem 1.4.1 also holds for P(Sn ≤ an)

and a < E(X1). This can be checked by considering the mirror reflection X1 →
−X1.

Remark 1.4.3 The function I(z) in Theorem 1.4.1 is referred to the rate func-

tion and this shows that the rate function is the Legendre-Fenchel transform of

the cumulant generating function, logφ.

In [58] it is shown that for the example above described in (1.4) and (1.5) that

we have

lim
n→∞

1

n
logE

((
1

n
Sn

)n)
= b,

where

b = sup
a>0

[log a− J(a)], (1.6)

and

J(a) =

log 2 + (a− 1
2
) log(a− 1

2
) + (3

2
− a) log(3

2
− a) a ∈

[
1
2
, 3
2

]
∞ otherwise.

Straightforward algebra shows in particular that the optimiser a∗ of (1.6) satisfies

a∗ ̸= 1 and that b > 0. This is we see that the expected value is not dominated

by the almost sure behaviour that 1
n
Sn → 1, but rather by the rare event where

1
n
Sn is in the vicinity of a∗ ̸= 1.

Remark 1.4.4 Indeed [58] also shows that if a > E(X1), then the rate function

I(z) ≥ I(a) for all z ≥ a and so we can rewrite the result of Theorem 1.4.1 as

lim
n→∞

1

n
logP

(
1

n
Sn ∈ A

)
= − inf

z∈A
I(z) with A = [a,∞].

This we see that the large deviation { 1
n
Sn ∈ A} is essentially dominated by the

event that 1
n
Sn is close to z̄, the minimiser of I(z) on A. In the words of den

Hollander [58] this illustrates the key principle of large deviation theory, that ‘any

large deviation is done in the least unlikely of all the unlikely ways!’

This is all meant to give a flavour of and a motivation for our need to consider

large deviations in Chapter 4. For more details and a fuller account of the theory
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we refer the reader to [58] [35] [11] or [27]. In the remainder of this section

we follow Pham [81] and state some large deviation results for control problems

closer to those we will consider in Chapter 4.

Suppose we have a real valued process Xα
t controlled by a control process α =

(αt) ∈ A and suppose that a law of large numbers applies to Xα so that

X̄α
T :=

Xα
T

T
converges almost surely as T → ∞.

Then we expect that it also satisfies a large deviation principle

P[X̄α
T ≥ c] ≃ exp(−I(c, α)T ), as T → ∞,

where the rate function I measures the rate of exponential convergence of the

probability for X̄α
T to overtake a level c. The rate function is related to the

moment generating function of Xα
T via the Legendre transform

I(c, α) = sup
λ≥0

[λc− Λ(λ, α)],

where

Λ(λ, α) = lim sup
T→∞

1

T
lnE[exp(λXα

T )].

In Chapter 4 we will notice that the system we study exhibits large deviation

effects and will adapt the model we propose there in a suitable way to propose an

efficient way of calculating the exponential integrals that we require there.

1.5 Overview of this Thesis

In the final section of this introduction we set out an overview of the work that

follows in this thesis and highlight our main results.

In Chapter 2 we study a discrete time market making model in the style of

Guéant [51]. By making suitable approximations we are able to find a linear

differential operator whose spectral theory gives us a great deal of insight into

the market making problem. We are able to prove rigorously some results that

are not fully justified in [51] and to add some insights into the long-run value
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of market making per unit time. Further, when we lift the inventory cap the

market maker is subject to, we are able to relate the market making problem to a

quantum harmonic oscillator, giving a neat quantification of the value of market

making. We find that the market making problem is essentially one of inventory

control, and we are able to roughly quantify the long run value of market making

and separate it from the cost of starting with non-zero inventory.

In Chapter 3 we formulate a novel continuous model that is motivated by the

discrete model of Chapter 2. We work slightly less rigorously in this chapter,

but find that, in suitable limits, we can recover results about the value of market

making found in Chapter 2 and the optimal quotes of Guéant and his collabora-

tors ([52] [51]). This model also sets the scene for the novel model we introduce

in Chapter 4.

In Chapter 4 we reformulate the market making problem of Chapter 3 as a one-

dimensional control problem. We put the view that market making is essentially

a problem of inventory management centre-stage, and introduce a direct control

on the drift of the inventory process, noting that such a choice implies a natural

choice of bid and ask quotes. We look to apply results from the paper of Nagai

[72] which allow us to relate the long-run value of market making to the principal

eigenvalue of a suitable linear operator.

We propose a slight modification to the demand functions that allow us, in The-

orem 4.4.1, to apply the work of [72] directly to our problem. We then make

a natural conjecture that suggests the long-run value of market making should

be constant and investigate the consequences of this, solving the resulting PDEs

numerically. In order to account for large deviation effects we make a measure

change, after which we are able to compute the relevant exponential integrals

in the problem numerically. This provides a framework in which we may opti-

mise over the various parameters in the problem efficiently, rather than having

to repeatedly resolve PDEs, something that would be particularly helpful when

applied to the models we consider in Chapter 5.

In Chapter 5 we consider market making with last look. We begin in Section 5.1

by extending the reservation prices proposed by Avellaneda and Stoikov [1] to a

variety of last look criteria, including symmetric and asymmetric facilities. We
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find closed forms for these reservation prices and compare them to those without

last look. We also consider the potential benefits of last look to the client as well

as the market maker.

In Section 5.2 we then extend the model of Guéant, Lehalle and Fernandez-Tapia

[52] to the last look case, and are able to show an asymptotic result based on

the spectral theory of an appropriate matrix which allows us to capture the long-

run behaviour of market making with last look and use numerical simulations to

consider the overall impact on the profitability for the market maker, including

in the presence of toxic order flow.

Finally, in Section 5.3 we propose a new model for last look that includes coun-

terparties who may or may not provide toxic order flow. We then suggest a novel

continuous model and use numerical simulations to show that it captures the

problem well. A key advantage of this model is that it is suited to the framework

of Chapter 4 and so we may be able to find efficient methods for optimising over

the various parameters.

The final contribution, Chapter 6 of the thesis, is presented ‘by publication’ and

sits slightly separately from the rest of the work in the thesis. We include the full

text of the paper [56], which at the time of writing is under review, and to which

the author of this thesis contributed around 20% of the work. The paper involves

some novel results about Echo State Networks4 that are primarily attributable to

other authors. The paper also includes some applications of Echo State Networks,

and in particular the author of this thesis contributed most significantly to the

development of an application to the market making problem presented.

4An Echo State Network (ESN) is a type of single-layer recurrent neural network with
randomly chosen internal weights and a trainable output layer.
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Chapter 2

A Discrete Model for Market

Making

In this chapter we consider a market making model in the style of Guéant and his

collaborators in [51] and [52]. Throughout this chapter, and indeed this thesis,

we assume that the market maker is trading a single asset whose price is given

by an arithmetic Brownian motion

dSt = σdWt. (2.1)

This choice of arithmetic Brownian motion is standard in the literature1 and is

justified by the typically short time horizons under consideration.

Our models will contain two fundamental sources of risk. One arises from the

price movements given by (2.1), and another from the random arrival of buy and

sell orders. In Section 2.1 we begin with a simplified version of the model in

which we take σ = 0 in (2.1). We will refer to this scenario as a ‘riskless’ world,

though in fact we mean that we are temporarily switching off just this first source

of randomness, allowing us to focus on how the market maker should optimally

respond to the random demand.

We will find in this section optimal strategies and a long-run value of market

1In particular this choice is also made in all of the main models this work is based around,
for example [1],[51] and [52].
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making that will be a very useful reference point for the work that follows. Indeed

we will find that this model gives an upper bound for the value of market making

in a world where σ > 0.

In Section 2.2 we consider the case σ > 0 and construct a model in the style of

[51]. The solution in this case will involve approximating the HJB equation in

a suitable way and using some ideas from functional analysis and the spectral

theory of a certain linear operator related to the resulting PDE. In particular

we will make use of the Krein-Rutman theorem that provides us with a single

leading eigenvalue/eigenvector of the linear operator that will dominate where

the time horizon of the problem is far away.

Up until this point we make an assumption that the inventory levels are subject

to a cap, so that there is a Q such that the inventory must always stay within

the interval [−Q,Q]. In Section 2.3 we remove this inventory cap in order to

relate the market making problem to a quantum harmonic oscillator. Whilst

we leave a fully rigorous justification of this step to future work, it is a very

natural extension that allows us to find a clean and interpretable form of the

value function for market making. In particular we will find that there is a long

run value per unit time of market making (which can be directly compared to

the value in the riskless world of Section 2.1) and an additional cost if we start

with a non-zero inventory level.

2.1 Market Making in a Riskless World

All the risks involved in market making arise from the possibility of adverse

movements in the asset price whilst the market maker is holding inventory. Later

we will model the stock price process as an (arithmetic) Brownian motion

dSt = σdBt,

though in this first instance we consider the case σ = 0. Our intuition leads us

to expect that the profitability of market making should be decreasing in σ and

indeed this case will provide an upper bound for the potential value of market

making in the more general case.
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Although described as ‘riskless’ this world is not free of randomness. Unpre-

dictability will still arise from the random arrival times of buyers and sellers,

the intensity of which will be determined by the competitiveness of the market

maker’s quotes. The central problem in this case will be to determine the spread

the market maker should quote at a given time in order to optimally profit from

this demand.

2.1.1 Formulation of the Riskless Model

Since there is no randomness in the underlying asset price we may model it at

all times as a constant

St = s, ∀t ≥ 0.

The market maker’s optimisation problem will involve incentivising orders by

pricing as competitively as possible whilst not reducing too significantly the profit

made in each trade. Throughout this chapter the market maker’s control will

involve setting a strategy δ comprised of two quantities that may be changed

over time δ = {(δbt )t≤T , (δ
a
t )t≤T} up until some terminal time T . We may usefully

think of δbt and δat as ‘half-spreads’ that the provide the market maker with a

profit on each trade. These quantities will then determine the market maker’s

bid and ask prices Sb
t and Sa

t

Sb
t = s− δbt ,

Sa
t = s+ δat ,

and δbt + δat will represent the overall bid-ask spread the market maker is adver-

tising at any given time.

Following [51] and [52] we model demand for the asset using two independent

Poisson point processes (N b
t )t and (Na

t )t with rates Λb and Λa respectively. These

intensities will be determined by the market maker’s choice of δbt and δat , so that

Λb = Λb(δb) and Λa = Λa(δa). In particular we will consider the case where these

demand functions depend on the market maker’s quotes as

Λa(δa) = Ae−kδa , Λb(δb) = Ae−kδb .
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We assume that the size of each trade is a constant ∆, and so increments of the

market maker’s inventory level are given by

dqt = ∆dN b
t −∆dNa

t .

Their cash holding Xt then has dynamics

dXt = Sa
t ∆dNa

t − Sb
t∆dN b

t

= (s+ δat )∆dNa
t − (s− δbt )∆dN b

t .

We assume that the market maker maximises a CARA utility function2

uδ(t, x, q) = Et,x,q[− exp{−γ(Xδ
T + qδT s)}],

where Et,x,q is the expected value of the process where the market maker starts

with cash x and inventory q at time t, and γ is a risk aversion parameter charac-

terising the market maker.

The quantity Xt + qts represents the marked-to-market value of the market

maker’s portfolio at time t, being the sum of the cash holding and the value

of their currently held inventory priced at the market mid-price.

2.1.2 A Single Variable to Represent Wealth

In this riskless set-up there is no reason to prefer to hold cash instead of an

equivalent valued inventory and so it is natural not to distinguish between cash

and asset in our model. Thus we replace Xt + qts with a single wealth process

Wt. Whenever a trade occurs this wealth increases instantaneously by δb∆ or

δa∆ depending on the direction of the transaction.

So we consider a process Wt = xt + qts with dynamics

dWt = δb∆dN b
t + δa∆dNa

t ,

2Note this is a standard choice in the literature as discussed further in Section 1.4.2.
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and a market maker seeking at time t to maximise over controls δ = {δa, δb}

u(t, w) = sup
δ
(uδ(t, w)) = sup

δ

(
E[− exp{−γW δ

T}]
)
. (2.2)

With the set-up simplified in this way we now use some standard techniques to

find the market maker’s optimal strategy and the value they derive from market

making.

Proposition 2.1.1 Choosing Λ(δ) = Ae−kδ and defining ξ = k
γ∆

we have that

the optimal control is

δa = δb = − 1

γ∆
ln

(
k

k + γ∆

)
= − ξ

k
ln

(
ξ

1 + ξ

)
,

with associated suprema

sup
δb

{
Λ(δb)

γ

(
1− e−γ∆δb

)}
= sup

δa

{
Λ(δa)

γ

(
1− e−γ∆δa

)}
=

A

ξγ

(
ξ

1 + ξ

)1+ξ

:= Aξ.

The value function for the control problem as defined in (2.2) above is given by

u(t, w) = −e−γ(w+2Aξ(T−t)). (2.3)

Proof By standard arguments (see e.g. [82] or [41]) we expect u to solve the

HJB equation

0 = −∂tu− sup
δb

{
Λ(δb)[u(t, w +∆δb)− u(t, w)]

}
− sup

δa

{
Λ(δb)[u(t, w +∆δa)− u(t, w)]

}
.

Taking as ansatz u(t, w) = −e−γ(w+θ(t)), the HJB equation becomes

∂tθ =− sup
δb

{
Λ(δb)

γ

(
1− e−γ∆δb

)}
− sup

δa

{
Λ(δa)

γ

(
1− e−γ∆δa

)}
.

Since the form of the two suprema is identical we write δ for δa and δb and perform

a straightforward differentiation. The required optimal δ∗ is the solution to

∂

∂δ

(Λ(δ)
γ

(1− e−γ∆δ)
)
= 0.
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Hence we have

−kAe−kδ∗(1− e−γ∆δ∗) + γ∆Ae−γ∆δ∗e−kδ∗ = 0

−k(1− e−γ∆δ∗) + γ∆e−γ∆δ∗ = 0

−k + (k + γ∆)e−γ∆δ∗ = 0

e−γ∆δ∗ =
k

k + γ∆
,

which gives

δ∗ = − 1

γ∆
ln

(
k

k + γ∆

)
= − ξ

k
ln

(
ξ

1 + ξ

)
,

where ξ = k
γ∆

. Then to evaluate the suprema we simply substitute in the optimal

control found. Noting that we have Ae−kδ∗ = A
(

k
k+γ∆

) k
γ∆

then

sup
δ

{
Λ(δ)

γ

(
1− e−γ∆δ

)}
= sup

δ

{
Ae−kδ

γ

(
1− e−γ∆δ

)}
=

A

γ

(
k

k + γ∆

) k
γ∆
(
1− k

k + γ∆

)
=

A

γ

(
γ∆

k + γ∆

)(
k

k + γ∆

) k
γ∆

=
A∆

k

(
k

k + γ∆

) k
γ∆

+1

=
A

ξγ

(
ξ

1 + ξ

)1+ξ

:= Aξ

After evaluating the suprema the HJB equation reduces to

∂tθ = −2Aξ

⇒ θ = 2Aξ(T − t),
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and so the value function for this control problem defined above is given by (2.3)

as required.

□

Remark 2.1.2 In the risk-free case the HJB equation is of a very simple form,

and the optimal quotes arise as the result of straightforward differentiation. The

market maker only has to balance the (utility of their) profit per trade ∆δa and

∆δb against the impact this has on the level of demand Λ(δa) and Λ(δb) they

receive.

Remark 2.1.3 In the limit as ξ → ∞ the optimal quotes tend to δa = δb = 1
k
,

since

lim
ξ→∞

δ∗ = lim
ξ→∞

− ξ

k
ln

(
ξ

1 + ξ

)
= lim

ξ→∞
−1

k
ln

[(
ξ

1 + ξ

)ξ
]
=

1

k
.

Remark 2.1.4 In Chapter 10 of [23], Cartea et al. consider a market making

model with explicit penalties for running inventory and terminal inventory as well

as an inventory cap. When in Section 10.2.1 they simplify to assume the market

maker doesn’t penalise running or terminal inventory and faces no inventory cap,

they find that the market maker optimally seeks to maximise the probability of

their limit order being filled. The model we have here in the limit finds the same

solution for the optimal quotes as in that case. Indeed, one way that we could

have ξ → ∞ would be via γ → 0. That is a market maker who is not risk averse

in our set up is behaving in the same way as one who does not penalise the risk

of holding inventory in the case considered in [23].

Hence in this simplified case we find that the function θ is just the constant 2Aξ

multiplied by the remaining time available to act as a market maker. Thus we

may interpret 2Aξ as a profit rate from market making. The market maker should

be equally happy to have an additional wealth 2Aξ(T − t) or the opportunity to

act as a market maker from time t until time T .

In the next section we will consider similar arguments in a related set-up where

the value of the asset is no longer constant. The problem considered in this section

will be an important special case. The constant 1
k
will appear repeatedly in the
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optimal quotes the market maker chooses and the constant 2Aξ will represent a

reference point and upper bound for the value the market maker is able to realise

in other conditions.

2.2 Market Making in a Risky World

In this section we describe the main model of this chapter, and show that the

HJB equation resulting from the control problem considered can be approximated

with a certain parabolic PDE. The set-up is similar to that of Guéant [51] though

we take a more rigorous look at the underpinning mathematics. We will find

optimal quotes that agree with the model in [51] and our approach will also allow

us to focus on a neat approximation for the approximate overall value of market

making.

2.2.1 Formulation of the Full Discrete Model

We now focus on a problem that can more realistically capture the situation faced

by a market maker. In particular we now consider that there the asset trades

around a reference price St that follows an arithmetic Brownian motion. That is,

we have σ > 0 and

dSt = σdWt.

The introduction of risk into the asset price drives our primary characterisation

of a market maker’s preferences:

All other things being equal, market makers prefer to hold as little

inventory as possible. Their ideal transactions are round-trip trades

where they profit from selling at a slightly higher price than they buy

for, doing so quickly enough to avoid any changes in the price of the

underlying asset.

Of course the real world rarely provides such opportunity, but this fundamental

preference leads to the market maker’s general aversion to holding inventory. So,

all other things being equal, we should expect the value of market making to

be a decreasing function of the size of their inventory level, |q| in the sense that
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the mark to market value of their portfolio is also kept constant, so that any

decreasing inventory is suitably balanced by increasing cash. They do not in

general want to hold either long or short positions in any asset and consider the

possibility that the asset price moves whilst they hold inventory to be a risk that

reduces their overall profitability.

The rest of the set-up of the problem remains unchanged, and the market maker

sets bid and ask prices Sb
t and Sa

t at distances δbt and δat from this reference price

so that as before we have

Sb
t = St − δbt ,

Sa
t = St + δat .

The market maker’s problem is to optimally control δbt and δat in order to maximise

(a utility function of) profit. Although these quotes will still depend on a range

of parameters in the model, the primary difference from the previous section is

that they will now also depend on the market maker’s current inventory level.

Because of the market maker’s general aversion to holding short or long positions

we expect that they will want to offer more competitive prices as their inventory

moves away from 0. In doing so they will cause their inventory process to stay as

close to zero as possible whilst still making enough trades to be profitable.

As in the riskless case we model demand for the asset using two independent Pois-

son point processes (N b
t )t and (Na

t )t with rates Λb(δbt ) and Λa(δat ). In particular

we will again focus on the case where Λa(δa) = Ae−kδa ,Λb(δb) = Ae−kδb .

Again we assume that the size of each trade is a constant ∆, and so the market

maker’s inventory level is given by dqt = ∆dN b
t −∆dNa

t and their cash holding

Xt has dynamics dXt = Sa
t ∆dNa

t − Sb
t∆dN b

t = (s+ δat )∆dNa
t − (s− δbt )∆dN b

t as

before.

The CARA utility function to be optimised is also unchanged from the work above

aside from the fact that St is now random. So our market maker will optimise

uδ(t, x, s, q) over choices of this control δ = {δas , δbs}t≤s≤T , and where

u(t, x, s, q) = sup
δ

uδ(t, x, S, q) = sup
δa,δb

Et,x,s,q[− exp{−γ(Xδ
T +Qδ

TST )}].
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Now Et,x,s,q is the expected value of the process where the market maker starts

with cash x and inventory q of an asset priced at St = s at time t, and γ is a risk

aversion parameter characterising the market maker as before.

We also assume that the market maker is subject to an inventory cap ±Q. If

their inventory ever hits this cap, they stop quoting on one side of the book so

that it cannot be exceeded.

2.2.2 An Ansatz Suitable for a CARAUtility Function

In Section 2.1 we were able to simply consider the wealth of the agent w = x+ qs

as cash and stock are easily exchangeable in a risk free world. In a risky world,

this quantity will continue to play a fundamental role and will be referred to

as the Marked to Market (MtM) value of the portfolio. In practice it may be

necessary to use other conventions3 but here we adopt the convention of marking

to market at the asset mid-price.

Although we now consider the cash and asset holding separately, when using a

CARA utility function it is possible to factor out this MtM value x + qs. Thus

we can write the candidate value function as

u(t, x, q, s) = − exp(−γ(x+ qs+ θ(t, q, s))).

The guiding idea is that the value of a position will incorporate this marked

to market value and the function θ will capture any aspect of the value that is

determined by the riskiness of the position. Our primary interest will be in the

dependence of θ on q. We expect that θ will be negative so that it will quantify

the reluctance of the market market maker to hold inventory at various levels.

Further, although the form of θ may include the volatility σ of the stock, due to

the spatial homogeneity of S it really has no reason to depend on the value of S

and so it makes sense to take as ansatz:

u(t, x, q, s) = − exp(−γ(x+ qs+ θ(t, q))). (2.4)

3For example where portfolio values are being computed for regulatory risk management
purposes, using a bid or ask price rather than a midprice, or including a liquidation cost may
represent a more accurate liquidation value of the portfolio.
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In the sections that follow we implicitly assume that θ exists and is differentiable.

In Section 2.2.5 we will be a little more rigorous, but we defer this until after we

have made the main approximation step that is required.

2.2.3 An HJB Equation for Market Making in a Risky

World

Proposition 2.2.1 Choosing Λ(δ) = Ae−kδ, the function θ(t, q) in (2.4) satisfies

0 = −∂tθ +
1
2
γσ2q2 − Aξ

(
ekp

+

+ ekp
−
)
, (2.5)

where p± := 1
∆
(θ(t, q±∆)− θ(t, q)) and we define ξ = k

γ∆
and Aξ =

A
ξγ

(
ξ

1+ξ

)1+ξ

as before.

Proof By standard results we expect u to solve the HJB equation

0 = −∂tu− 1
2
σ2∂2

ssu− 1{q≤Q} sup
δb

{Λ(δb)[u(t, x−∆s+∆δb, q +∆, s)− u(t, x, q, s)]}

− 1{q≥−Q} sup
δa

{Λ(δa)[u(t, x+∆s+∆δa, q −∆, s)− u(t, x, q, s)]}.

Upon substituting this into in the ansatz (2.4) and taking the demand function

Λ(δ) = Ae−kδ this becomes

0 = −∂tθ +
1
2
γσ2q2 − 1{q≤Q} sup

δb

{
A
γ
e−kδb

(
1− e−γ∆(δb+p+)

)}
− 1{q≥−Q} sup

δa

{
A
γ
e−kδa

(
1− e−γ∆(δb+p−)

)}
.

The suprema may be evaluated using a simple first order condition. Since the

two suprema have essentially the same form, writing {δ, p} in place of {δb, p+}
and {δa, p−} we have

−kA
γ
e−kδ

(
1− e−γ∆(δ+p)

)
+ A

γ
e−kδ

(
γ∆e−γ∆(δ+p)

)
= 0.
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After some straightforward rearrangement this gives

e−γ∆(δ+p) =
k

k + γ∆
, and e−kδ =

( k

k + γ∆

) k
γ∆

ekp.

Writing ξ = k
γ∆

and substituting into the suprema this yields

0 = −∂tθ +
1
2
γσ2q2 − A

ξγ

(
ξ

1+ξ

)1+ξ (
ekp

+

+ e−kp−
)
, (2.6)

which after writing Aξ =
A
ξγ

(
ξ

1+ξ

)1+ξ

gives the result as stated.

□

It is not practical to solve (2.5) analytically and so we follow [51] in considering

an approximate solution. In particular we will modify p± in the following way,

defining

p±ϵ := 1
∆
(θ(t, q ± ϵ∆)− θ(t, q)) .

Now consider the equation

0 = −∂tθ +
1
2
γσ2q2 − Aξ(e

kp+ϵ + ekp
−
ϵ ), (2.7)

which we note is precisely equation (2.5) when we take ϵ = 1.

Proposition 2.2.2 Equation (2.7) can be expressed as

0 = −∂tθ +
1
2
γσ2q2 − 2Aξ − Aξ∆kϵ2∂2

qqθ(t, q)− Aξk
2ϵ2(∂qθ(t, q))

2 + o(ϵ2). (2.8)

Proof Taking a series expansion of p±ϵ in q we have

p+ϵ = 1
∆
(θ(t, q + ϵ∆)− θ(t, q)) = ϵ∂qθ(t, q) +

1
2
∆ϵ2∂2

qqθ(t, q) + o(ϵ2);

p−ϵ = 1
∆
(θ(t, q − ϵ∆)− θ(t, q)) = −ϵ∂qθ(t, q) +

1
2
∆ϵ2∂2

qqθ(t, q) + o(ϵ2).

Then taking a series expansion of the exponential function gives

ekp
+
ϵ = 1 + ϵk∂qθ(t, q) +

1
2
∆kϵ2∂2

qqθ(t, q) +
1
2
k2ϵ2(∂qθ(t, q))

2 + o(ϵ2);

ekp
−
ϵ = 1− ϵk∂qθ(t, q) +

1
2
∆kϵ2∂2

qqθ(t, q) +
1
2
k2ϵ2(∂qθ(t, q))

2 + o(ϵ2).

40



Substituting these into equation (2.7) gives the desired result.

□

2.2.4 An Approximate PDE for the Long-Run Behaviour

Following Guéant we next discard the o(ϵ2) terms and take ϵ = 1 in (2.8) to

give

0 = −∂tθ +
1
2
γσ2q2 − 2Aξ − Aξ∆k∂2

qqθ(t, q)− Aξk
2(∂qθ(t, q))

2. (2.9)

We leave a more careful consideration of this step for future work and instead

focus on its consequences. In Chapters 3 and 4 we work in a continuous framework

where it is possible to find these conclusions with more rigour. Indeed we note

that it seems to be an inherent disadvantage of the discrete framework that these

arguments are more challenging to make.

Having made this approximation, in the remainder of this section we are able to

describe the long run behaviour of the system by considering the spectral theory

of a suitable linear operator. First we make a transformation so that the system

is in a more convenient form.

Proposition 2.2.3 Taking v = exp
(
k
∆
θ
)
, the equation (2.9) may be expressed

as

∂tv = 2 k
∆
Aξv −Bv, (2.10)

where

Bv := 1
2
k
∆
γσ2q2v − k∆Aξ∂

2
qqv.

Proof Substituting v = exp( k
∆
θ) into (2.9), we have

θ = ∆
k
ln v, ∂tθ = ∆

k
∂tv
v
, ∂qθ = ∆

k

∂qv

v
, ∂2

qqθ = ∆
k

(
v∂2

qqv−(∂qv)2

v2

)
.

Then (2.9) becomes the linear PDE

0 = −∆
k

∂tv
v

+ 1
2
γσ2q2 − 2Aξ − Aξ∆

2
(

v∂2
qqv−(∂qv)2

v2

)
− Aξ∆

2
(

∂qv

v

)2
,
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which in turn simplifies to give

0 = ∂tv − k
∆
(1
2
γσ2q2 − 2Aξ)v + k∆Aξ∂

2
qqv, (2.11)

as required.

□

2.2.5 Analysis of Long-Run Behaviour

In this section we will analyse the long run behaviour of (2.10). The main strength

of making the approximations that led to this equation lies in the fact that the

operator B is a positive self-adjoint operator with a compact inverse and thus

we may appeal to well established spectral theory to analyse its behaviour as

T → ∞.

The results we are about to discuss hold for a wider class of operators than just

the operator B defined above. In Section 2.3 we will use our specific knowledge

of the form of B to write a more explicit form of the value function, but in this

section we work in greater generality and get a flavour for the functional analysis

involved.

For a more detailed understanding of the approach taken here we refer the reader

to the textbooks of [14] and [17]. In particular we make use of some theorems

stated in [17] to pave a path through the functional analysis required to reach

our conclusions. In particular we are going to use a classical L2 theory of the

solution of PDEs to interpret the problem.

We also refer the reader to Ishii [60] which allows us to conclude that the solution

we find to the PDE is a valid solution to the control problem. The normal

approach in control theory would be to interpret solutions to the control problem

as viscosity solutions to avoid the need to prove a priori regularity of the value

function. In this example, the operator is nice enough that [60] allows us to say

that if we have a solution in H1(Ω) as we will describe below, then it will also be

a viscosity solution to the control problem.4

4Ishii [60] justifies this for general elliptic PDEs. Although we are working in the parabolic
case, this is included since the results in [60] do not require any uniform ellipticity conditions.
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So far we have been quite loose about the domain on which we are working and

so we now set a large value of Q and consider the equation (2.10), that is

∂tv = 2 k
∆
Aξv −Bv

on the domain Ω× [0, T ], where Ω := [−Q,Q]. This cap can be thought of as the

maximum (short or long) allowable inventory.

Note that when we talk about v(t, q) there is also implicitly a dependence on the

terminal time T . Later in Theorem 2.2.5 we will want to consider the long run

behaviour and will make this dependence explicit, but until then we keep T > 0

fixed.

In order to define boundary conditions we set θ(t,±Q) = −θ∗ for some large

θ∗, thinking of θ∗ representing a liquidation premium. That is, if our inventory

should ever hit the boundary we are prevented from making further trades on

one side of the book and have to bank a loss. By taking the value of Q large

enough we may consider this to be a very unlikely event for which the liquidation

premium would be significant. The consequence is that since v = exp
(
k
∆
θ
)
we

would have v ≈ 0 in this case and so we choose as a boundary condition

v(t, Q) = v(t,−Q) = 0 ∀t ∈ [0, T ].

This ensures that for every t the solutions v(t, ·) always belong to the same linear

subset of L2(Ω) which will be necessary in applying the results of [17]. To apply

these results we must first also consider the natural boundary condition

v(T, q) = 1 ∀q ∈ Ω◦ (2.12)

where Ω◦ = (−Q,Q) is the interior of Ω. Note the two boundary conditions are

not continuous at v(T,Q), though this is not as problematic as it initially seems.

We will be able to use the classical theory in Brezis [17] to find existence and

uniqueness of solutions immediately for times t ∈ [0, T − ϵ] and we will still be

able to extend this naturally to a solution for which we may take the limit ϵ → 0.

That is in Proposition 2.2.4 we will find a suitable function of q for each t ≤ T −ϵ

and then use a continuity argument to extend to the full interval [0, T ].
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In particular, Theorem 10.9 of [17] tells us that the solution to (2.11) exists and

Theorem 10.10 of [17] further gives us that this solution vϵ is unique (in a weak

sense) and satisfies vϵ ∈ C∞(Ω× [0, T − ϵ]), ∀ϵ > 0.5

Next we note that the operator B is self-adjoint and so appealing to classical

spectral theory (see e.g. [14]) we can find an orthonormal basis of L2(Ω) consisting

of eigenvectors of B. In particular, the eigenvectors and eigenvalues (ei, λi) satisfy

Bei = λiei, we have ⟨ei, ej⟩ = 0 for i ̸= j and ⟨ei, ei⟩ = 1 and there is a singular

minimal eigenvalue λ0 in that we have λ0 < λ1 ≤ λ2 ≤ ... The fact that the

leading eigenfunction has (algebraic and geometric) multiplicity 1 (so that λ0 <

λ1) is a direct consequence of the Krein-Rutman Theorem (see e.g. Theorem 6.13

in [17]).6

As a result we are able to determine a form for the value function and analyse

its behaviour in the limit as T → ∞ in the next two propositions.

Proposition 2.2.4 Let Ω = [−Q,Q] and (ei, λi)
∞
i=0 be the eigenvectors and

eigenvalues of the operator B := 1
2
k
∆
γσ2q2 − k∆Aξ∂

2
qq. Then

v(t, q;T ) =
∞∑
i=0

⟨1, ei⟩ exp
[(
2 k
∆
Aξ − λi

)
(T − t)

]
ei(q) (2.13)

is the unique solution to ∂tv = 2 k
∆
Aξv −Bv such that v ∈ L2([0, T ];H1(Ω)), v ∈

C([0, T ];L2(Ω)); for each 0 ≤ t < T , v(t, Q;T ) = v(t,−Q) = 0 and v(T, q;T ) =

1 ∀q ∈ Ω◦.

Proof Since we have a solution vϵ ∈ C∞(Ω × [0, T − ϵ]), ∀ϵ > 0 then we can

take 0 < t < T − ϵ and write v in the basis of eigenvectors of B as

vϵ(t, q;T ) =
∞∑
i=0

⟨vϵ, ei⟩ei(q) =:
∞∑
i=0

aϵi(t)ei(q). (2.14)

5A proof of Theorem 10.9 of [17] can be found, for example in [68] and of Theorem 10.10 in
[68], [45] or [65]. The issues with the boundary condition mean that (2.12) does not satisfy the
necessary compatibility conditions to be able to immediately extend this to say that we have
a solution v ∈ C∞(Ω× [0, T ]) in Theorem 10.9 so we have to consider the limit as ϵ → 0 more
carefully.

6This is analogous to the Perron-Frobenius results used in Chapter 5 where we are working
with the eigenvectors of a matrix instead. Proofs of various forms of the Krein-Rutman Theorem
can be found in [13] [73] [86] [88] and [91].
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Then equation (2.10) becomes

∂tv
ϵ = 2 k

∆
Aξv

ϵ −Bvϵ

∞∑
i=0

∂ta
ϵ
i(t)ei(q) = 2 k

∆
Aξ

∞∑
i=0

aϵi(t)ei(q)−B

(
∞∑
i=0

aϵi(t)ei(q)

)
∞∑
i=0

∂ta
ϵ
i(t)ei(q) = 2 k

∆
Aξ

∞∑
i=0

aϵi(t)ei(q)−
∞∑
i=0

aϵi(t)λiei(q)

∞∑
i=0

∂ta
ϵ
i(t)ei(q) =

∞∑
i=0

(
2 k
∆
Aξ − λi

)
aϵi(t)ei(q).

For each j we can take the inner product with ej(q) to give

∂ta
ϵ
j(t) =

(
2 k
∆
Aξ − λj

)
aϵj(t)

⇒ aϵj(t) = cϵj exp
[(
2 k
∆
Aξ − λj

)
(T − t)

]
.

where the cj are constants that can be determined from the boundary condi-

tions. In particular, if we impose a boundary condition vϵ(T − ϵ, q) = 1, then we

have
∞∑
i=0

aϵi(T − ϵ)ei(q) = 1 ∀q ∈ Ω.

Taking the inner product of each side with a particular ej we find that

aϵj(T − ϵ) = ⟨1, ej⟩,

and so

cϵj = ⟨1, ej⟩ exp
(
−ϵ
(
2 k
∆
Aξ − λj

))
,

and we note limϵ→0 c
ϵ
j = ⟨1, ej⟩. Substituting these back into (2.14) we have that

for 0 < t < T − ϵ,

vϵ(t, q;T ) =
∞∑
i=0

cϵi exp
[(
2 k
∆
Aξ − λi

)
(T − t)

]
ei(q). (2.15)
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Now fix η ∈ (0, T ]. Then for ϵ < η we have

vϵ(T − η, q;T ) =
∞∑
i=0

cϵi exp
[(
2 k
∆
Aξ − λi

)
η
]
ei(q). (2.16)

and we can let ϵ → 0 to find a function v(T − η, q;T ) ∈ H1(Ω) such that

v(T − η, q;T ) =
∞∑
i=0

⟨1, ej⟩ exp
[(
2 k
∆
Aξ − λi

)
η
]
ei(q). (2.17)

Now we can appeal to Theorem 10.9 of [17], which tells us that this function lies

in C([0, T ]×L2(Ω)) so that we are allowed to take the limit as η → 0 and so

v(t, q) =
∞∑
i=0

⟨1, ej⟩ exp
[(
2 k
∆
Aξ − λi

)
(T − t)

]
ei(q) (2.18)

has all of the properties required.

□

As a consequence of the previous proposition and the Krein-Rutman Theorem

telling us that operator B has a unique leading eigenvalue so that λ0 < λ1, for

large T we can see that the term involving λ0 will dominate the others and so

the following theorem immediately follows.

Theorem 2.2.5 As T → ∞ we have (with convergence in the L2(Ω) sense) that

e
−
(
2
k
∆

Aξ−λ0

)
T
v(0, q;T ) → v∞(q)

where v∞(q) ∈ H1
0 (Ω) is the solution to

Bv = λ0v,

where H1
0 (Ω) is the subset of H1(Ω) satisfying the boundary conditions v(±Q) =

0. In particular we have that there is a constant C such that for sufficiently large

T ∣∣∣∣∣
∣∣∣∣∣e−

(
2
k
∆

Aξ−λ0

)
T
vT (0, q)− v∞(q))

∣∣∣∣∣
∣∣∣∣∣
L2

≤ Ce−(λ0−λ1)t.
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Moreover (see [17] Theorem 9.31 and Remark 30), v0, λ0 can be recovered via the

Rayleigh-Ritz formula

λ0 = inf
v∈H1

0 (Ω)

⟨v,Bv⟩
⟨v, v⟩

= inf
v∈H1

0 (Ω),||v||L2=1
⟨v,Bv⟩,

and

v0 = argmin
v∈H1

0 (Ω),||v||L2=1

⟨v,Bv⟩.

We note that this also justifies the claim of [51]

v0 = min
f∈H1(R):||f ||L2=1

∫
1
2
k
∆
γσ2q2v2 −∆kAξ(∂qv)

2, dq

that is given there without proof.

Further, we will have that when T is large, approximately

v(t, q) = ⟨1, e0⟩ exp
[(
2 k
∆
Aξ − λ0

)
(T − t)

]
e0(q). (2.19)

2.3 The Quantum Harmonic Market Maker

In this final substantial section of this chapter we write down a natural extension

of the problems considered so far in this chapter. If we lift the inventory cap by

letting Q → ∞ so that Ω = R then we are able to recognise the operator under

consideration as that of a quantum harmonic oscillator. In this case we can then

easily write down the known eigenvectors and eigenvalues of the operator B and

so form a very neat and interpretable explicit form for the value function. As

a result we can quantify the approximate long run value of the initial market

making problem. The form we find also allows us to separate clearly the long run

value of market making and the cost of having a non-zero initial inventory.

In the following proposition, we use the notation f(t) ∼ g(t) as T − t → ∞ to

mean that f(t)
g(t)

→ 1 as T − t → ∞.
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Proposition 2.3.1 In the case Bv := 1
2
k
∆
γσ2q2v − k∆Aξ∂

2
qqv, the only smooth

non-negative solution to

∂tv = 2 k
∆
Aξv −Bv

satisfying the boundary conditions limq→±∞ v(t, q) = 0 ∀t and v(T, 0) = 1, sat-

isfies, as T − t → ∞,

v(t, q) ∼ exp

(
− 1

4∆

√
γσ2

Aξ

q2

)
exp

(
k
∆

(
2Aξ −∆

√
1
2
γσ2Aξ

)
(T − t)

)
.

Hence the value of market making satisfies, as T − t → ∞,

u(t, x, q, S) ∼ − exp

(
−γ

(
x+ qS − 1

4k

√
γσ2

Aξ

q2 +

(
2Aξ −∆

√
1
2
γσ2Aξ

)
(T − t)

))
.

Proof We can write down the eigenvectors and eigenvalues of

Bv := k
∆
(1
2
γσ2q2)v − k∆Aξ∂

2
qqv

by noting that the operator B is related to that of a quantum harmonic oscillator

in the sense of Proposition B.0.2. In the notation used there we have α = k∆Aξ,

β = k
∆

1
2
γσ2, κ = 0 so that we find its leading eigenpair to be

e0(q) = ( β
απ
)
1
4 e−

1
2

√
β
α
q2 , λ0 = −k

√
1
2
γσ2Aξ.

Then by a similar reasoning to Theorem 2.2.5 we find that as T − t → ∞, for a

suitable constant c we have,

v(t, q) ∼ ce0(q) exp((2
k
∆
Aξ + λ0)(T − t)). (2.20)

Applying the boundary condition v(T, 0) = 1 we find that the constant c must

cancel with the constant in eo(q) to give

v(t, q) ∼ e−
1
2

√
β
α
q2 exp((2 k

∆
Aξ − λ0)(T − t)).

Unpicking the substitution θ = ∆
k
log v and the original ansatz u(t, x, S, q) =
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− exp{−γ(x+ qS + θ(t, q))} we have

u(t, x, S, q) = − exp
{
−γ(x+ qS)− γ∆

k
log v

}
,

and so substituting (2.20) in place of v and also substituting for α and β then

gives the result immediately.

□

We recall that in the simplified, riskless world of Section 2.1 we found that the

function θ is just the constant 2Aξ multiplied by the remaining time available to

act as a market maker, so that the market maker should be equally happy to have

an additional 2Aξ(T − t) or the opportunity to act as a market maker from time

t until time T . Proposition 2.3.1 allows us to make a direct comparison and we

find the following two major differences in the form of the value function:

1. The profit rate per unit time is reduced from 2Aξ to 2Aξ − ∆
√

1
2
γσ2Aξ;

and

2. There is also a penalty of 1
4k

√
γσ2

Aξ
q2, quantifying how undesirable it is to

start with a non-zero inventory.

As we expected, market making in the riskless world has given us an upper bound

for the value of market making in a more general world, and this result has allowed

us to approximately quantify the difference.

2.3.1 An alternative approach

In the work of this chapter we have assumed that the inventory levels should

be fixed to a bounded domain [−Q,Q] and a bankruptcy condition be applied

at the boundaries. The compactness of the resulting operator then allowed us

to approach the eigenvalue problem rigorously using the results contained in

[17].

We think that it should also be possible to make the step to the quantum harmonic

oscillator case in section 2.3 more rigorously too. Pinsky [83] begins by working

with a general elliptic operator on a bounded domain and provides a rigorous

theory for its principal eigenvalue. Under a certain uniform ellipticity condition,
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they are then able to extend these results to arbitrary domains D ⊂ Rd.

In Chapter 5 of [83] they work in the one-dimensional case and further show that

many of the calculations can be worked out explicitly. Both Chapter 5 of [83]

and the paper of Elliott [37] propose integral tests to prove the existence of the

principal eigenvalue that would appear to be very applicable to our problem and

should allow us to justify more rigorously the step to the unbounded domain

that we have made in section 2.3. A full consideration of this approach will be

explored in future work.

2.4 Summary

In this chapter we considered a model for market making in the style of Guéant

[51] in two cases. Firstly, in the ‘riskless’ case where the underlying asset has no

randomness, we found optimal strategies and a long-run value of market making

that provide a useful reference case for all the work that follows. Then in the more

general case we have been able to approximate the resulting HJB equation in a

suitable way and use spectral theory to analyse the optimal quotes and quantify

the long-run value of market making per unit time. In the final section, we lifted

the inventory cap and made a natural comparison of the market making problem

to that of a quantum harmonic oscillator, and in doing so were able to suggest

a form of the value function that neatly separates and quantifies both the value

of market making and the cost of starting with a non-zero inventory. In doing

all of this we have added additional rigour to the results presented in [51] as well

as some additional new results about the value of market making. In the next

chapter we will formulate a new continuous model for market making that may

be considered a natural extension of this model.
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Chapter 3

A Continuous Model for Market

Making

In this chapter we will study a new continuous model for market making that

retains the key features of the model of Chapter 2. We have observed that

when market making with a risky asset the inventory level plays a key role. All

other things being equal, the market maker would always prefer to not hold

inventory and optimally they tend to adjust their quotes in a way that causes

their inventory to mean-revert towards zero. Although the value of the control

depends on many parameters in the model, the dynamic element rests primarily

in response to changes in the inventory level q. In Chapter 4 we will take this

focus on controlling the inventory even further, but in this chapter we begin by

formulating a continuous model in which the market maker’s bid and ask quotes

are set up in similar way to Chapter 2.

In Sections 3.1 we set up the continuous model and control problem, basing the

parameters and coefficients in the model carefully upon the modelling framework

of Chapter 2.

In Sections 3.2 and 3.3 we consider the PDE that the value function should

satisfy, and approximate it with a linear PDE that appears to give very reasonable

solutions to the problem. Whilst we are not able to make fully rigorous the

approximation we are able to recover results from the literature and make some
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interesting observations about the behaviour of the system. Indeed in Section 3.4

we do exactly this by recognising the linearised PDE as a version of a quantum

harmonic oscillator.

A fully rigorous version of the operator theory required for this chapter is beyond

the scope of this thesis and left for future work, but we are encouraged by closeness

of the results to the literature and Chapter 2. Our real aim for this chapter though

is to set the scene for Chapter 4, where we work with a slightly simpler model

which we are able to treat more rigorously. The results and the intuition gained

from this chapter are therefore important guides for what follows.

3.1 Formulation of the Continuous Model

The model in this section takes that of Chapter 2 as a starting point but imagines

that orders may arrive continuously and be of any size. All of the terms in the

driving SDEs in this model are motivated directly by rates from the discrete

model so that it may naturally be considered as a continuous time equivalent of

the model of Chapter 2.

3.1.1 Inventory Process

In the discrete model, demand arises as the result of orders arriving as Poisson

point processes with intensities Λb(δb) on the bid side and Λa(δa) on the ask

side. Since inventory increases with demand on the bid side and decreases with

demand on the ask side, the bid orders alone would cause the inventory to drift

upwards at rate Λb(δb) and the ask orders alone would cause the inventory to drift

downwards at rate Λa(δa). Thus we would expect an overall drift in the inventory

of Λb(δb)− Λa(δa) and so we define the inventory process by the SDE

dqt = ∆{Λb(δbt )− Λa(δat )}dt+ ζ(δat , δ
b
t )dB

(1)
t , (3.1)

where B
(1)
t is a Brownian motion and ζ(δa, δb) is a volatility term that will be

specified below.

Remark 3.1.1 The discrete order size ∆ still appears in our continuous model.
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Although it has become somewhat arbitrary it is helpful in making direct compar-

isons with the results from the discrete case.

A natural choice for the square of the volatility term ζ(δa, δb) is to take

ζ2(δa, δb) = ∆2{Λa(δa) + Λb(δb)},

since in the original model the orders arrive according to two Poisson processes

with rates Λa(δa) and Λb(δb). Thus the variance of total orders within a unit

of time would be Λa(δa) + Λb(δb), which when scaled by the order size ∆ gives

∆2{Λa(δa) + Λb(δb)} as the total variance of the inventory process.

3.1.2 Wealth Process

Alongside the inventory process we need to define a wealth process to keep track

of the running value that the market maker has accrued. In the discrete model,

when a bid order is placed at at price St − δb the market maker gains ∆ units

of inventory in exchange for ∆(St − δb) in cash. If we mark to market the value

of ∆ units of inventory at the mid-price St then this transaction results in an

immediate increase in wealth of ∆δb. Since bid orders arrive at rate Λb(δb) then

the bid orders increase wealth at an average rate of Λb(δb)∆δb.

By similar reasoning, the ask orders increase wealth at an average rate of Λa(δa)∆δa.

Adding together the bid and ask orders, the market maker accrues marked to

market profits at a rate of ∆{δaΛa(δa) + δbΛb(δb)}. Of course these profits are

not certain to be realisable in cash, since whilst holding inventory the price of

the asset may change. Since the asset price is modelled as arithmetic Brownian

motion, we add a volatility term to represent these fluctuations and so arrive at

the SDE

dWt = ∆{δatΛa(δat ) + δbtΛ
b(δbt )}dt+ σqdB

(2)
t , (3.2)

where B
(2)
t is a second Brownian motion independent of B

(1)
t . We leave for future

work consideration of the case where these are not independent.
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3.1.3 Optimisation Problem and Ansatz

The utility function that we seek to optimise for also takes a very similar form

to before and we write

v(w, q, t) = sup
δa,δb

Ew,q,t[− exp(−γWT )], (3.3)

where Ew,q,t is the expected value of the process where the market maker starts

with wealth w and inventory q at time t, and γ is a risk aversion parameter

characterising the market maker as before.

We can deduce the existence of the value function on a finite horizon via standard

methods. Moreover, the value function can be characterised in the usual manner

as a viscosity solution using e.g. Theorem 4.3.1 of Pham [82]. Note that in our

setting we do not need the function appearing in (4.17) of [82]. Pham’s other

conditions are easily verified.

As in Chapter 2, we expect that we should be able to factorise out the current

wealth in the utility function, and so take as ansatz

v(w, q, t) = −e−γ(w+θ(q,t)). (3.4)

Hence we have translated the discrete problem into one that is continuous and

essentially equivalent. The rest of this chapter will be devoted to studying and

solving this optimisation problem, as well as comparing these solutions to those

found in the the discrete case.

3.2 Developing a PDE for the Value Function

Proposition 3.2.1 Under the optimal choice of control, and taking

Λa(δa) = Ae−kδa ,Λb(δb) = Ae−kδb ,

the function θ defined in (3.4) satisfies
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0 = −∂tθ +
1
2
γσ2q2 − 2A∆

ke
exp

[
k∆
2
(θ′′ − γ(θ′)2)

]
cosh(kθ′). (3.5)

Proof We consider v(t,Wt, qt) as a stochastic process and then by standard

results1

0 =vt +
1
2
σ2q2vww (3.6)

+ sup
{δa,δb}

[
vw∆{δaΛa(δa) + δbΛb(δb)}+ vq∆{Λb(δb)− Λa(δa)}+ 1

2
vqqζ

2(δa, δb)
]
.

(3.7)

Now, applying the ansatz (3.4)gives

v(w, q, t) = −e−γ(w+θ(q,t)) vt = γθ̇e−γ(w+θ(q,t)) vq = γθ′e−γ(w+θ(q,t))

vw = γe−γ(w+θ(q,t)) vww = −γ2e−γ(w+θ(q,t)) vqq = (γθ′′ − γ2(θ′)2)e−γ(w+θ(q,t))

and so, after substituting these into (3.7) and dividing by −vw we have

0 = −∂tθ +
1
2
γσ2q2 − sup

{δa,δb}

[
∆{δaΛa(δa) + δbΛb(δb)}

+ θ′∆{Λb(δb)− Λa(δa)}+ 1
2
(θ′′ − γ(θ′)2)ζ2(δa, δb)

]
.

(3.8)

Substituting ζ2(δa, δb) = ∆2{Λa(δa)+Λb(δb)} and separating out the terms in δa

and δb we have

sup
{δa,δb}

[
∆{δaΛa(δa) + δbΛb(δb)}+ θ′∆{Λb(δb)− Λa(δa)}+ 1

2
(θ′′ − γ(θ′)2)ζ2(δa, δb)

]
=∆sup

δa

[
(δa + (−θ′ + ∆

2
(θ′′ − γ(θ′)2))Λa(δa)

]
+∆sup

δb

[
(δb + (θ′ + ∆

2
(θ′′ − γ(θ′)2))Λb(δb)

]
. (3.9)

Further substituting the choice Λa(δa) = Ae−kδa ,Λb(δb) = Ae−kδb and noting that

1See e.g. [41] Theorem IV 7.1.
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for any constant α

sup
δ
{(δ + α) exp−kδ} = 1

k
e(kα−1),

with optimising δ∗ = 1
k
− α = 1

k
(1− kα), the suprema in (3.9) become

A∆
k

exp
[
k(−θ′ + ∆

2
(θ′′ − γ(θ′)2))− 1

]
+ A∆

k
exp

[
k(θ′ + ∆

2
(θ′′ − γ(θ′)2))− 1

]
= 2A∆

ke
exp[k∆

2
(θ′′ − γ(θ′)2)] cosh(kθ′),

and hence equation (3.8) becomes

0 = −∂tθ +
1
2
γσ2q2 − 2A∆

ke
exp[k∆

2
(θ′′ − γ(θ′)2)] cosh(kθ′),

as required.

□

3.3 Approximation with a Linear PDE

We would like to appeal to the same spectral theory as in Chapter 2 but it is not

immediately clear that we can do so, as we now have a non-linear operator for

which most of the standard theory is not applicable.

Nonetheless we expect a long-run spectral interpretation to be possible for large

values of (T − t) and as a first step we write an ansatz representing a an average

profit rate times the time remaining plus an inventory-dependent term as

θ(t, q) = λ(T − t)− θ0(q).

Then we have ∂tθ = −λ and equation (3.5) becomes an ODE for θ0(q):

−λ = 1
2
γσ2q2 − 2A∆

ke
exp[k∆

2
(−θ′′0 − γ(θ′0)

2)] cosh(−kθ′0). (3.10)

Proposition 3.3.1 Suppose (3.10) holds and g(q) = exp(ηθ0(q)), with η =
γ∆−k

∆
. Then the pair (λ, g) are an eigenvalue/eigenvector pair for the operator L0
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given by

L0f := −1
2
γσ2q2f(q) + 2A∆

ke
f(q) exp

{
− 1

2
k∆2

γ∆−k

(
f ′′(q)

f(q)

)
− 1

2
k2∆2

(γ∆−k)2

(
f ′(q)

f(q)

)2

+ ln cosh

(
k∆

k−γ∆

f ′(q)

f(q)

)}
. (3.11)

That is we have L0g = λg.

Proof Making the substitution g(q) = exp(ηθ0(q)), we have g′(q) = ηθ′0(q)g(q)

and g′′(q) = ηθ′′0(q)g(q) + η2(θ′0(q))
2g(q) so that

θ′0 =
1

η

g′(q)

g(q)
,

θ′′0(q) =
1

η

g′′(q)

g0(q)
− η(θ′0(q))

2 =
1

η

g′′(q)

g(q)
− 1

η

(
g′(q)

g(q)

)2

.

Hence (3.10) becomes

λ = −1
2
γσ2q2+2A∆

ke
exp

{
−k∆

2η

(
g′′(q)

g(q)
−
(
g′(q)

g(q)

)2

+ γ
η

(
g′(q)

g(q)

)2
)}

×cosh

(
−k

η

g′(q)

g(q)

)
.

Substituting η = γ∆−k
∆

we find

λ = −1
2
γσ2q2+2A∆

ke
exp

{
− k∆2

2(γ∆−k)

(
g′′(q)

g(q)

)
− 1

2
k2∆2

(γ∆−k)2

(
g′(q)

g(q)

)2
}
×cosh

(
k∆

k−γ∆

g′(q)

g(q)

)
.

which is of the form required.

□

This non-linear operator is challenging to work with directly and so we work

instead with a linear operator that approximates it. A full understanding of the

analysis required for approximating the operator as we do is beyond the scope of

this thesis and is left for future work. Nonetheless we give here an idea of why we

think the approximation is reasonable and are encouraged that we can recover

some of the conclusions of the papers [52] and [51] in doing so.
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Our basic intuition arises from applying Taylor expansions to terms in the PDE

(3.11). Firstly we replace by its quadratic approximation ln cosh(x) ≈ x2

2
to

write

ln cosh

(
k∆

k − γ∆

f ′(q)

f(q)

)
≈ 1

2
k2∆2

(k−γ∆)2

(
f ′(q)

f(q)

)2

,

which gives

L0g ≈ −1
2
γσ2q2g(q) + 2A∆

ke
g(q) exp

{
−1

2
k∆2

γ∆−k

(
g′′(q)

g(q)

)}
.

Then we make a linear approximation of exp(x) ≈ 1 + x to give

L0g ≈ Lg :=
(
2A∆
ke

− 1
2
γσ2q2

)
g(q)− A∆3

e(γ∆−k)
g′′(q). (3.12)

In the remainder of this chapter we work on the assumption that the form of the

function g makes these approximations reasonable and show that in doing so we

are able to recover results from [52] and [51] and to align with Chapter 2. The

intuition gained from this will also act as a guide for the more rigorous work to

follow in Chapter 4.

3.4 The Quantum Harmonic Market Maker (Part

2)

Proposition 3.4.1 The leading normalised eigenpair (λ, g0) of the operator (3.12)

are

λ = 2A∆
ke

−
√

1
2
γσ2A∆

ek
k∆2

(k−γ∆)

g0 =

(
γσ2e(k − γ∆)

2πA∆3

) 1
4

e
− 1

2

√
γσ2e(k−γ∆)

2A∆3 q2

.

That is we have Lg0 = λg0, and further g0 is the only normalised eigenvector that

is positive everywhere.

Proof The operator L defined in (3.12) is related to that of the quantum

harmonic oscillator and is of the form of Proposition B.0.2 with α = A∆3

e(k−γ∆)
,

β = −1
2
γσ2 and κ = 2A∆

ke
and so the result follows immediately.
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Remark 3.4.2 Recall that Aξ :=
A∆
k

(
ξ

1+ξ

)1+ξ

and so in the limit as ξ → ∞ we

have Aξ ∼ A∆
ke

. So by writing

λ = 2A∆
ke

−∆

√
1
2
γσ2A∆

ek
1

(1− γ∆
k )

,

we may note that in this limit

λ = 2Aξ −∆
√

1
2
γσ2Aξ,

which is precisely the value of market making per unit time we found in the

discrete case in section 2.3.

Similarly we can write

γσ2e(k − γ∆)

2A∆3
=

γσ2

2∆2

ek

A∆

(
1− γ∆

k

)
∼ γσ2

2Aξ∆2
,

and so we can observe that in this limit we can also match this with the inventory

dependent term in Chapter 2.

3.5 Computing the Optimal Quotes

In this section we use the result of Proposition 3.4.1 to find approximate forms

for the optimal quotes. We will see that in a suitable limit these are exactly those

found in the paper of Guéant [51].

Proposition 3.5.1 Assuming that the eigenpair of Proposition 3.4.1 are a good

approximation to equivalent expressions for the operator L0, the optimal quotes

for the market maker in the control problem (3.3) are

δa =
1

k
−
√

γσ2e
2A∆(k−γ∆)

(
q − ∆

2

)
,

δb =
1

k
+
√

γσ2e
2A∆(k−γ∆)

(
q +

∆

2

)
.
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Proof Write ν := β
α

= 1
2
γσ2 e(k−γ∆)

A∆3 . Then we have θ(q) = 1
η
log{g(q)} =

∆
k−γ∆

log{g(q)} and so taking g as in Proposition 3.4.1

g(q) =
ν
1
4

√
2π

exp
(
−
√

ν
2
q2
)
,

and so

θ(q) = ∆
k−γ∆

log

 ν
1
4

√
2π

−
√
ν

2
q2

 .

Differentiating, we find

θ′(q) = − ∆
k−γ∆

√
νq, θ′′(q) = − ∆

k−γ∆

√
ν.

In the proof of Proposition 3.2.1 we noted that the optimal quotes were given

by

δa =
1

k
+θ′−∆

2
(θ′′−γ(θ′)2) =

1

k
− ∆

k − γ∆

√
νq−∆

2

(
− ∆

k − γ∆

√
ν − γ

∆2

(k − γ∆)2
νq2
)
,

δb =
1

k
−θ′−∆

2
(θ′′−γ(θ′)2) =

1

k
+

∆

k − γ∆

√
νq−∆

2

(
− ∆

k − γ∆

√
ν − γ

∆2

(k − γ∆)2
νq2
)
,

which to a linear approximation gives

δa =
1

k
− ∆

k − γ∆

√
ν

(
q − ∆

2

)
,

δb =
1

k
+

∆

k − γ∆

√
ν

(
q +

∆

2

)
.

Substituting ν = 1
2
γσ2 e(k−γ∆)

A∆3 and performing some straightforward rearrange-

ment gives the forms required.

□

Remark 3.5.2 In the small γ∆
k

limit these quotes are closely in agreement with

the model of Guéant [51]. To see this, working on the ask side (the bid side is
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identical), the quote can be written

δa =
1

k
−
√

γσ2

2A∆k
ek

(k−γ∆)

(
q − ∆

2

)
.

In Guéant [51], the form

δa =
1

γ∆
ln

(
1 +

γ∆

k

)
−
(
q − ∆

2

)√
σ2γ

2A∆k

(
1 +

γ∆

k

)(1+ k
γ∆)

is found, and if we take γ∆
k

to be small, then 1
γ∆

ln
(
1 + γ∆

k

)
≈ 1

k
and

(
1 + γ∆

k

)(1+ k
γ∆) ≈

e(k+γ∆)
k

so that this becomes

δa ≈ 1

k
−
(
q − ∆

2

)√
σ2γ

2A∆k

e(k + γ∆)

k
.

Now for small γ∆
k
, we also have that k

k−γ∆
≈ 1 ≈ k+γ∆

k
and so we find that our

solution matches very closely Guéant’s approximation in this case.

Corollary 3.5.3 With the quotes as given in Proposition 3.5.1 the bid ask spread

is a constant

δa(q) + δb(q) =
2

k
+∆

√
γσ2e

2A∆(k−γ∆)
.

Again we can see that as γ∆
k

→ 0 this could also be written as

δa(q) + δb(q) =
2

k
+∆

√
γσ2

2kAξ
.

3.6 The Dynamics of the Inventory Process

We can also give an approximate form of the dynamics of the inventory pro-

cess under the control, showing that it behaves as an Ornstein–Uhlenbeck pro-

cess.

Proposition 3.6.1 Under the optimal control found in Proposition 3.5.1 the in-
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ventory level is an Ornstein–Uhlenbeck process.

Proof The inventory process follows

dqt = ∆{Λb(δbt )− Λa(δat )}dt+∆2{Λa(δat ) + Λb(δbt )}dB
(1)
t . (3.13)

We need to show that there are constants c1, c2 > 0 such that the drift Λb(δb)−
Λa(δa) = −c1q and the volatility Λa(δa) + Λb(δb) = c2 is constant.

Taking ν = 1
2
γσ2 e(k−γ∆)

A∆3 as above we have

Λa(δa,∗) = Ae−kδa = A exp

(
−1 +

∆k

k − γ∆

√
ν

(
q − ∆

2

))
= Ae−1 exp

(
∆k

k − γ∆

√
ν

(
q − ∆

2

))
≈ Ae−1

(
1 +

∆k

k − γ∆

√
ν

(
q − ∆

2

))
,

Λb(δb,∗) = Ae−kδb = A exp

(
−1− ∆k

k − γ∆

√
ν

(
q +

∆

2

))
= Ae−1 exp

(
− ∆k

k − γ∆

√
ν

(
q +

∆

2

))
≈ Ae−1

(
1− ∆k

k − γ∆

√
ν

(
q +

∆

2

))
.

Then we find

Λb(δb,∗)− Λa(δa,∗) ≈ Ae−1

(
− 2∆k

k − γ∆

√
νq

)
= − 2A∆k

e(k − γ∆)

√
νq,

and

Λb(δb,∗) + Λa(δa,∗) ≈ Ae−1

(
2− ∆2k

k − γ∆

√
ν

)
,

which have the required form.
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□

The results of this chapter, whilst interesting, suffer from the significant disad-

vantage that they are based on an approximation of an operator that we have not

fully justified. The difficulties in the non-linearity arise due to the fact that our

control affects the Brownian term in the inventory process, making our resulting

PDEs fully non-linear (non-linear in ∂qq) rather than semi-linear (linear in ∂qq,

non-linear in ∂q).

Given the manner in which the results match closely those in the literature and

in Chapter 2, we suspect that with further work it would be possible to give some

reasonable conditions under which this approximation could be justified. Rather

we have chosen in this thesis to put rigorous arguments into Chapter 4 where we

will consider a slightly simpler model that is very closely related to this one, but

captures neatly the essence of the market making problem.

3.7 Summary

In this chapter we have formulated and studied a new continuous model for mar-

ket making that builds naturally upon and retains the key features of the model

of Chapter 2. Although it was necessary to make some approximations along the

way, the resulting linear PDE appears to give very natural and interpretable solu-

tions to the market making problem and sets the scene for the model of Chapter

4, where we will work with greater rigour.
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Chapter 4

A Continuous Model with a

Single Control Variable

In this chapter we adapt the model of Chapter 3 to give a rigorous solution

to a continuous time and space version of the original problem of Chapter 2.

The model in this chapter allows us to give a clear interpretation of the long-

run dynamics and optimal control and we also solve this numerically to find the

optimal strategy.

Up until now we have worked with a control consisting of two variables, δa and

δb. But in all of the models we have studied, in particular those of Avellaneda

and Stoikov [1] and Guéant [51] [52] as well as the models of Chapters 2 and 3

we have noted the tendency of the optimal quotes to move up and down roughly

in unison. We have also seen that market making is primarily a problem of

inventory management. Broadly speaking, the market maker seeks to manage

their inventory by incentivising or discouraging buy and sell orders with the aim

of bringing their inventory levels closer to 0.

This leads us to the idea that the control in the problem may be captured effec-

tively with just one variable instead of two and so in this chapter we modify the

continuous setting of Chapter 3 and assume that the market maker may directly

control the drift of the inventory process. For any choice of the drift there will be

infinitely many ways in which to produce that drift with various choices of δa and
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δb. Each choice will lead to a certain long run profit and the first thing we will do

in Section 4.1 is to show that for a given drift there is a unique combination of δa

and δb that will maximise the long run profit. So rather than choosing the quotes

as two independent controls, the market maker can instead simply control the

drift of the inventory process and note that this automatically implies a choice

of δa and δb.

Then in Section 4.1.1 we will reformulate the control problem so that we may

write it down entirely in terms of the drift and restate it in a form suitable for the

risk-sensitive control framework described by Nagai in [72]. To apply these results

we will need to make an assumption that the volatility of the inventory process

is constant, a choice that seems reasonable at least in some sensible parameter

regimes.

Since the early work of Jacobsen [61], followed by Whittle [94], there has been

much work deriving a full theory of the class of stochastic control problems whose

performance criteria are exponential functions of quadratic forms. This theory

of risk sensitive control has received a great deal of attention because of the

link it provides between stochastic and deterministic approaches to disturbances

in control systems. We base our results on those of Nagai [72], but see also

for example [8], [36] and [39] and the references contained therein. Since its

development this approach has been applied by a number of authors to tackle a

variety of problems, including many in mathematical finance, for example in [12],

[40] and [62]. To the best of our knowledge it has not yet been applied to market

making problems.

In fitting the original modelling assumptions of the papers of Guéant ([51] [52])

into this framework we faced a number of challenges. In particular, the tail

behaviour of the demand functions Λa(δa) = Ae−kδa ,Λb(δb) = Ae−kδb mean that

we are not able to satisfy a key assumption of Nagai [72]. Although we suspect

that these results are adaptable, the challenge seems deep and would require the

adaptation of some fundamental results relating to non-linear PDEs and so is

beyond the scope of this thesis. So instead in Section 4.3 we work with modified

versions of the demand functions in a way that is economically non-impactful and

allows us to make progress.
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Then in Section 4.4 we are able to write down a result about the asypmtotic

behaviour of the system and of the long run value function. We conjecture that

we can go even further and relate the long-run behaviour and the value of market

making per unit time to a pair (v(q), χ) satisfying a Bellman equation of ergodic

type and closely related to the Schrodinger operators of our quantum harmonic

market maker of Section 2.3.

In Section 4.5 we solve the resulting PDE numerically and consider a method

for finding the long-run value of market making χ numerically so that we could

understand the sensitivity of the value to changes to various parameters in the

problem without needing to repeatedly resolve the PDEs. Finally, we find that

the exponential integral that we are trying to estimate has large deviation effects

and propose a measure change that allows us to compensate for these and to find

an efficient way of computing the value of χ.

4.1 Replacing δa and δb with a single control

variable

We recall that in Chapter 3 we motivated a model including the following inven-

tory and wealth processes

dqt = ∆{Λb(δbt )− Λa(δat )}dt+ ζ(δat , δ
b
t ) dB

(1)
t ,

dWt = ∆{δatΛa(δat ) + δbtΛ
b(δbt )}dt+ σqt dB

(2)
t ,

where ζ2(δa, δb) = ∆2{Λa(δa) + Λb(δb)}. As usual we work in the case Λa(δa) =

Ae−kδa , Λb(δb) = Ae−kδb although we also consider the more general case briefly

below.

We begin by showing that if we fix a value µ for the drift of the inventory process

that there is a single optimal choice for the corresponding δa and δb that will

maximise the drift of the wealth process.

Proposition 4.1.1 In order to maximise the profit rate ∆(Aδae−kδa +Aδbe−kδb)

subject to a fixed drift µ = ∆(Ae−kδb −Ae−kδa) the market maker should set their
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bid and ask quotes using

δa =
1

k
+

1

k
sinh−1

( eµ
2A

)
, (4.1)

δb =
1

k
− 1

k
sinh−1

( eµ
2A

)
. (4.2)

This results in an overall bid-ask spread of δa + δb = 2
k
.

Proof Introducing a Lagrange multiplier λ we set

f(δa, δb, λ) = ∆(Aδae−kδa + Aδbe−kδb) + λ(∆(Ae−kδb − Ae−kδa)− µ).

We have ∂f
∂δa

= A∆e−kδa(1− kδa + kλ) and ∂f
∂δb

= A∆e−kδb(1− kδb − kλ), so that

setting ∂f
∂δb

= 0 and ∂f
∂δa

= 0 yields

1− kδb − kλ = 0,

1− kδa + kλ = 0,

and adding these gives the optimal spread of δa + δb = 2
k
. Solving these si-

multaneously with the constraint ∆(Ae−kδb − Ae−kδa) = µ leads directly to the

equations

sinh(kδa − 1) =
eµ

2A∆
,

sinh(1− kδb) =
eµ

2A∆
,

which rearrange to give (4.1) and (4.2).

Further, some straightforward algebra shows that for these choices of δa and δb

we have
∂2f

(∂δa)2
=

∂2f

(∂δb)2
= −kA∆eλk−1 < 0,

and
∂2f

(∂δa)2
∂2f

(∂δb)2
−
(

∂2f

∂δa∂δb

)2

= k2A2∆2e2(λk−1) > 0,

and so these choices do indeed give a maximum.

□
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Remark 4.1.2 The bid ask spread found here is a fixed constant that does not

depend on µ. This further supports our intuition from the paper of Avellaneda

and Stoikov [1] that optimal market making quotes tend to move up and down in

unison.

Remark 4.1.3 We could also try to apply this logic with a more general choice

of the control and a similar argument finds that we would take a bid-ask spread

of

δa + δb = − Λa(δa)

Λ′a(δa)
− Λb(δb)

Λ′b(δb)
.

To find the actual quotes we would solve this simultaneously with the constraint

∆(Λb(δb)− Λa(δa)) = µ.

4.1.1 Reformulating the control problem in terms of the

drift

Proposition 4.1.1 tells us that having fixed a drift µ, there is a single choice of δa

and δb that maximises the drift of the wealth process, and so next we reformulate

the SDEs for the inventory and wealth processes in terms of a control process µt

and without any direct dependence on δat and δbt .

Proposition 4.1.4 Continuing to work in the case Λa(δa) = Ae−kδa , Λb(δb) =

Ae−kδb, using the optimal choices of δa and δb from Proposition 4.1.1 the inventory

and wealth process of the problem of Chapter 3 can be written as

dqt = µt dt+
2A∆2

ke

√
x2
t + 1 dB

(1)
t , (4.3)

and

dWt =
2A∆

ke

{√
x2
t + 1− xt sinh

−1 xt

}
dt+ σqt dB

(2)
t , (4.4)

where xt =
eµt

2A∆
.
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Proof Writing xt =
eµt

2A∆
, we have that the optimal choices of δat and δbt from

Proposition 4.1.1 satisfy

kδbt = 1− sinh−1 xt, kδat = 1 + sinh−1 xt.

Substituting into the profit rate gives

∆
(
Aδat e

−kδat + Aδbte
−kδbt

)
=

A∆

ke

{(
1− sinh−1 xt

)
esinh

−1 xt +
(
1 + sinh−1 xt

)
e− sinh−1 xt

}
=

2A∆

ke

{√
x2
t + 1− xt sinh

−1 xt

}
,

where we have used in the final line the facts that esinh
−1 xt =

√
x2
t + 1 + xt and

e− sinh−1 xt =
√

x2
t + 1− xt. Similarly, the volatility of the inventory process may

be written as

∆2
(
Ae−kδa + Ae−kδb

)
=

A∆2

ke

{
esinh

−1 xt + e− sinh−1 xt

}
=

2A∆2

ke

{√
x2
t + 1

}
,

and so the result follows.

□

Remark 4.1.5 With this choice of control we have observed that

ζ(δat , δ
b
t ) = ∆2

(
Ae−kδa + Ae−kδb

)
=

2A∆2

ke

√
1 +

( eµt

2A∆

)2
.

Then ζ(δat , δ
b
t ) can be well approximated by a constant if eµt

2A∆
<< 1.

In order to apply the results of Nagai [72] we will need to make the assumption

that the inventory process has constant volatility. In practice this constant could

be chosen based on historical data. A possible direction for future work could

be to consider the case where this volatility parameter depends on the optimal

control. We could try to set up a fixed point problem where we would hope

to find a choice of constant parameter ζ0, equal to the average of ζ(δa, δb) over

the solution when that parameter is chosen as the control. Although we expect

this may be possible, without further investigation there is no guarantee that
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this fixed point exists so for now we proceed under the following assumption of

constant volatility.

Assumption 4.1.6 The volatility of the inventory process ζ(δa, δb) = ζ0, a con-

stant.

4.2 Defining a New Control Problem

In this section we formulate formally the problem we will solve rigorously in

the rest of the chapter. We first state this as Problem 4.2.1 in a form clearly

motivated by the work above and then as Problem 4.2.2 in the form to which

we can apply results from [72]. In Proposition 4.2.3 we show that Problem 4.2.1

and 4.2.2 are equivalent and then in Lemma 4.2.4 we show that Problem 4.2.1 is

well-posed.

Problem 4.2.1 We consider the problem of maximising over controls (µt)0≤t≤T

the following risk-sensitive expected growth rate per unit time

J(w, q, µ) = lim inf
T→∞

− 1
γT

logEw,q[e
−γWT (µ)].

Here WT is given by the integral form of (4.4)

WT = w +

∫ T

0

ϕ(µs)ds+

∫ T

0

σqsdB
(2)
s ,

where, taking x = eµ
2A∆

,

ϕ(µt) =
2A∆

ke
{
√

x2
t + 1− xt sinh

−1 xt}.

We also assume that qt is a process as in (4.3) given by

dqt = µtdt+ ζ0dB
(1)
t

for a constant ζ0 and that µt is a progressively measurable control that satisfies

E[e
1
2

∫ T
0 γ2σ2q2t dt] < ∞. (4.5)
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Problem 4.2.2 Choose (µs)0≤s≤T to minimise

lim sup
T→∞

1

γT
logE[e−γ

∫ T
0 (ϕ(µs)− 1

2
γσ2q2s)ds],

where, taking xt =
eµt

2A∆
we have

ϕ(µs) =
2A∆

ke
{
√
x2
s + 1− xs sinh

−1 xs}

and

dqt = µtdt+ ζ0 dB
(1)
t .

Proposition 4.2.3 Problem 4.2.1 and Problem 4.2.2 are equivalent.

Proof Beginning with the value function of Problem 4.2.1

Ew,q

[
e−γWT

]
= Ew,q

[
e
−γ

(
w+

∫ T
0 ϕ(µs)ds+

∫ T
0 σqsdB

(2)
s

)]
= Ew,q

[
e−γ(w+

∫ T
0 ϕ(µs)ds)+ 1

2
γ2σ2

∫ T
0 q2sds × e−γ

∫ T
0 σqsdB2

s−
1
2
γ2σ2

∫ T
0 q2sds

]
.

Now, the condition (4.5) means that we can apply Novikov’s condition to give

that the process

ZT := e−γ
∫ T
0 σqsdB2

s−
1
2
γ2σ2

∫ T
0 q2sds

is a martingale. So by the Girsanov Theorem we can define a change of measure

by dP̃
dP |FT

= ZT so that we have

Ew,q[e
−γWT ] = Ẽw,q

[
e−γ(w+

∫ T
0 ϕ(µs)ds)+ 1

2
γ2σ2

∫ T
0 q2sds

]
,

and B̃(2) := B
(2)
t + γσ

∫ t

0
qsds is a P̃ Brownian motion. Under P̃ the qt dynamics

are unchanged and the dynamics for Wt are given by

dWt = ϕ(µt)dt+ σqtdB
(2)
t

= (ϕ(µt)− γσ2q2t )dt+ σqtdB̃
(2)
t .
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Our new objective is to maximise

J(w, q, µ, T ) = − lim inf
T→∞

1

γT
log Ẽw,q[e

−γ(
∫ T
0 (ϕ(µs)−γσ2q2s)ds)] + w, (4.6)

which is clearly equivalent to minimising

lim sup
T→∞

1

γT
logE[e−γ

∫ T
0 (ϕ(µs)−γσ2q2s)ds].

□

Lemma 4.2.4 The control problem, Problem 4.2.1, is well-posed, that is, there

exists admissible controls (µt)t≥0 such that J(w, q, µ) > −∞.

Proof We consider the case where the strategy µt = −cqt is used, for some

c > 0. We will show that there exists c > 0 sufficiently large that (4.5) holds.

Note that under this assumption, q is an Ornstein-Uhlenbeck process.

In this case, the process qt depends only on the Brownian motion B(1), and

since B(1) is independent of B(2), and under the assumption we can rewrite the

expectation ocurring in J as

E[e−γ
∫ T
0 (ϕ(µs)− 1

2
γσ2q2s) ds],

as we have shown in Proposition 4.2.3.

Since ϕ(x) ∼ x log x for large values of x, it will be sufficient to prove that given

γ̂ > 0, there exists c, λ̂ > 0 such that

1

T
logE[eγ̂

∫ T
0 q2s ds] ≤ λ̂

for all T sufficiently large.

We now fix T > 0, and N ∈ N. Let δN := 1
N

and without loss of generality, we

may assume that T = KδN for some K. Write tNi := iδN for i = 0, . . . , K.

We write IN := δN
∑K−1

i=0 q2
tNi

and note that IN →
∫ T

0
q2s ds almost surely as

N → ∞ due to the continuity of the paths of q.
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We aim to show that E[eγ̂IN ] < ∞ for sufficiently large c. Note that since q is

an Ornstein-Uhlenbeck process, conditional on qtN0 , . . . , qtNi , qtNi+1
has a Gaussian

distribution with mean qtNi e
−cδN and variance (ζ0)2

c

(
1− e−cδN

)
.

We use the fact that if Z ∼ N(0, 1) and λ < 1
2
, then

E
[
eλ(Z+µ)2

]
=

eλµ
2(1−2λ)

−
1
2

(1− 2λ)
1
2

. (4.7)

In particular, writing ηN := e−cδN and ς2N := σ2

2c
(1− ηN), we get:

E
[
e
ξ̃q2

tN
i |qtN0 , . . . , qtNi−1

]
= E

[
exp

{
ξ̃
(
qtNi−1

ηN + ςNZ
)2}

|qtN0 , . . . , qtNi−1

]
= E

[
exp

{
ξ̃ς2N

(
qtNi−1

ηN
ςN

+ Z

)2
}
|qtN0 , . . . , qtNi−1

]

=
(
1− 2ξ̃ς2N

)−1
2
exp

{
ξ̃η2Nq

2
tNi−1

(
1− 2ξ̃ς2N

)−1
}
,

where Z ∼ N(0, 1) is a Gaussian random variable, independent of qtN0 , . . . , qtNi−1
.

It follows that we can write

E
[
eγ̂IN |qtN0 , . . . , qtNk

]
= eγ̂Ik−1θk exp

{
ξ̃kq

2
tNk

}
,

where θN = 1, ξ̃N = γ̂δN and

ξ̃k = ξ̃k+1

(
1− 2θk+1ς

2
N

)−1
2 , (4.8)

θk = γ̂δN + θk+1η
2
N

(
1− 2θk+1ς

2
N

)−1
, (4.9)

provided that 2θk+1ς
2
N < 1.

We consider fixed points of equation (4.9), that is, values θN,∗ such that 2θN,∗ς2N <

1 and

θN,∗ = γ̂δN + θN,∗η2N
(
1− 2θN,∗ς2N

)−1
,
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which is equivalent to

2(θN,∗)2ς2N + (η2N − 1− 2γ̂ς2N)θ
N,∗ + γ̂δN = 0. (4.10)

Real roots to this quadratic equation exist when

(η2N − 1− 2γ̂ς2N)
2 − 8ς2N γ̂δN ≥ 0.

Using the approximations (noting that δN is small) η2N − 1 ≈ −2cδN and ς2N ≈
1
2
(ζ0)2δN , we conclude that there exists N0 depending on ε > 0 such that (4.9)

has a fixed point whenever(
2c+

1

2
(ζ0)2

)2

≥ 4(ζ0)2γ̂ + ε,

or in particular if

c ≥ ζ0
√

γ̂ + ε′ − (ζ0)2

4
,

for a suitable constant ε′.

Observing that

θ 7→ g(θ) := γ̂δN + θη2N
(
1− 2θς2N

)−1

defines an increasing function with g′(θ) < 1 provided θ < ς−2
N /2, we conclude

that if θ0 < θN,∗ and θN,∗ < ς−2
N /2 then θk given by (4.9) is an increasing sequence,

converging to θN,∗.

Dividing (4.10) by ς2N , and using the same approximation for large N as above,

we see that for N sufficiently large, θN,∗ will approximately solve the quadratic

equation

2(θ∗)2 −
(

c

(ζ0)2
+ 2γ̂

)
θ∗ +

2γ̂

(ζ0)2
,

from which we can conclude that θN,∗ <
ς−2
N

2
, and hence θk <

ς−2
N

2
for all k.

Moreover, it follows that there exists ε′′ > 0 such that θk ≤ θ∗ + ε′′ uniformly for

all N sufficiently large, and all k = 0, 1, . . . , N .
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We conclude that ξ0 = ΠN
k=1(1− 2θkς

2
N)

−1
2 , and thus

1

T
logE

[
e
ξ̃q2

tN
i |qtN0 , . . . , qtNi−1

]
=

1

T
log(ξ0)

= −1

2

1

T

N∑
k=1

log
(
1− 2θkς

2
N

)
≤ 1

T

N∑
k=1

(
θkς

2
N + θ2kς

4
N

)
≤ (ζ0)2(θ∗ + ε′′) + o(1),

which is the desired result.

To conclude, we observe that sending N → ∞ and using Fatou’s Lemma, we

have

E
[
eγ̂

∫ T
0 q2s ds

]
≤ lim inf E[eγ̂INN ] ≤ eT λ̂,

as required.

□

4.3 Modifying the demand functions Λa(δa) and

Λb(δb)

We are now almost in a position that we may apply the results of Nagai [72]

to our problem. In particular we would like to apply Theorems 1.1 and 3.1 of

Nagai [72] in order to assert that this problem has a unique solution and to infer

properties of the long run behaviour. To do so we need to check that conditions
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(1.4)-(1.10),(1.16) and (1.17) of [72] hold.1 Mostly these are straightforward,

however in order to satisfy (1.16) of [72] we require the function2

Q0(p) :=
γ

2
ζ20p

2 + inf
µ
{µp− ϕ(µ)}, p ∈ R

must be bounded above and below by quadratics. However this is not the case

without making a slight modification to the model. It seems plausible that in fact

this approach could be avoided, however the PDE theory required to adapt to

the Nagai work would take us well beyond the scope of this thesis. Indeed Nagai

relies on deep PDE results in [65] that make fundamental use of this assumption

and so instead in the next section we modify the demand function slightly in a

way that has no practical impact but avoids these difficulties.

The essential problem with fitting our case into the Nagai [72] framework arises

from the exponential tails of the demand functions Λa(δa) and Λb(δb). To work

around this we fix a large negative M and make the demand function linear rather

than exponential beyond that point. So let us define

ΛM(δ) =

Ae−kδ δ > M

Ae−kM(1 + k(M − δ)) δ < M
(4.11)

where the linear piece of the function has been chosen to ensure that ΛM(δ) is

continuous with a continuous derivative.

This modification we make below has almost no impact on the practical applica-

1For the benefit of any reader looking to match closely our work to that of Nagai we include
here a table comparing the notation used in Nagai to our own. Note that we work in the
θ > 0 case as written in Nagai (corresponding to the risk-averse case, and to our γ > 0).

Nagai This Thesis Nagai This Thesis

Zs µs Xs qs

b(Xt) 0 c(Xt, Zt) µ(qt)

ϕ(Xs, zs) −(ϕ(µ)− 2A∆
ke ) V (Xs) γσ2q2s − 2A∆

ke

θ γ aij ζ20
2Note that in Nagai the function Q0(q, p) may depend on q, however since our versions do

not, we just write Q0(p).

76



tion. Indeed, verifying the behaviour of demand in the tails in reality would be

very difficult. In any case it would be very rare that the market maker would ever

quote at such extreme values. In practice they would most likely simply actively

transact with other market makers to reduce their position at the sorts of large

inventory levels these quotes would be needed at, rather than passively offering

very favourable terms. Thus our modified modelling choice is just as reasonable

as the initial one and there is no cost in taking this approach.

Although of little practical importance, moving from exponential to linear de-

mand for these large values will allow us to fit neatly into the framework of Na-

gai. Before we show that this is possible, we see how the change to the demand

functions impacts on the optimal quotes.

Lemma 4.3.1 The optimal choice of δa and δb are unchanged by modifying the

demand functions from Λ(δa) and Λ(δb) to ΛM(δa) and ΛM(δb) for values of µ

satisfying

|µ| < −2A

e
sinh(Mk − 1).

Proof The particular choice of the linear function ΛM(δ) in (4.11) has been

chosen to make the function continuous with a continuous derivative. As a result

we have that ΛM(δ) ≤ Λ(δ) for all δ. This means that to achieve a given level of

demand, the market maker must offer a less profitable δ under ΛM than under

Λ. That is, there are only equal or worse options available to the market maker

under δM compared to Λ. Thus for µ such that the resulting optimal values of

δa and δb are greater than M the optimal choice will be unchanged.

Rearranging (4.1) and (4.2), the strategy is unchanged on the ask side when the

optimal δa > M . That is when

µ >
2A

e
sinh(Mk − 1).

On the bid side the strategy is unchanged when δb > M , that is

µ < −2A

e
sinh(Mk − 1).

Note that since M is large and negative, so is sinh(Mk− 1). When both of these
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conditions are satisfied so that

|µ| < −2A

e
sinh(Mk − 1),

then the optimal strategy will be defined as before.

□

Lemma 4.3.2 With the capped demand function ΛM(δ) there is still a unique

choice of δa and δb that maximises the drift in the wealth process for every value

of µ.

Proof By Lemma 4.3.1 the strategy is unchanged for |µ| < −2A
e
sinh(Mk − 1)

and so the optimal choice of δa and δb will be unchanged. So we just consider

the case |µ| > −2A
e
sinh(Mk − 1).

Let us consider first the case where µ is large and positive, so that we have

µ > −2A

e
sinh(Mk − 1). (4.12)

In this case the market maker is trying to rapidly increase their inventory and

so we would expect to find that δb is very large and negative and δa is very

large and positive. In that way the market maker’s quotes on the bid side are

very generous (paying well over the odds for the asset in order to increase their

inventory rapidly) and their ask quotes will be very unattractive and should find

almost no orders.

Thus the relevant pieces of the demand functions to consider for the bid and ask

quotes respectively are

Λb(δb) = Ae−kM(1 + k(M − δb)),

Λa(δa) = Ae−kδa .

Then the constraint on the inventory ∆(Λb(δb)− Λa(δa)) = µ becomes

∆(Ae−kM(1 + k(M − δb))− Ae−kδa) = µ, (4.13)

78



and the profit rate we are looking to optimise, ∆{δaΛa(δa) + δbΛb(δb)}, be-

comes

∆(δaAe−kδa + δbAe−kM(1 + k(M − δb))).

Introducing the Lagrange multiplier λ as before we consider the function

f(δa, δb, λ) =∆(δaAe−kδa + δbAe−kM(1 + k(M − δb)))

+ λ∆(Ae−kM(1 + k(M − δb))− Ae−kδa)− µ).

We have ∂f
∂δa

= A∆e−kδa(1− kδa + kλ) and ∂f
∂δb

= A∆e−kM(1 + kM − 2kδb − kλ),

so that setting ∂f
∂δb

= 0 and ∂f
∂δa

= 0 yields the equations

δa =
1

k
+ λ, (4.14)

2δb =
1

k
+M − λ. (4.15)

Upon substituting these into the constraint (4.13) we find the equation

1
2
kλ− ekM−1e−λk = µ

A∆
ekM − 1

2
− 1

2
kM. (4.16)

Now if we let x = −λk then we see that this is of the form bex = ax−c with a < 0

and b > 0. Since a straight line of negative slope will intersect the exponential

graph exactly once we can deduce that there is a unique solution for λ and hence

that the problem of finding the optimal δa and δb also has a unique solution.

Further, some straightforward algebra shows that for these choices of δa and δb

we have
∂2f

(∂δa)2
= −kA∆eλk−1 < 0,

∂2f

(∂δb)2
= −2kA∆e−kM < 0,

and
∂2f

(∂δa)2
∂2f

(∂δb)2
−
(

∂2f

∂δa∂δb

)2

= 2k2A2∆2e1+λk+kM > 0,

and so these choices do indeed give a maximum.

The case where µ is large and negative is almost identical, with the roles of bid
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and ask reversed. By similar computations we find that

2δa =
1

k
+M − λ, (4.17)

δb =
1

k
+ λ. (4.18)

where λ is the solution to

1
2
kλ+ ekM−1eλk = µ

A∆
ekM + 1

2
+ 1

2
kM. (4.19)

□

Next we will show that we can satisfy condition (1.16) in Nagai [72]. To do so

we are hoping to find k1 and k2 such that

−k1
2
ζ20p

2 ≤ Q0(p) ≤ −k2
2
ζ20p

2

where

Q0(p) =
γ

2
ζ20p

2 + inf
µ
{µp− ϕ(µ)}, p ∈ R

Our strategy is to show first that we can find m1,m2 > 0 such that

−m1µ
2 ≤ ϕ(µ) ≤ −m2µ

2. (4.20)

As a consequence of Lemma 4.3.1 we note that for |µ| < −2A
e
sinh(Mk − 1) the

profit rate ϕ(µ) is also unchanged and so in this region we have

ϕ(µ) =
2A∆

ke
{
√
x2 + 1− x sinh−1 x},

where x = eµ
2A∆

, and in particular ϕ(0) = 2A∆
ke

so it is clear that we cannot satisfy

(4.20) in its current form. So we subtract 2A∆
ke

from ϕ(µ) to make sure it passes

through the origin and instead look to find m1,m2 > 0 such that

−m1µ
2 ≤ ϕ(µ)− 2A∆

ke
≤ −m2µ

2. (4.21)
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We also redefine

Q0(p) :=
γ

2
ζ20p

2 + inf
µ

{
µp−

(
ϕ(µ)− 2A∆

ke

)}
, p ∈ R

accordingly and so we will plan to apply the results of Nagai to ϕ(µ) − 2A∆
ke

instead.

Remark 4.3.3 Note the quantity that has been subtracted from ϕ(µ), that is 2A∆
ke

,

also played an important role in Chapter 3, where we noted that it converged in

the limit as γ∆
k

→ 0 to the quantity 2Aξ, the long-run value of market making

found in the riskless world of Section 2.1.

Although we cannot find a closed form solution for (4.16) we can compute asymp-

totic results that will allow us to find suitable m1 and m2. We note that some of

these asymptotic results relate to cases that are not likely to occur in practice,

but are nonetheless important to establish the applicability of the results we wish

to apply.

Proposition 4.3.4 With demand modelled by the capped function, asymptoti-

cally we find that the optimal quotes are given by

δa ∼ 1

k
+M +

ekM

∆Ak
µ, as µ → ∞ (4.22)

δb ∼ 1

k
+M − ekM

∆Ak
µ, as µ → −∞, (4.23)

and asymptotically as |µ| → ∞ the profit rate satisfies

ϕ(µ) ∼ −ekM

Ak
µ2.

Proof By Lemma 4.3.1 the optimal strategy is unchanged for |µ| < −2A
e
sinh(Mk−

1) and so ϕ(µ) will also be unchanged for these values. So we are considering the

case |µ| > −2A
e
sinh(Mk − 1).

Let us consider the case where µ is large and positive, so that we have µ >

−2A
e
sinh(Mk − 1). As we noted heuristically and is confirmed by (4.14) and

(4.15), in this case where we are looking to achieve a very large positive drift we
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will want to choose δa to be very large and positive and the corresponding δb to

be very large and negative.

The fact that δa will be governed by the usual demand function and the quotes in

this regime are so wildly uncompetitive that demand on that side of the book will

be approximately 0 and the drift will be almost exclusively achieved by orders

on the bid side. In the limiting case as µ → ∞ the market maker’s quotes on

one side of the book become are filled so rarely that their one-sided quote can be

found by finding the δb satisfying µ = ∆ΛM(δb). That is

µ = ∆(Ae−kM(1 + k(M − δb)).

Straightforward rearrangement gives

δb =
1

k
+M − ekM

∆Ak
µ,

and the resulting drift in the profit will be

ϕM(µ) := δb∆ΛM(δb) =

(
1

k
+M − ekM

∆Ak
µ

)
∆µ =

(
M +

1

k

)
µ− ekM

Ak
µ2.

The case of looking for a large negative drift µ < 0 is almost identical. We would

look for −µ = ∆ΛM(δb) so that

−µ = ∆(Ae−kM(1 + k(M − δa)),

giving

δa =
1

k
+M +

ekM

∆Ak
µ,

and

ϕM(µ) := δa∆ΛM(δa) = −
(
1

k
+M +

ekM

∆Ak
µ

)
∆µ = −

(
M +

1

k

)
µ− ekM

Ak
µ2.

Then we have that ϕ(µ) ∼ − ekM

Ak
µ2 as |µ| → ∞ as required.

□
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Figure 4-1: The left panel shows the optimal bid and ask quotes with the original
demand functions as found in Proposition 4.1.1. The right panel shows the op-
timal quotes for the capped demand function, computed numerically in the case
|µ| < −2A

e
sinh(Mk−1) (where they differ from the original functions), and using

the original quotes otherwise. The straight lines show the asymptotic behaviour.
These were computed with k = 0.25, M = −12, A = 1, ∆ = 1.

In Figure 4-1, to illustrate the asymptotic behaviour of the quotes we have re-

peatedly solved equations (4.16) and (4.19) to compute the optimal quotes for

|µ| < −2A
e
sinh(Mk − 1) and we have also plotted straight lines to show the

asymptotic behaviour given in (4.22) and (4.23).

We are now in a position to show that we can satisfy the necessary conditions in

Nagai [72]. In order to do so we will justify the following Proposition.

Proposition 4.3.5 Let M < 0 be a large negative value. With the demand

function defined by (4.11), the function

Q0(p) =
γ

2
ζ20p

2 + inf
µ

{
µp−

(
ϕ(µ)− 2A∆

ke

)}
, p ∈ R (4.24)

may be bounded above and below by quadratics in the sense of condition (1.16) in

Nagai [72], where ϕ(µ) is the drift of the resulting wealth process.

We note that we know the following about the profit rate ϕ(µ) in the capped
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Figure 4-2: A plot of the function ϕ(µ)− 2A∆
ke

, computed numerically and sand-

wiched between −m1µ
2 and −m2µ

2 for m1 =
1
k
and µ2 =

ekM

Ak
.

case

ϕ(µ) =

2A∆
ke

{
√
x2 + 1− x sinh−1 x} |µ| < −2A

e
sinh(Mk − 1)

ϕM(µ) |µ| > −2A
e
sinh(Mk − 1)

(4.25)

where x = eµ
2A∆

and we have as |µ| → ∞

ϕM(µ) ∼ −ekM

Ak
µ2.

Although we cannot give a closed form expression for ϕM for all values, we may

use the computed optimal quotes to find it numerically via

ϕ(µ) = δaΛa(δa) + δbΛb(δb).

Further, the proof of Proposition 4.3.4 makes it clear that in fact ϕM(µ) ≤ − ekM

Ak
µ2

for |µ| > −2A
e
sinh(Mk− 1) and it is easy to verify that this is in fact true for all

µ and also for ϕ(µ)− 2A∆
ke

. We illustrate this by plotting both of these functions

in Figure 4-2 along with a quadratic that lies entirely above ϕ(µ)− 2A∆
ke

. Finding

the quadratic that lies below ϕ(µ) − 2A∆
ke

is much easier. We just need to make

sure that the function stays below near zero, but we have a closed form for ϕ(µ)
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in this region, so to make sure that the quadratic function −m1µ
2 lies below it we

just need to compare their second derivatives. We can easily compute that

d2ϕ

dµ2

∣∣∣
µ=0

= −1

k

and so the relevant condition is that we should take

m1 ≥
1

2k
.

So we have found m1,m2 > 0 such that

−m1µ
2 ≤ ϕ(µ)− 2A∆

ke
≤ −m2µ

2,

where m1 =
1
2k

and m2 =
ekM

Ak
.

Next, we consider putting these quadratics in functions of a similar form to the

Legendre-Fenchel style Q0 that we need to consider to apply Nagai’s results. We

can readily compute

Q1(p) :=
γ

2
ζ20p

2 + inf
µ
{µp+m1µ

2},

=
γ

2
ζ20p

2 +m1 inf
µ

{(
µ+

p

2m1

)2

− p2

4m2
1

}

=

(
γ

2
ζ20 −

1

4m1

)
p2,

and similarly

Q2(p) :=
γ

2
ζ20p

2 + inf
µ
{µp+m2µ

2} =

(
γ

2
ζ20 −

1

4m2

)
p2.

Thus by properties of Legendre-Fenchel transforms we may conclude that(
γ

2
ζ20 −

1

4m2

)
p2 ≤ Q0(p) ≤

(
γ

2
ζ20 −

1

4m1

)
p2,
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where we recall that

Q0(p) =
γ

2
ζ20p

2 + inf
µ

{
µp−

(
ϕ(µ)− 2A∆

ke

)}
, p ∈ R.

For Nagai we require that these coefficients be negative so that

γζ20 <
1

2m1

, γζ20 <
1

2m2

,

with the former condition being the more restrictive. With such a choice it is

clear that we have justified Proposition 4.3.5 and so we have satisfied (1.16) of

Nagai and may proceed to use their results.

Remark 4.3.6 There is a further condition (1.17) required in Nagai, and whilst

it is clear that the required gradient conditions are satisfied it also requires smooth-

ness of the function Q0. If we further approximate the demand function ΛM of

(4.11) with a smooth function, for example by taking the values given by (4.11)

for δ < M and δ > M+1 and choosing a smooth interpolation for M < δ < M+1

then we can satisfy this condition whilst not impacting any of our other conclu-

sions.

4.4 Long-Run Behaviour

We are now in a position to apply the results of Nagai via the following theo-

rem.

Theorem 4.4.1 Writing

u(t, q) =
1

γ
logE[e−γ

∫ t
0 (ϕ(µs)−γσ2q2s)ds],

and taking Q0 as defined in (4.24) and ϕ as given by (4.25), then there exists

0 < α < 1 such that the equation

∂u

∂t
=

1

2
ζ20u

′′(q) +Q0(u
′) + γσ2q2 − 2A∆

ke
(4.26)

has a unique non-negative solution u ∈ C1+α
2
,2+α((0,∞) × R) ∩ C([0,∞) × R).

Further there exists an increasing sequence Ti ⊂ R+ with Ti → ∞ such that
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u(Ti, q)− u(Ti, 0) converges to a function v ∈ C2(R) uniformly on each compact

set and strongly in W 1
2,loc and

∂u
∂t
(Ti, q) to χ(q) ∈ C(R) uniformly on each compact

set. Moreover (v(q), χ(q)) satisfies

χ(q) +
2A∆

ke
=

1

2
ζ20v

′′(q) +Q0(v
′) + γσ2q2.

Proof The theorem follows from a direct application of Theorem 1.1 and Lemma

3.1 of [72]. Of the conditions required to apply the result, (1.4)-(1.10) and (1.17)

are easily satisfied (noting Remark 4.3.6), and (1.16) follows as a result of the

capped demand function we have imposed and Proposition 4.3.5.

□

We would like to take this one step further and assert that the function χ(q) is

in fact a constant χ3 and so make the following conjecture:

Conjecture 4.4.2 As T → ∞ the solution u(t, x) to Problem 4.2.2 satisfies:

1. u(t, q) − u(t, 0) converges to a function v(q) in W 1
2,loc uniformly on each

compact set.

2. ∂u
∂t
(t, q) → χ on each compact set, where χ ∈ R.

3. The pair (v, χ) is the unique solution of

χ+
2A∆

ke
=

1

2
ζ20v

′′(q) +Q0(v
′) + γσ2q2, (4.27)

where Q0 is as defined in (4.24).

A full justification of this result, along with our belief that the form of equation

(4.27) is very closely related to the principal eigenpair of our quantum harmonic

market maker of Section 2.3 and that (v(q), χ) can be recovered as the principal

eigenpair of a Schrödinger operator, is just out of reach. Although our problem

is very close to examples given in Section 3.2 of Nagai [72] with these properties

which would allow us to use their Theorem 3.4 to prove our Conjecture 4.4.2, the

functional analysis required to adapt rather than borrow their results is deep and

3In this case equation (4.26) is a ‘Bellman equation of ergodic type’.
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challenging enough that it must be left for future work. Nonetheless our intuition

is that this constant χ + 2A∆
ke

can be shown rigorously to represent the long-run

value of market making per unit time. We expect χ to be negative so that this

represents a reduction from the maximum theoretical profit per unit of time 2A∆
ke

as found in Section 2.1.

In the following section we assume this conjecture is true and explore the conse-

quences via a numerical solution of equation (4.27).

4.5 Numerical Solution

We now try looking for a fixed point solution via iteration. That is, we guess a

(zero) solution for the equation

1

2
ζ20u

′′(q) +Q0(u
′) + γσ2q2 = χ+

2A∆

ke
,

where

Q0(p) =
1

2
ζ20p

2 + inf
µ
[µp− (ϕ(µ)− frac2A∆ke)] .

and update u by computing the error and moving a small distance in the direction

of the error.

Remark 4.5.1 We note that the shift by 2A∆
ke

does not significantly impact the

underlying analysis. Indeed if we go back to the original definition of

Q0(p) =
1

2
ζ20p

2 + inf
µ
[µp− ϕ(µ)] ,

then the Q0 function just shifts by 2A∆
ke

and so we can equivalently use this defi-

nition along with the equation

1

2
ζ20u

′′(q) +Q0(u
′) + γσ2q2 = χ,

which is how we have set out the work in this section.

In the numerical work of this section we have taken γ = 0.4, ζ0 = 0.5, σ = 0.5,

∆ = 1, A = 1 and k = 2. In Figure 4-3 we plot the optimal drift as a function of
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Figure 4-3: A plot of the optimal drift based on numerical work.

q that has been computed in this way.

Once we have identified the optimal strategy, we are able to find the optimal

stationary distribution, and the corresponding cost. In particular, we know from

above that there is an optimal strategy u(qt) for given current position q. Then

the law of the corresponding process qt solves

dqt = ζ0 dB
Q
t + ut dt.

In particular, the generator of the stationary measure is given by

Lqf(q) :=
d

dt

{
EQ

q [f(qt)]
}
=

1

2
ζ20f

′′(q) + u(q)f ′(q).

If we suppose the stationary measure of q has density g, then it follows that we

should have ∫
g(q)

{
1

2
ζ20f

′′(q) + u(q)f ′(q)

}
dq = 0,

and hence (formally, by integration by parts)

1

2
ζ20g

′′(q)− (u(q)g(q))′ = 0.

This has solution

g(q) = A exp

{
2

ζ20

∫ q

0

u(q̃) dq̃

}
. (4.28)
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Figure 4-4: A plot of the optimal density g(q) of (4.28) based on numerical work.

In Figure 4-4 we plot this optimal density from our numerical work. Once we

have solved for this density, then recalling that our aim is to maximise a function

of the form
1

γ
logEQ

[
− exp

{∫ T

0

(
γ̂q2t + ϕ(ut, qt)

)
dt

}]
, (4.29)

we can hope to estimate the long-run value per unit time by integrating the

density against the value of the integral in (4.29) at each time. If this were possible

then we would have an easy way of numerically varying various parameters and

recomputing the eigenvalue without having to resolve the PDE at each step.

This would be particularly useful in the model of Section 5.3 later where there

are many parameters involving the last look feature.

Although we have not experimented extensively with different parameter regimes,

we have found with some reasonable choices of parameters that the eigenvalue

estimated in this manner differs from the one found directly as the solution of the

PDE by a percent or two. The reason for this discrepancy is that this method

does not take into account the large deviation effects of the form discussed in

Section 1.4.3. In the final section of this chapter we address the large deviation

effects to find a much more accurate estimate of the long-run value. This would

also give an interpretation of the long run ‘typical’ behaviour of the system (see

Remark 1.4.4).
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4.6 AMeasure Change to Incorporate Large De-

viation Effects

Next we try to improve our numerical estimate of the growth rate χ of Problem

4.2.2, which is given by

χ := lim
T→∞

1

T
log

{
EQ
[
exp

{∫ T

0

(
γ̂q2t − γϕ(u∗(qt), qt)

)
dt

}]}
, (4.30)

where γ̂ = 1
2
γ2σ2, Q is the measure corresponding to the optimal control u∗, and

the dynamics of q follow

dqt = ζ0 dWt + u∗
t dt. (4.31)

By Jensen’s inequality we can bound this by

χ ≤ lim
T→∞

1

T
EQ
[∫ T

0

(
γ̂q2t − γϕ(ut, qt)

)
dt

]
=

∫
g∗(q)

(
γ̂q2 − γϕ(u∗(q), q)

)
dq,

(4.32)

where g∗(q) = A exp
{

2
ζ20

∫ q

0
u∗(q̃) dq̃

}
is the stationary distribution of the inven-

tory process under the optimal control. In general, this inequality will be strict

due to the fact that there is randomness in the integral term, and hence we may

potentially see large deviation effects. We will introduce a change of measure

to the original dynamics and correct the process under these dynamics to try

and get equality to hold in Jensen’s inequality. We introduce a strictly positive

function h, and write

κ(q) := γ̂q2 − γϕ(q, u∗(q)),

L∗f(q) :=
1

2
ζ20f

′′(q) + u∗(q)f ′(q).

Note that the process

Mh
t := exp

{
−
∫ t

0

L∗h

h
(qs) ds

}
h(qt)

h(q0)
,

has Mh
0 = 1 and Mh

t is a strictly positive Q-martingale. In particular, we can
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define a new probability measure Qh by

dQh

dQ

∣∣∣∣
t

= Mh
t ,

under which we can compute the dynamics of the process q using

EQh

[f(qt)] = EQ
[
exp

{
−
∫ t

0

L∗h

h
(qs) ds

}
h(qt)

h(q0)
f(qt)

]
.

From this we can deduce that under Qh, the generator of the process q is given

by

Lhf(q) :=
1

2
ζ20f

′′(q) +

(
u∗(q) +

ζ20h
′(q)

h(q)

)
f ′(q) = L∗f(q) +

ζ20h
′(q)

h(q)
f ′(q).

Now consider our expression of interest under Qh. Then we get

EQ
[
exp

{∫ T

0

(
γ̂q2t − γϕ(u∗(qt), qt)

)
dt

}]
= EQh

[
exp

{∫ T

0

(
L∗h

h
(qt) + γ̂q2t − γϕ(u∗(qt), qt)

)
dt

}
· h(q0)
h(qT )

]
.

If we choose h such that

χh =
L∗h

h
(qt) + γ̂q2t − γϕ(u∗(qt), qt),

for some constant χh, then (assuming h(qT )
−1 is well behaved), we expect ‘nice’

long-run behaviour of the term in the integral, and that we will get equality in

Jensen’s inequality. Specifically, that we would expect

χ = χh =

∫
gh(q)

(
L∗h

h
(qt) + γ̂q2 − γϕ(u∗(q), q)

)
dq,

where gh is the stationary law of q under Qh. I.e. we expect gh to be the adjoint

solution to
1

2
ζ20f

′′(q) +

(
u∗(q) +

ζ20h
′(q)

h(q)

)
f ′(q),
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that is, the function gh such that∫
gh(q)

(
1

2
ζ20f

′′(q) +

(
u∗(q) +

ζ20h
′(q)

h(q)

)
f ′(q)

)
dq = 0

for all (nice) f , or as above,

gh(x) = Ah exp

{∫ q

0

(
2

ζ20
u(q̃) + 2

h′(q̃)

h(q̃)

)
dq̃

}
= Ahh(q)2g(q).

Note that in the trivial case where h ≡ 1, g and gh are the same and χh is

(possibly non-constant) equal to the estimate we made above. Following the

discussion above, we exect the optimal choice of h to solve

χ =
L∗h

h
(qt) + γ̂q2t − γϕ(u∗(qt), qt).

Recalling that the function w, which is essentially the (log) value function is the

solution to the non-linear equation

1

2
ζ20w

′′(q) +Q0(q, w
′) + γ̂σ2q2 = χ.

Then we see that we need to choose h to solve

L∗h

h
(qt) =

1

2
ζ20w

′′(q) +
1

2
ζ20 (w

′(q))2 + w′(q)u∗(q).

Recalling that L∗f(q) = 1
2
ζ20f

′′(q) + u∗(q)f ′(q) we observe that if we take h(q) =

ew(q) then this holds. In particular, we observe that we get the modified expres-

sion:

χ =

∫
gh(q)

(
L∗h

h
(qt) + γ̂q2 − γϕ(u∗(q), q)

)
dq

=

∫
gh(q)

(
1

2
ζ20w

′′(q) +
1

2
ζ20 (w

′(q))2 + w′(q)u∗(q) + γ̂q2 − γϕ(u∗(q), q)

)
dq.

This form is useful, since we can compute this numerically easily. Indeed, whereas

our previous estimate without taking into effect the large deviations had an error

of a few percent, using this integral we see almost no difference between the value

computed this way and the accurate value from the original PDE. In Figure 4-5 we
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show plots of the optimal density and the function being integrated against before

and after incorporating the large deviation effects. We note that the new density

spends a little more time in the tails but the function being integrated against

is much nicer. The power of this approach is that we are now able to compute

Figure 4-5: Plots of density and function being integrated against before and
after accounting for large deviation effects.

an estimate of the long run growth under a range of parameter choices without

having to resolve the solution to the PDE each time and we could optimise

over parameter choices by a gradient descent algorithm or similar procedure. In

particular in Section 5.3 we will suggest a way that we could set up a similar model

that incorporates a last look feature. Although we do not directly investigate

optimising over the various parameters in the present work, this framework will

give us a way we may be able to to so in the last look case where there are a

larger number of relevant parameters to optimise over.
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4.7 Summary

In this chapter, by putting the inventory process centre-stage and moving to a

problem with a single control variable we have given a rigorous solution to a

continuous time and space version of the original problem of Chapter 2. This has

allowed us to focus clearly on the long-run dynamics and optimal control and we

have also been able to solve for this optimal strategy numerically. We have also

found a way to compute the required exponential integrals for the value function

numerically so that we have a framework in which we can optimise for value over

various parameters in this problem as well as in the similar model we will consider

in Chapter 5.
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Chapter 5

Market Making with Last Look

In this chapter we begin by returning to the discrete world and consider the

optimal market making problem in the case where transactions are subject to

a conditional execution, or ‘last look’ criterion. We consider results from two

existing related models from the market making literature, and extend them

naturally to the last look case. We will also propose a continuous model which

could be suitable for a similar analysis as in Chapter 4.

Recall that (as discussed further in the introductory Section 1.2) a ‘trade accep-

tance protocol’ or ‘last look’ mechanism is a term, usually written into a market

maker’s terms of service, that sets out certain conditions under which a trade

may be cancelled after it has been agreed. We will consider last look mechanisms

that cancel the trade if the asset price moves quickly after the trade has been

agreed. As discussed in Section 1.2, there are a range of reasons market mak-

ers may wish to include such mechanisms, but the main one we have in mind

is to protect against informed traders who may have a short-term informational

advantage. We consider both one and two-sided mechanisms (that may protect

just one party or both), including two sided mechanisms that may act either

symmetrically or asymmetrically.

Firstly, in Section 5.1, we consider the market making model proposed by Avel-

laneda and Stoikov [1], and derive adjustments to their reservation prices under a

range of possible last look criteria. The main adaptation with last look is that the
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inventory change and wealth changes are now conditional on movements of the

price of the underlying asset, and so where the previous argument had Normally

distributed variables, ours follow truncated Normal distributions.

Since our results make extensive use of these truncated Normal distributions and

their moment generating functions, some useful results about these are collected

for reference in Appendix A. We are able to find closed forms for the reservation

prices in each last look case and to see how these compare naturally with the

case without last look. We also consider the perspective of the client in balancing

reduced spread costs against less certain execution.

In Section 5.2 we turn to the stochastic control problem posed in [1], but take as a

starting point the model of Guéant, Lehalle and Fernandez-Tapia [52] that builds

on these results. In Section 5.2.2 we consider an asymptotic result based on the

spectral theory of an appropriate matrix. We note that the arguments here are

somewhat similar to those in Section 2.2.5 - in that section the Krien-Rutman

Theorem of functional analysis allowed us to identify the leading eigenvalue and

in this case the Perron-Frobenius Theorem plays the same role. As a result we

are able to derive natural adjustments to the optimal quotes presented in [52] for

the last look case.

In Section 5.2.3 we present the results of simulating numerically a market maker

using the optimal quoting strategies to continuously quote and trade with a ran-

dom demand. We find empirically that in the absence of toxic order flow, that is

when orders arrive naturally as a result of uninformed random demand, a sym-

metric last look feature reduces the overall profitability of the market maker as

the last look feature effectively thins out the order flow with no particular pro-

tective benefit. However, when the market maker is faced with some clients who

have inside information about future price moves of the underlying product, a

last look feature becomes vital to protect profits.

In Section 5.3 we propose a continuous model that can capture the last look

problem in a similar way to that of Chapter 4. We begin by setting up a model

that contains a last look mechanism and also allows for orders of a number of

different types. This is important as last look is primarily of use when trading

with counterparties with informational advantages. The model we propose is
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able to capture this, but is too complicated to use directly to optimise over the

various parameters. So we propose a continuous model that captures this well

and is suited to a similar analysis to that of Chapter 4. We conduct numerical

simulations to show that our model captures the problem well and that it fits

into this framework.

5.1 A Discrete Model for Market Making with

Last Look

We consider a scenario equivalent to the ‘frozen inventory’ case of Avellaneda

and Stoikov [1] which we described in some detain in Section 1.3.1 and consider

a market maker taking a single trade at time t that is subject to a last look

condition at time t + δt. Aside from this trade, the market maker makes no

further trades until some terminal time T > t + δt. We assume that the market

maker starts at time t with inventory qt = q and cash xt = x and that the

asset St = s behaves as in previous chapters as an arithmetic Brownian motion

satisfying dSt = σdWt.

5.1.1 Reservation Prices for Two-Sided Symmetric Last

Look

We begin by considering a two sided last look feature which operates symmetri-

cally towards the market maker and the client. In particular, there is a level ξ

such that if the price is further than ξ from the price when the order was sub-

mitted at the end of the last look window of length δt the trade is cancelled, and

otherwise it is fulfilled.

As in the model of Avellaneda and Stoikov [1] we let rb and ra denote the reser-

vation bid and ask prices respectively. That is, these are the prices at which the

market maker will transact if they are not cancelled by the last look feature. In

this case we may write the market maker’s terminal inventory and wealth on the

bid side by

qT = qt + 1{|St+δt−St|<ξ},
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xT = xt − rb1{|St+δt−St|<ξ},

and on the ask side by

qT = qt − 1{|St+δt−St|<ξ},

xT = xt + ra1{|St+δt−St|<ξ}.

Reservation bid price

Consider first the market maker’s problem of setting their reservation bid price

rb(s, q, t) in such a way as to be indifferent between accepting the order with last

look and holding their current inventory without making any trade.

We assume as in previous chapters that the market maker optimises a CARA

utility function

v(x, s, q, t) = Et,x,q,s(− exp(−γ(xT + qTST ))),

where Et,x,s,q is the expected value of the process where the market maker starts

with cash x and inventory q of an asset priced at St = s at time t, and γ is a risk

aversion parameter characterising the market maker as before. For simplicity we

will write E to represent the expectation Et,x,s,q.

Proposition 5.1.1 Suppose a market maker holding q units of inventory and x

in cash accepts a bid order at time t at the price rb subject to a last look mechanism

that will cancel the trade if |St+δt − St| > ξ. Then we have

E(−e−γ(xT+qTST )) =− e−γ(x+qs)+
γ2q2σ2(T−t)

2 g(q)

− e−γ(x−rb)−γ(q+1)s+
γ2(q+1)2σ2(T−t)

2 g(q + 1),

where we define g(q) := Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ

σ
√
δt
+ qγσ

√
δt
)
and Φ is the

normal CDF.

In order to set the reservation bit price rb at a level so that they are indifferent
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between taking the trade or not, they should set the price as

rb = s− (1 + 2q)
σ2γ(T − t)

2
+

1

γ
ln

g(q)

g(q + 1)
.

Proof We define an indicator function that is 1 in the case that the transaction

is not impacted by the last look feature and 0 if the last look feature cancels the

trade. That is

χ :=

1 , |St+δt − St| < ξ

0 , |St+δt − St| ≥ ξ.

Then the expected utility of the market maker’s terminal position having taken

the order is given by

E(−e−γ(xT+qTST )) = E(−e−γ(x+qST )|χ = 0)P(χ = 0)

+ E(−e−γ(x−rb+(q+1)ST )|χ = 1)P(χ = 1).

Since each of the two expectations on the right hand side is the moment generating

function of a truncated normal distribution, we may rewrite this in terms of the

normal CDF.

E(−e−γ(xT+qTST )) =E(−e−γ(x+qST )|χ = 0)P(χ = 0)

+ E(−e−γ(x−rb+(q+1)ST )|χ = 1)P(χ = 1)

=− e−γxEt(e
−γq(ST−St+δt))E(e−γq(St+δt)|χ = 0)P(χ = 0)

− e−γ(x−rb)Et(e
−γ(q+1)(ST−St+δt))E(e−γ(q+1)(St+δt)|χ = 1)P(χ = 1).

We now note that ST − St+δt ∼ N(0, σ2(T − (t + δt))) and that starting from

St = s, St+δt ∼ N(s, σ2δt). Applying the moment generating function results

from Appendix A we have

E(−e−γ(xT+qTST )) =− e−γxe
γ2σ2q2

2
(T−t−δt)e−γqs+ γ2σ2q2

2
δt
( 1− g(q)

1− P(χ = 1)

)
(1− P(χ = 1))

− e−γ(x−rb)e
γ2σ2

2
(T−t−δt)e−γ(q+1)s+

γ2σ2(q+1)2

2
δt
( g(q + 1)

P(χ = 1)

)
P(χ = 1)

=− e−γ(x+qs)e
γ2σ2q2

2
(T−t)(1− g(q))

− e−γ(x−rb+(q+1)s)e
γ2σ2(q+1)2

2
(T−t)g(q + 1).
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Thus to find the reservation bid price we equate this to the utility of simply

holding the frozen inventory and not entering into any transaction, that is to

v(x, s, q, t) = − exp

(
−γ(x+ qs) +

γ2q2σ2(T − t)

2

)
.

So we set

E
(
−e−γ(xT+qTST )

)
= e−γ(x+qs)+

γ2σ2q2(T−t)
2

which rearranges to give

(1− g(q))− e−γ(s−rb)e
γ2σ2(2q+1)

2
(T−t)g(q + 1) = 1.

Finally this can be rearranged to give the reservation bid price as stated:

rb = s− (1 + 2q)
σ2γ(T − t)

2
+

1

γ
ln

g(q)

g(q + 1)
.

□

Remark 5.1.2 If we take approximations g(q+1) ≈ g(q)+g′(q) and ln(1+x) ≈ x

to give ln
(

g(q+1)
g(q)

)
≈ ln

(
1 + g′(q)

g(q)

)
≈ g′(q)

g(q)
then we can write the reservation bid

price approximately as

rb ≈ s− (1 + 2q)
σ2γ(T − t)

2
+

1

γ

g′(q)

g(q)

which is equivalent to

rb ≈ s− (1 + 2q)
σ2γ(T − t)

2
− σ

√
δt
ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt)
)
− ϕ
(

−ξ

σ
√
δt
+ qγσ

√
δt)
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ

σ
√
δt
+ qγσ

√
δt
) .

where Φ and ϕ are the standard Normal c.d.f. and p.d.f. respectively.

Remark 5.1.3 Although we have chosen to start with a two-sided symmetric last

look mechanism, there is nothing particularly special about this and in Sections

5.1.2 and 5.1.3 we will write down very similar forms in the one-sided and asym-
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metric cases whose proofs would follow exactly the same argument as here, with

a suitably modified χ.

Reservation ask price

A near identical argument on the ask side yields a reservation ask price of

ra = s+ (1− 2q)
σ2γ(T − t)

2
− 1

γ
ln

g(q)

g(q − 1)
,

and an approximate reservation ask price of

ra ≈ s+ (1− 2q)
σ2γ(T − t)

2
− 1

γ

g′(q)

g(q)
,

or equivalently

ra ≈ s+ (1− 2q)
σ2γ(T − t)

2
− σ

√
δt
ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt)
)
− ϕ
(

−ξ

σ
√
δt
+ qγσ

√
δt)
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ

σ
√
δt
+ qγσ

√
δt
) .

Reservation mid-price and spread

Averaging the reservation bid and ask prices yields a reservation mid-price

r = s− qσ2γ(T − t)− σ
√
δt
1

γ

g′(q)

g(q)
,

and the reservation spread is

ra − rb = σ2γ(T − t).

We see that the spread is exactly as in the model of [1] and the impact of the last

look feature in this case is a simple translation of the bid and ask prices.

We also note that the term

σ
√
T − t

ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt)
)
− ϕ
(

−ξ

σ
√
T−t

+ qγσ
√
δt)
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ

σ
√
δt
+ qγσ

√
δt
) ,
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is the adjustment needed to be made to the reservation price of [1] in the last look

case. Note that its denominator is always positive and its numerator is positive

if and only if the inventory q is negative, and so this term has the opposite sign

to the inventory. As illustrated in Figure 5-1, we see that the Avellaneda and

Stoikov [1] prices translate the q = 0 prices according to the inventory level, and

with last look this translation is partially reversed by this new term.

We note that this does not account for possible behavioural effects. That is, we

assume that the agents will still make the same trades with the last look feature

in place as they would have done without it, which in practice may not be the

case.

Figure 5-1: Illustration of three sets of reservation prices (in each of the cases
q > 0 and q < 0); (i) rb0 and ra0 the reservation prices with q = 0, (ii) rbAS and
raAS, the Avellaneda and Stoikov [1] prices, and (iii) rbLL and raLL the prices with
our Last Look adjustment.

5.1.2 Reservation Prices for More General Two-Sided Last

Look

In fact, whilst the previous case was presented as a quite natural choice of sym-

metric last look condition, the conclusions above may easily be stated more gen-

erally. The last look feature may be specified using four values ξ1, ξ2, ξ3, ξ4 so

that the market maker’s terminal inventory and wealth are given on the bid side

by

qT = qt + 1{−ξ1<St+δt−St<ξ2},

xT = xt − rb1{−ξ1<st+δt−s<ξ2},
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and on the ask side by

qT = qt − 1{−ξ3<St+δt−St<ξ4},

xT = xt + ra1{−ξ3<St+δt−St<ξ4}.

We will then have an approximate reservation bid price of

rb ≈ s− (1 + 2q)
σ2γ(T − t)

2
− σ

√
δt
ϕ
(

ξ2
σ
√
δt
+ qγσ

√
δt)
)
− ϕ
(

−ξ1
σ
√
δt
+ qγσ

√
δt)
)

Φ
(

ξ2
σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ1
σ
√
δt
+ qγσ

√
δt
) ,

and an approximate reservation ask price of

ra ≈ s+ (1− 2q)
σ2γ(T − t)

2
− σ

√
δt
ϕ
(

ξ4
σ
√
δt
+ qγσ

√
δt)
)
− ϕ
(

−ξ3
σ
√
δt
+ qγσ

√
δt)
)

Φ
(

ξ4
σ
√
δt
+ qγσ

√
δt
)
− Φ

(
−ξ3
σ
√
δt
+ qγσ

√
δt
) .

The proofs of these results are near identical to that given above for the reserva-

tion bid price.

5.1.3 Reservation Prices for Asymmetric Last Look

The previous result can be interpreted naturally in the case that any of the

ξ1, ξ2, ξ3, ξ4 → ∞, and in particular setting ξ2 = ξ3 = ∞ above gives a case

where the last look feature provides protection against adverse price moves for

the market maker but not for the client. Let us also take ξ1 = ξ4 = ξ so that the

market maker’s terminal inventory and wealth is given on the bid side by

qT = qt + 1{St+δt−St>−ξ},

xT = xt − rb1{St+δt−St>−ξ},

and on the ask side as

qT = qt − 1{St+δt−St<ξ},

xT = xt + ra1{St+δt−St<ξ}.
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Then the reservation bid price will be given by

rb ≈ s+ (1 + 2q)
σ2γ(T − t)

2
+ σ

√
δt

ϕ
(

−ξ

σ
√
δt
+ qγσ

√
δt
)

1− Φ
(

−ξ

σ
√
δt
+ qγσ

√
δt
)

= s+ (1 + 2q)
σ2γ(T − t)

2
+ σ

√
δt
ϕ
(

ξ

σ
√
δt
− qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
− qγσ

√
δt
) ,

and the reservation ask price will be given by

ra ≈ s+ (1− 2q)
σ2γ(T − t)

2
− σ

√
δt
ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
) .

Then the mid price becomes slightly skewed, and the spread is reduced from

σ2γ(T − t) to

σ2γ(T − t)− σ
√
δt

ϕ
(

ξ

σ
√
δt
− qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
− qγσ

√
δt
) +

ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
)
 .

5.1.4 Liquidity Taker’s Perspective

If we only consider the impact of the last look facility on the bid-ask spread,

it would seem that the asymmetric facility is beneficial to the liquidity taking

client, since the spread is reduced and so they will be paying less on each trade.

However, the client must also factor in the ‘slippage’ cost involved in the case

that the last look mechanism cancels the trade when the price moves against

them. A measure used in practice to capture this is the ‘effective spread’, defined

in [69] as

Effective spread = Spread paid on Fill + {Reject Ratio * Reject Cost}

and we use the term slippage costs to refer to the part of the effective spread that

arises from trades being rejected, that is the term {Reject Ratio * Reject Cost}.

In the case of a symmetric facility as defined above the overall slippage costs are
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zero, since the cost is just as likely to be a benefit when the last look activates

in the client’s favour rather than the market maker’s. In the asymmetric case as

set up in Section 5.1.3 we can easily compute that the effective half spread on

the ask side1 will be reduced from σ2γ(T−t)
2

by

σ
√
δt
ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
) − P(St+δt − St > ξ)E[St+δt − St|St+δt − St > ξ]

=σ
√
δt
ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
) −

(
1− Φ

( ξ

σ
√
δt

))
σ
√
δt

ϕ
(

ξ

σ
√
δt

)
1− Φ

(
ξ

σ
√
δt

)
= σ

√
δt

ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
) − ϕ

(
ξ

σ
√
δt

) .

Similarly the reduction on the bid side would be

σ
√
δt

ϕ
(

ξ

σ
√
δt
− qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
− qγσ

√
δt
) − ϕ

( ξ

σ
√
δt

) ,

leading to an overall reduction in the effective spread of

σ
√
δt

ϕ
(

ξ

σ
√
δt
− qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
− qγσ

√
δt
) +

ϕ
(

ξ

σ
√
δt
+ qγσ

√
δt
)

Φ
(

ξ

σ
√
δt
+ qγσ

√
δt
) − 2ϕ

(
ξ

σ
√
δt

) .

In Figure 5-2 we plot this overall reduction in the effective spread with sensible

parameter choices and find that the asymmetric last look facility appears to

always benefit the liquidity taker by this measure.

The apparent benefit to the liquidity taker here masks an important subtlety,

which is revealed by plotting the bid and ask components of the spread separately.

In figure 5-3 we present equivalent plots for the bid and ask half-spreads.

1By this we mean the ask component of the spread plus the cost of rejects on the ask side
only.
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Figure 5-2: Plot showing the absolute/overall reduction in spread compared to
the non-last look case, the slippage costs and the overall effective reduction (the
absolute reduction less the slippage costs) to the bid-ask spread in an asymmetric
facility. We have taken σ = 0.3, γ = 0.1, ξ = 0.4, δt = 0.5.

Now we see that there are values of the market maker’s inventory q on both the

bid and ask sides for which the effective reduction in costs is negative, that is

where the last look facility disadvantages the liquidity taker. Since the slippage

costs from the liquidity taker’s perspective are modelled independently of the

market maker’s inventory levels, the last look facility is now only offering an

effective discount when the market maker does not have too short a position on

the ask side or a too long position on the bid side.

Nonetheless, it would appear that the last look facility is in general beneficial to

the liquidity taker. On the ask side, for example, when the market maker’s inven-

tory is longer, they will be offering more competitive prices, and it is in this case

that the effective discount is positive. In the case when the market maker’s inven-

tory is very short, their ask quotes will most likely become uncompetitive, and so

the liquidity taker will be more likely to trade with an alternative market maker.

Thus practically it would appear that the last look facility is providing a benefit

to the liquidity taker, in terms both of the absolute and effective spreads, for the

scenarios where they are most likely to be trading with the market maker.

These comments only apply to liquidity takers not trading on informational ad-

vantage. Of course the last look feature will be harmful to a liquidity taker whose
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(a) Values for the bid half-spread (b) Values for the ask half-spread

Figure 5-3: Plots showing the absolute reduction, the slippage costs and the over-
all effective reduction to the bid and ask half-spreads in an asymmetric facility.
We have taken σ = 0.3, γ = 0.1, ξ = 0.4, δt = 0.5.

order flow is toxic due to their knowledge of upcoming price moves. This type

of liquidity taker will experience a very high reject rate for their trades and be

obstructed from monetising their informational advantage.

Further work in this area could be undertaken to consider in more detail subtleties

that might arise. In particular it would be natural to consider whether any of

these conclusions would change if the market maker’s inventory levels or the

liquidity taker’s demand are correlated with future price moves, or in situations

where the market maker holds informational advantage or disadvantage.
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5.2 Optimal Bid and Ask Quotes with Last Look

We now return to a consideration of the market making problem as a stochastic

control problem, and take a very similar set up to that of Guéant, Lehalle and

Fernandez-Tapia [52] (see Section 1.3.2), and adapt their results to the case where

transactions are subject to a last look feature. So we consider a market maker

maximising a CARA utility function

uδ(t, x, S, q) = Et,x,S,q[− exp{−γ(Xδ
T +Qδ

TST )}],

where as before γ is a risk aversion parameter characterising the market maker

and δ = {(δb)t≤T , (δ
a)t≤T} is the control process by which the market maker

posts limit bid and ask quotes. In particular they set bid and ask prices Sb
t and

Sa
t at distances δbt and δat around a reference price St that follows an arithmetic

Brownian motion. That is we have

dSt = σdWt,

δbt = St − Sb
t ,

δat = Sa
t − St,

and the market maker attempts to optimise uδ(t, x, S, q) over choices of this con-

trol δ.

To simplify notation we write ∆St = St+δt − St and denote by χ an indicator

function taking value 1 when the order is filled without the last look feature being

used, as in Proposition 5.1.1. We initially take a last look feature which cancels

orders symmetrically, so that

χ :=

1 , |∆St| < ξ

0 , |∆St| ≥ ξ.

As in [52] and in previous chapters we assume that the market maker acts accord-

ing to inventory restrictions so that their inventory will always lie in the range

q ∈ {−Q, ..., Q}. As in [52] we suppose the market maker’s inventory is given

by qt = N b
t − Na

t , where N b and Na are point processes representing the num-
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ber of units bought and sold respectively. The intensities Λb and Λa associated

to the processes N b and Na are supposed to be functions of the distance the

market maker places quotes from the reference price, so that Λb = Λb(δb) and

Λa = Λa(δa).

Then it is straightforward to show that the dynamic programming equation

(DPE) associated with this control problem is

0 = (∂t +
1

2
σ2∂SS)u

+ sup
δa

{Λa(δa)E[u(t, x+ χ(St + δa), q − χ, St+δt)− u(t, x, q, St)]}1{q>−Q}

+ sup
δb

{
Λb(δb)E[u(t, x− χ(St − δb), q + χ, St+δt)− u(t, x, q, St)]

}
1{q<Q},

with associated terminal condition

u(T, x, s, q) = −e−γ(x+qs).

As in [52] we choose the demand functions Λb(δb) = Ae−kδb and Λa(δa) = Ae−kδa

and then we have the following proposition.

Proposition 5.2.1 Writing u(t, x, q, s) = −e−γ(x+qs)vq(t)
− γ

k , the above DPE can

be reformulated in terms of vq(t) as

0 = −γ

k

v̇q(t)

vq(t)
u+

1

2
γ2σ2q2u+ u sup

δa

{
Ae−kδa

[
B(q − 1)

(
vq−1(t)

vq(t)

)− γ
k

e−γδa − 1

]}
1{q>−Q}

+u sup
δb

{
Ae−kδb

[
B(q + 1)

(
vq+1(t)

vq(t)

)− γ
k

e−γδb − 1

]}
1{q<Q},

with terminal condition vq(T ) = 1, where

B(q) := e
1
2
σ2δtγ2q2

[
Φ

(
ξ + γqσ2δt

σ
√
δt

)
− Φ

(
−ξ + γqσ2δt

σ
√
δt

)]
.
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Proof Applying the definition of χ, the DPE can be rewritten as

0 =
(
∂t +

1
2σ

2∂SS

)
u

+ sup
δa

{Λa(δa)E[χu(t, x+ (St + δa), q − 1, St+δt) + (1− χ)u(t, x, q, St)− u(t, x, q, St)]}1{q>−Q}

+ sup
δb

{
Λb(δb)E[χu(t, x− (St − δb), q + 1, St+δt) + (1− χ)u(t, x, q, St)− u(t, x, q, St)]

}
1{q<Q}

and then as

0 =
(
∂t +

1
2
σ2∂SS

)
u

+ sup
δa

{Λa(δa)E[χu(t, x+ (St + δa), q − 1, St+δt)− χu(t, x, q, St)]}1{q>−Q}

+ sup
δb

{
Λb(δb)E[χu(t, x− (St − δb), q + 1, St+δt)− χu(t, x, q, St)]

}
1{q<Q}.

Then since χ = 1, when |∆St| < ξ and 0 otherwise, we can write

0 =
(
∂t +

1
2σ

2∂SS
)
u

+ sup
δa

{
Λa(δa)P(χ)E[u(t, x+ (St + δ+), q − 1, St+δt)− u(t, x, q, S)

∣∣∣|∆St| < ξ]
}
1{q>−Q}

+ sup
δb

{
Λb(δb)P(χ)E[u(t, x− (St − δb), q + 1, St+δt)− u(t, x, q, S)

∣∣∣|∆St| < ξ]
}
1{q<Q}.

Now applying u(t, x, q, s) = −e−γ(x+qs)vq(t)
− γ

k we note that

u(t, x+ (St + δa), q − 1, St+δt)− u(t, x, q, S)

= u(t, x, s, q)

[(
vq−1(t)

vq(t)

)− γ
k

e−γδae−γ(q−1)∆St − 1

]
,

and

u(t, x− (St − δb), q + 1, St+δt)− u(t, x, q, S)

= u(t, x, s, q)

[(
vq+1(t)

vq(t)

)− γ
k

e−γδbe−γ(q+1)∆St − 1

]
.

111



Hence

E
[
u(t, x+ (St + δa), q − 1, St+δt)− u(t, x, q, S)

∣∣∣|∆St| < ξ
]

=u(t, x, q, S)

[(
vq−1(t)

vq(t)

)− γ
k

e−γδaEt,x,S,q

[
e−γ(q−1)∆St

∣∣∣|∆St| < ξ
]
− 1

]
,

and so

E(u(t, x− (St − δb), q + 1, St+δt)− u(t, x, q, S)
∣∣∣|∆St| < ξ)

=u(t, x, q, S)

[(
vq+1(t)

vq(t)

)− γ
k

e−γδbEt,x,S,q

[
e−γ(q+1)∆St

∣∣∣|∆St| < ξ
]
− 1

]
.

Applying the moment generating function of a truncated normal distribution (see

Appendix A) we can rewrite the conditional expectation as

E
(
e−γq∆St

∣∣∣|∆St| < ξ
)
= e

1
2
σ2δtγ2q2

Φ
(

ξ+γqσ2δt

σ
√
δt

)
− Φ

(
−ξ+γqσ2δt

σ
√
δt

)
P(χ = 1)

 =:
B(q)

P(χ = 1)
.

Substituting this as well as the choice of Λb(δb) = Ae−kδb and Λa(δa) = Ae−kδa

leads to the equation for vq(t)

0 = −γ

k

v̇q(t)

vq(t)
u+ 1

2
γ2σ2q2u

+ u sup
δa

{
P(χ = 1)Ae−kδa

[
B(q − 1)

P(χ = 1)

(
vq−1(t)

vq(t)

)− γ
k

e−γδa − 1

]}
1{q>−Q}

+ u sup
δb

{
P(χ = 1)Ae−kδb

[
B(q + 1)

P(χ = 1)

(
vq+1(t)

vq(t)

)− γ
k

e−γδb − 1

]}
1{q<Q},

which is clearly equivalent to that stated.

□

5.2.1 Optimal Quotes and Solution of Control Problem

We next give a solution of the control problem and provide the optimal quotes

in the last look case, extending the work of [52].
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Using a first order derivative condition we can easily find that the values of δa

and δb optimising the suprema from Proposition 5.2.1 are

δ∗,a =
1

k
ln
( vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q − 1)

P(χ = 1)
,

and

δ∗,b =
1

k
ln
( vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q + 1)

P(χ = 1)
.

After some straightforward substitution and algebra the equation for vt(q) be-

comes

0 = −γ

k

u

vq(t)

[
v̇q(t)−

1

2
kγσ2q2vq(t) +

{
A
( 1 + γ

k

P(χ = 1)

)−(1+ k
γ
)
B(q − 1)

−k
γ vq−1(t)

}
1{q>−Q}

+
{
A
( 1 + γ

k

P(χ = 1)

)−(1+ k
γ
)
B(q + 1)

−k
γ vq+1(t)

}
1{q<Q}

]
.

This can all be written as a matrix ODE

∂tv(t) +Mv(t) = 0,

where we define the vector v(t) and matrix M as

v(t) = (v−Q(t), v−Q+1(t), ..., v0(t), , , , vQ−1(t), vQ(t))
′

and

M =



αQ2 −ηB(−Q+ 1)
−k
γ 0 · · · · · · 0

−ηB(−Q)
−k
γ α(1−Q)2 −ηB(−Q+ 2)

−k
γ

. . .
. . .

...

0 −ηB(−Q+ 1)
−k
γ

. . .
. . .

. . .
...

...
. . .

. . .
. . . −ηB(Q− 1)

−k
γ 0

...
. . .

. . . −ηB(Q− 2)
−k
γ α(Q− 1)2 −ηB(Q)

−k
γ

0 · · · · · · 0 −ηB(Q− 1)
−k
γ αQ2



,

where α = k
2
γσ2 and η = A

(
1+ γ

k

P(χ)

)−(1+ k
γ
)

. Hence the solution of the control
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problem is given by

u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γ

k ,

where

v(t) = exp(−M(T − t))× (1, ..., 1)′.

5.2.2 Asymptotic behaviour of the optimal quotes

We next prove the following proposition giving the optimal quotes in the limit as

T → ∞. We follow a similar reasoning to [52], adding in some extra details and

adapting the results for the last look case.

Proposition 5.2.2 In the limit as T → ∞ the optimal quotes become

δ∗,a =
1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q − 1)

P(χ)
+

1

k
ln

(
f 0
q

f 0
q−1

(
B(q − 1)

B(q)

)−k
2γ

)

δ∗,b =
1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q + 1)

P(χ)
+

1

k
ln

(
f 0
q

f 0
q+1

(
B(q + 1)

B(q)

)−k
2γ

)
where f 0 satisfies

f0 ∈ argmin
f∈R2Q+1,||f ||=1

Q∑
q=−Q

αq2f 2
q +

Q∑
q=−Q

2ηP(χ)
−k
γ f 2

q −2η

Q−1∑
q=−Q

(B(q)B(q+1))
−k
2γ fqfq+1.

Equivalently, we may write

f0 ∈ argmin
f∈R2Q+1,||f ||=1

f ′(J+ 2ηP(χ)
−k
γ I)f,

where J is a matrix, similar to M, defined below. This condition is equivalent to

choosing f0 to be an eigenvector corresponding to the smallest eigenvalue of J.

Proof We work with a symmetric matrix J, similar to M and defined by the

similarity transform J := D−1MD where the transformation matrix D is defined
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as

D := diag(δ−Q, . . . , δQ) for δi :=
(B(−Q)

B(i)

)−k
2γ
.

Writing Bq := B(q) this yields the symmetric tridiagonal matrix J =



αQ2 −η
√

B(−Q)B(−Q + 1)
−k
γ

−η
√

B(−Q)B(1 − Q)
−k
γ α(1 − Q)2 −η

√
B(1 − Q)B(2 − Q)

−k
γ

−η
√

B(1 − Q)B(2 − Q)
−k
γ

. .
.

. .
.

. .
.

. .
. −η

√
B(Q − 1)B(Q)

−k
γ

−η
√

B(Q − 1)B(Q)
−k
γ αQ2



.

We note that M and J have the same eigenvalues and J+ 2ηP(χ)
−k
γ I is positive

definite. To see this, firstly recall the definition of

B(q) = e
1
2
σ2δtγ2q2

[
Φ

(
ξ + γqσ2δt

σ
√
δt

)
− Φ

(
−ξ + γqσ2δt

σ
√
δt

)]
.

Then

min
q∈{−Q,...Q}

B(q) = B(0) = P(χ),

and hence

max
q∈{−Q,...Q}

B(q)
−k
γ = B(0)

−k
γ = P(χ)

−k
γ .

Then, labelling a 2Q+ 1 vector x = (x−Q, ..., xQ)
′ we have

x′(J+ 2ηP(χ)
−k
γ I)x

=

Q∑
q=−Q

αq2x2q +

Q∑
q=−Q

2ηP(χ)
−k
γ x2q − 2η

Q−1∑
q=−Q

(B(q)B(q + 1))
−k
2γ xqxq+1

>

Q∑
q=−Q

αq2x2q +

Q∑
q=−Q

2ηP(χ)
−k
γ x2q − 2η

Q−1∑
q=−Q

P(χ)
−k
γ xqxq+1

=

Q∑
q=−Q

αq2x2q + ηP(χ)
−k
γ

Q−1∑
q=−Q

(xq+1 − xq)
2 + ηP(χ)

−k
γ x2Q + ηP(χ)

−k
γ x2−Q

≥ 0.

In particular, J+2ηP(χ)
−k
γ I is an invertible ‘M-matrix’ and by statement F15 in
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[84] it is inverse positive. That is, (J+ 2ηP(χ)
−k
γ I)−1 has all positive entries. By

the Perron-Frobenius theorem (J+ 2ηP(χ)
−k
γ I)−1 has a largest eigenvalue whose

corresponding eigenvector has strictly positive entries.

It is also a well known fact that any real symmetric matrix has real eigenvalues,

and if moreover the matrix is tridiagonal, then all eigenvalues are distinct if all

off-diagonal entries are non-zero (see e.g. [80]). Hence J + 2ηP(χ)
−k
γ I has a

smallest eigenvalue, and this eigenvalue is simple. Since a matrix and its inverse

share eigenvectors and all of the eigenvalues of J + 2ηP(χ)
−k
γ I are reciprocals of

those of (J+ 2ηP(χ)
−k
γ I)−1 and are all positive, this simple eigenvalue must also

have a corresponding eigenvector with strictly positive entries.

Since J has the same eigenvectors as J+2ηP(χ)
−k
γ I, but with each corresponding

eigenvalue reduced by 2ηP(χ)
−k
γ , then J also has a smallest simple eigenvalue

with eigenvector f0 whose entries are strictly positive.

Then we can write

v(0) = exp(−MT )× (1, . . . , 1)′ = D exp(−JT )D−1 × (1, . . . , 1)′,

and in particular we can write (after diagonalising J and performing some matrix

computations)

vq(0) = δq

2Q∑
i=0

exp(−λiT )

〈
gi,
( 1

δ−Q

, . . . ,
1

δQ

)〉
giq,

where λ0 < λ1 · · · ≤ λ2Q are the eigenvalues of J (equivalently M) in increasing

order (possibly repeated) and gi is an associated orthonormal basis of eigenvectors

of J.

We can take g0 = f 0 and then we get that2, as T → ∞

vq(0) ∼ δq exp(−λ0T )

〈
f 0,

(
1

δ−Q

, . . . ,
1

δQ

)〉
f 0
q .

2The positivity of all entries of the dominant eigenpair guarantees that the inner product
for this term is not zero.
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Then we have that the optimal quotes in the limit as T → ∞ are

δ∗,a =
1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q − 1)

P(χ)
+

1

k
ln

(
f 0
q

f 0
q−1

δq
δq−1

)
,

and

δ∗,b =
1

γ
ln
(
1 +

γ

k

)
+

1

γ
ln

B(q + 1)

P(χ)
+

1

k
ln

(
f 0
q

f 0
q+1

δq
δq+1

)
,

which upon recalling the definition of δi leads directly to the optimal quotes as

stated.

□

In the next section we present the result of some numerical simulations of this

model which help us understand the impact and significance of last look.
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5.2.3 Simulations

Impact of inventory limits

In Figure 5-4 we plot the optimal quotes from Section 5.2.1, taking as parameter

choicesQ = 5, k = 0.3, σ = 0.3, T = 50, γ = 0.1, A = 0.9, ξ = 0.4, dt = 0.5.

Figure 5-4: The uppermost line for ask quotes corresponds to q = −4 and for bid
quotes to q = +4.

In Figure 5-5 we plot again with the same parameter choices except to extend

the inventory cap to Q = 10.

Figure 5-5: The uppermost line for ask quotes corresponds to q = −9 and for bid
quotes to q = +9.
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We observe in both figures that the optimal quotes converge as expected for times

far from the terminal time. We also observe an interesting feature whereby quotes

closest to the inventory cap are further spaced than those closer to q = 0, and it

appears that all of the quotes depend on the inventory limit Q. In Figure 5-6 we

also plot the bid quotes corresponding to q = 5 for various values of Q and we

observe that the quotes do settle down as Q increases, so this effect is of little

impact so long as the inventory cap is significantly larger than typical inventory

levels.

Figure 5-6: Plot of bid quotes corresponding to q = 5 for Q ∈ {6, 8, 10, 12, 14}.

Optimal Quotes with and without Last Look

We next keep all of the parameters fixed from the previous section, except we

now take T = 100 and fix an inventory cap Q = 10. In Figure 5-7 we compute the

bid quotes with last look (setting ξ = 0.4, δt = 0.5 for an acceptance probability

P(χ) of around 0.94) and also with the last look feature effectively removed (by

setting ξ = 4 and δt = 0.5 for P(χ) ≈ 1). The plots in Figure 5-7 results from

plotting the difference between the optimal bid quotes with and without last look

across different values of q and t.

We observe a similar effect to that seen in Section 5.1.1 for the reservation prices.

In particular we see in Figure 5-7 that there is an upward adjustment with last

look for q < 0 and a downward one for q > 0, effectively undoing a little of

the inventory adjustment in the quotes without Last Look. We also observe
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Figure 5-7: Difference between optimal bid quotes with and without Last Look.
The left panel displays the difference across times from t = 0 to the terminal
T = 100. The right panel shows a 2-dimensional snapshot of the difference at
t = 0 where the quotes have settled down as we are far from the terminal time.
There is no bid price at q = 10 due to the inventory cap.

some interesting behaviour at the extremal quote levels that we have yet to fully

explain.

Empirical Comparison of Utility with and without Last Look

In order to consider whether the last look feature is valuable to the market maker

we have also created a simulation of the market making problem with a symmetric

last look condition. In figure 5-8 we show the output of one run of this simulator,

which tracks the running quantities and estimated current profit (xt + qtSt) to

the market maker. We have computed the profit made by the market maker over

T = 100 with the last look feature turned on (reject probability as above around

5 or 6 percent). The plots show the market maker’s inventory, running profit,

quotes and the times the last look feature was applied.

In Figure 5-9 we show the results of running the simulation 1000 times, with

and without a Last Look feature. We observe that market making is more prof-

itable for the market maker under these conditions when there is no last look

feature. This should perhaps not be too surprising, since nothing in the model as

yet incorporates any sort of adverse selection or insider knowledge effect, so the

market maker need not be worried about traders with any form of informational

advantage. So the last look feature just has the effect of thinning out demand
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Figure 5-8: Output from a run of the market making simulator. The panels show
(anticlockwise from top-left) the running inventory levels of the market maker;
the asset midprice and resulting bid and ask quotes; the times at which a last
look reject occurs; and the running marked to market profit to the market maker.
The profit is ‘marked to market’ in the sense that as well as observing the running
cash levels, the running inventory is valued at the current asset mid-price.

at random when the price moves extremely in either direction. In these circum-

stances such price moves are equally likely to favour or disadvantage the market

maker, and so overall the market maker simply loses out a little as a result of

fulfilling fewer orders overall.

In Figure 5-10 we show the results of a similar situation but under significantly

adverse market conditions for the market maker. We introduce occasional 10σ

jumps to the asset price that another market participant is able to detect and act

upon by placing the appropriate order before the market maker is able to update

their prices. In this scenario we see that the Last Look feature is strongly protec-

tive for the market maker and their profit distribution is significantly enhanced

when they have this protection.

This supports the view that last look is predominantly a cost for the market maker

in ordinary conditions, but one that is a necessary protection against informed

traders who might otherwise drive the market maker out of business.
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Figure 5-9: Market maker profit distribution over 1000 runs with and without
Last Look.

Figure 5-10: Market maker profit distribution over 200 runs with and without
last look in the presence of jumps known in advance to a liquidity taker.
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5.3 A Continuous Model for Market Making with

Last Look

So far in this chapter we have worked to extend the discrete model of [52] to the

case with last look. The work we have done, in particular the numerical solution,

leads us to the conclusion that last look is most interesting in a world where

some traders have informational advantage and this will form a part of the model

in this section. Here we set out a continuous framework will usefully capture a

last look mechanism in a model like that of Chapter 4 and which is suitable for

numerical analysis in a similar manner as in Section 4.5.

5.3.1 Setting Up the model

We first describe slightly informally our model. A more careful description of a

slight generalisation will be given in Section 5.3.4.

As before, at any given time the market maker chooses bid and ask spreads via δb

and δa. Sell and buy orders arrive as Poisson Processes with rate Λb(δb),Λa(δa)

respectively. In particular, if the asset price at time t is St, the market maker

will fill a sell order (buy from the client) with price St − δb, and fill a buy order

(sell to the client) with price St + δa. Typical orders are of size ∆.

Unlike in the previous chapters, we consider two types of price change that we

may think of as orders from two distinct groups of investors. We will think of the

total rate of arrival of orders in the market µ0 being decomposed into µ0 = µ1+µ2,

corresponding to two types of order:

1. Smaller market moves at a rate µ1. None of these orders are traded with

the market maker, which correspond to market moves with mean zero and

variance σ2
1. (Type 1)

2. Larger market moves. Arrivals at rate µ2 of orders that are more likely

traded with the market maker, which correspond to market moves with

mean zero and variance σ2
2. (Type 2)

Arrivals of Type 1 see a change in the price of the underlying asset, St but no

change to the market maker’s inventory qt as these are not trades involving the
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market maker. Arrivals of Type 2 see a change in the price of the underlying

asset, and if they are trades with the market maker then they will also see a

change in the quantity of inventory, which moves up or down by ∆, depending

on whether the order is a buy or sell order.

Suppose the asset price dynamics are determined so that price changes happen

at rate µ0, and have a fixed variance σ2
0. The probability that a given Type

2 order is a trade depends on the trading strategy, given so that the total rate

matches that the previous chapters. We expect µ2 ≥ Λb(δb)+Λa(δa) and µ2 ≪ µ0,

and so µ1 = µ0 − µ2 ≈ µ0. That is to say, the orders traded with the market

maker are always a relatively small proportion of the overall rate of orders in the

market.

The total variance of a typical order can then be computed as

σ2
0 =

µ1σ
2
1 + µ2σ

2
2

µ0

.

5.3.2 Introducing Traders with Informational Advantage

Since the primary value of last look is in protecting against traders who may

be looking to exploit predictive informational advantages about future market

moves we now introduce these into the model. We set a parameter π ∈ [0, 1]

depending on how prevalent these traders are. The greater π is the more often

we expect to see sell orders just before price decreases and buy orders just before

price increases. Precisely, given δSt, the change in the market price, orders arrive

at the following rates:

1. When δSt < 0:

(a) Sell orders arrive at rate (1+π)
2

Λb(δb); and

(b) Buy orders arrive at rate (1−π)
2

Λa(δa).

2. When δSt > 0:

(a) Sell orders arrive at rate (1−π)
2

Λb(δb); and

(b) Buy orders arrive at rate (1+π)
2

Λa(δa).
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In order to get the rates to compute, we suppose δSt is equally likely to be positive

or negative. Then Type 2 orders with positive price moves arrive at rate µ2/2,

and conditional on such an order arriving

• with probability (1+π)Λa(δa)
µ2

it will be a buy order with the market maker;

• with probability (1−π)Λb(δb)
µ2

it will be a sell order with the market maker;

and

• with probability 1 − (1+π)Λa(δa)+(1−π)Λb(δb)
µ2

it will not be an order with the

market maker.

Similarly conditional on the price move being negative and a Type 2 order arriving

then

• with probability (1−π)Λa(δa)
µ2

it will be a buy order with the market maker;

• with probability (1+π)Λb(δb)
µ2

it will be a sell order with the market maker;

and

• with probability 1 − (1−π)Λa(δa)+(1+π)Λb(δb)
µ2

it will not be an order with the

market maker.

Note that in order for all of the terms above to be probabilities between 0 and 1

we need

(1+π)Λa(δa)+(1−π)Λb(δb) ≤ µ2 ⇐⇒ π(Λa(δa)−Λb(δb)) ≤ µ2−(Λb(δb)+Λa(δa)),

and

(1−π)Λa(δa)+(1+π)Λb(δb) ≤ µ2 ⇐⇒ π(Λb(δb)−Λa(δa)) ≤ µ2−(Λb(δb)+Λa(δa)),

or equivalently

π|Λb(δb)− Λa(δa)| ≤ µ2 − (Λb(δb) + Λa(δa)). (5.1)

We want to see the impact of the parameter π on the market maker’s profitability

and the interaction of their wealth and corresponding holdings and also the effect

of a last look feature. We aim to consider limiting models that are continuous in
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time and space as in Chapter 4.

5.3.3 Modelling Last Look

We now introduce the last look feature, and define the way in which trades will

be cancelled. We assume that the Last Look feature may cancel a trade if the

price move is too large. That is, we choose ξa−, ξ
b
− < 0 < ξa+, ξ

b
+ such that a buy

order is cancelled if

δS > ξa+ or δS < ξa−,

and similarly a sell order is cancelled if

δS > ξb+ or δS < ξb−.

In Figure 5-11 we show the result of simulating this model for a fixed control

δa = 0.05, δb = 0.1, taking T = 10, k = 20, A = 500, σ0 = 0.9, µ0 = 15, ∆ = 5.

We note that the choice to simulate using a fixed control rather than an optimal

one means that we see in our plots decreasing inventory. Were we to simulate with

an optimal control we would expect to see mean-reverting inventory levels instead,

but the simulation with a fixed control is sufficient to show the reasonableness of

the model choice. The last look parameters ξa and ξb are chosen in such a way

that they cancel approximately 2% of expected return trades in total ξ and do so

symmetrically. In Figure 5-12 we also plot the correlation between moves in the

asset price and changes to the market maker’s inventory levels with and without

last look.

Figures 5-11 and 5-12 demonstrate that implementing a LL feature seems to

decrease the correlation between the asset price move and q, decrease the profit

from trades via the bid-ask spread, and decrease the ‘cost’ associated with the

anticipating trades.

Although it may not be entirely clear how each of these contributions affects the

overall behaviour, we would expect that decreasing the correlation is desirable as

is decreasing the costs associated with anticipating trades. We are interested to

study further whether the decrease in the profit from cancelling trades is small

enough to justify this trade off, and understanding this completely is non-trivial.

126



Figure 5-11: The first panel plots the random movements of the asset price. The
second panel shows the inventory (which is declining because we are simulating
a constant control rather than an optimal one) with and without last look. In
the third panel we plot the resulting wealth process (xt + qtSt) with and without
last look. In the fourth panel we see in blue and green the profit purely from the
spread with and without last look. In orange we see the losses due to anticipating
trades, and in red the profit from such trades when the last look mechanism is
included.

Figure 5-12: A plot showing the correlation between moves in the asset price and
changes to the market maker’s inventory levels with and without last look.
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To consider this in more detail let us now generalise slightly.

5.3.4 Generalising the Model

We now suppose price moves are made up from J different types of price change.

We fix N and suppose each price move occurs as a Poisson Point Process with

rate Nµi, and that there is a corresponding sequence of times, 0 = t0 ≤ t1 ≤ . . . ,

where ti+1 − ti is exponential with mean (Nµ0)
−1, and µ0 =

∑J
j=1 µj. Write

T = {t1, t2, . . . }. We let Dj be the set of times ti for which there is a price move

of type j in (ti, ti+1) and suppose at each time ti, ti ∈ Dj with probability
µj

µ0
.

Given ti ∈ Dj, our price move δSN
ti
has mean 0 and variance N−1σ2

j . Note that we

do not necessarily assume Gaussian price moves, but we will assume δS is equally

likely to be > 0 and < 0, with zero probability of being equal to zero.

We write SN
t =

∑
i:ti≤t δS

N
ti
.

Proposition 5.3.1 Letting N → ∞, (SN
t )t≥0 converges in law to a scaled Brow-

nian motion (St)t≥0, i.e. St =L σ0Wt, for Wt a Brownian motion and

σ2
0 =

J∑
j=1

µj

µ0

σ2
j .

Sketch Proof S1 is the sum of (approximately) µ0N i.i.d. samples of a random

variable with mean zero and variance

1

N

J∑
j=1

µj

µ0

σ2
j ,

by conditioning on which type we observe. (Convergence to Brownian motion

follows from Donsker’s Invariance Principle.)

□

We now consider the limiting behaviour of the inventory and wealth processes in

N . Additionally, we suppose that there is the usual rate of buy and sell orders,

which are Λa(δa) and Λb(δb) as above (both of which, we assume scale in N ,

through changes to the parameter A).
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We assume that we are given (αj)j=1,...,J , with αj ≥ 0 and
∑

j αj = 1, (βj)j=1,...,J ,

with βj ≥ 0 and
∑

j βj = 1, and we also suppose that the rate of orders Λa(δa)+

Λb(δb) < µ0. Then αj indicates that a proportion αj of incoming price moves

correspond to price moves of type j, so αjµ0 = µj. Also βj is the probability

that an order is an order of type j. We also suppose we are given (πj)j=1,...,J , so

that 0 ≤ πj ≤ 1, and then we suppose that πj encodes the rate at which orders

of type j are anticipative (from traders with informational advantage).

Write ti ∈ U if δSti > 0, and write ti ∈ B if time ti corresponds to a buy order,

write ti ∈ S if time ti corresponds to a sell order and N = T \ (S ∪B) if there is
no order. Then we have

• ti ∈ U ∩ Dj ∩ B with probability
(1+πj)βjΛ

a(δa)

µ0
,

• ti ∈ U ∩ Dj ∩ S with probability
(1−πj)βjΛ

b(δb)

µ0
,

• ti ∈ U ∩ Dj ∩N with probability

αj

2
− (1 + πj)βjΛ

a(δa) + (1− πj)βjΛ
b(δb))

µ0

=
αj

2
+

πjβj(Λ
b(δb)− Λa(δa))− βj(Λ

a(δa) + Λb(δb))

µ0

.

• ti ∈ UC ∩ Dj ∩ B with probability
(1−πj)βjΛ

a(δa)

µ0
,

• ti ∈ UC ∩ Dj ∩ S with probability
(1+πj)βjΛ

b(δb)

µ0
,

• ti ∈ UC ∩ Dj ∩N with probability

αj

2
− (1− πj)βjΛ

a(δa) + (1 + πj)βjΛ
b(δb)

µ0

=
αj

2
+

πjβj(Λ
a(δa)− Λb(δb))− βj(Λ

a(δa) + Λb(δb))

µ0

.

Observe that in a similar way to (5.1), in order for all of the terms above to be

probabilities between 0 and 1 we require

πj|Λa(δa)− Λb(δb)| ≤ µj

βj

− (Λa(δa) + Λb(δb)).
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We further introduce the Last Look feature. Fix ξa−, ξ
b
− < 0 < ξa+, ξ

b
+ such that a

buy order is cancelled if

δS > ξa+ or δS < ξa−,

and similarly a sell order is cancelled if

δS > ξb+ or δS < ξb−.

Write χi to be an indicator of the event that a trade on the ith move is not

cancelled.

Note that we can compute the expectation and variance of price change for a

typical observation by conditioning on the type of move as

E[δS] = 0, V(δS) =
∑
j

µj

µ0

σ2
j .

Similarly, we can compute

E[δq] =
∆

2µ0

∑
j

[
(1− πj)βjΛ

b(δb)pj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)pj,−(ξ
b
−)

− (1 + πj)βjΛ
a(δa)pj,+(ξ

a
+)− (1− πj)βjΛ

a(δa)pj,−(ξ
a
−)
]
,

where pj,+(ξ) is the probability of an up move of type j being below ξ, and pj,−(ξ)

is the probability of a down move of type j being above ξ.

Write

p̄+ =
1

2µ0

∑
j

[
(1− πj)βjΛ

b(δb)pj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)pj,−(ξ
b
−)
]

p̄− =
1

2µ0

∑
j

[
(1 + πj)βjΛ

a(δa)pj,+(ξ
b
+) + (1− πj)βjΛ

a(δa)pj,−(ξ
a
−)
]
.

Note that p̄+ is the probability that a sell trade happens, and p̄− is the probability
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that a buy trade happens. Then we can write

V[δq] = p̄+(∆− E[δq])2 + p̄−(∆ + E[δq])2 + (1− p̄+ − p̄−)(E[δq])2

= (p̄+ + p̄−)∆
2 + (p̄+ − p̄−)E[δq]∆ + (E[δq])2. (5.2)

Claim 5.3.2 The limiting behaviour of q is given by

dqt = a(δa, δb)dt+ b(δa, δb)dZt,

where Zt is a Brownian motion and

a(δa, δb) =
∆

2

∑
j

[
(1− πj)βjΛ

b(δb)pj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)pj,−(ξ
b
−),

− (1 + πj)βjΛ
a(δa)pj,+(ξ

a
+)− (1− πj)βjΛ

a(δa)pj,−(ξ
a
−)
]

b(δa, δb)2 = p̄+(∆− E[δq])2 + p̄−(∆ + E[δq])2 + (1− p̄+ − p̄−)(E[δq])2.

In order to test whether this model captures the behaviour of the system well

we have computed numerically these terms and compared the value expected

under this model to that of the simulation. In Figures 5-13 and 5-14 we show

the plots of the actual and expected inventory (with the same parameter choices

as before) and the ‘detrended’ inventory (that is the inventory reduced by its

expected value) process compared to the variance expected as computed in (5.2).

The actual and expected values are very close and persuade us that the model

fits well and that Claim 5.3.2 is a reasonable one.

We also want to understand the dynamics of δW . This is made up of three terms,

the first is qti−δSti , where qti− is the number of units held before any additional

orders at time ti. The other contributions are from the bid-ask spread on any

complete orders, computed as

∆(δaE[χi;B] + δbE[χi;S]) = ∆(δap̄− + δbp̄+).
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Figure 5-13: A plot of the expected value of the inventory level using this model
against the simulated values, with and without last look. We note that all of the
lines are decreasing since we have simulated using a fixed control, rather than
with an optimal one.

And from the loss due to anticipating trades, given as

∆

2µ0

∑
j

[
(1− πj)βjΛ

b(δb)mj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)mj,−(ξ
b
−)

−(1 + πj)βjΛ
a(δa)mj,+(ξ

a
+)− (1− πj)βjΛ

a(δa)mj,−(ξ
a
−)
]
,

where mj,+(ξ) is the expected value of δS, conditional on ξ > δS > 0 and

ti ∈ Dj, and similarly for mj,−, which is the expected value of δS, conditional on

ξ < δS < 0. Note that mj,+(ξ) > 0 and mj,−(ξ) < 0. In the symmetric case,

where e.g. ξb− and ξb+ are chosen so that mj,+(ξ
b
+) +mj,−(ξ

b
−) = 0, then the term

above simplifies to

−∆

µ0

∑
j

πjβj

[
Λb(δb)mj,+(ξ

b
+) + Λa(δa)mj,+(ξ

a
+)
]
.

We can try to do the same thing for the variance of the quantities. We have

δW = qti−δS + δqδS + (δq)+δ
b + (δq)−δ

a,

where x+ = max(x, 0) and x− = max(−x, 0).

Note that using standard properties of variance, e.g. V(X + Y ) = V(X) +

V(Y ) + Cov(X, Y ), and Cov(X, Y ) ≤
√

V(X)V(Y ), if V(X) ≫ V(Y ), then
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Figure 5-14: The left panel shows a plot of the ‘detrended’ inventory level. That
is, the simulated inventory less its expected value. The right panel shows the
cumulative variance from the simulation against that as calculated via (5.2).

V(X + Y ) ≈ V(X). Since we expect q ≫ δq, then V(δW ) ≈ q2tiV(δS).

Finally, we analyse the correlation between the wealth W and the position q.

Since δW ≈ qδS, it is sufficient to consider the correlation between S and q.

Writing δS =
∑

1≤j≤J δS
j1Dj

and δq = ∆
∑

1≤j≤J 1Dj

[
1U∩S1{δSj ∈ (0, ξb+}+ . . .

]
we get

Cov(δSδq) =
∆

2µ0

∑
j

[
(1− πj)βjΛ

b(δb)mj,+(ξ
b
+)− (1 + πj)βjΛ

b(δb)mj,−(ξ
b
−)

− (1 + πj)βjΛ
a(δa)mj,+(ξ

a
+) + (1− πj)βjΛ

a(δa)mj,−(ξ
a
−)
]
. (5.3)

Note the similarity to the loss due to anticipating trades above, except for the

sign changes.

In Figure 5-15 we compare the correlation between the inventory and wealth

process as simulated and as predicted by (5.3) and find an encouraging similar-

ity.

Finally in Figure 5-16 we examine the drift terms in the wealth process. We

see that changes in the wealth are a combination of changes to the value of

inventory as a result of changes in the asset price as well as profits from market
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Figure 5-15: The plot shows the correlation between the inventory and wealth
process as simulated and as predicted by (5.3).

making activity. To see these profits clearly we subtract qtδWt from the profit and

then can view that we have a good fit between the expected profits from market

making and those simulated, and similarly when we look at just the anticipating

trades.

5.3.5 A Suitable Continuous Model for Last Look

We conclude that the following model is a reasonable approximation to the micro-

founded model.

dSt = σ0dBt, dqt = a(δat , δ
b
t )dt+ b(δat , δ

b
t )dZt, dWt = qdSt + η(δat , δ

b
t )dt,

where Bt, Zt are Brownian motions with correlation ρ, and

a(δa, δb) =
∆

2

∑
j

[
(1− πj)βjΛ

b(δb)pj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)pj,−(ξ
b
−)

− (1 + πj)βjΛ
a(δa)pj,+(ξ

a
+)− (1− πj)βjΛ

a(δa)pj,−(ξ
a
−)
]
,

b(δa, δb)2 = p̄+(∆− E[δq])2 + p̄−(∆ + E[δq])2 + (1− p̄+ − p̄−)(E[δq])2,
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Figure 5-16: In the first panel we see that changes to the wealth arise from changes
to the underlying asset price. We subtract qtSt from this to see the profits arising
from market making activity in the second panel. In the third panel we plot just
the profits from anticipating trades as predicted and as simulated.

η(δa, δb) =∆(δap̄− + δbp̄+)

− ∆

2

∑
j

[
(1− πj)βjΛ

b(δb)mj,+(ξ
b
+) + (1 + πj)βjΛ

b(δb)mj,−(ξ
b
−)

− (1 + πj)βjΛ
a(δa)mj,+(ξ

a
+)− (1− πj)βjΛ

a(δa)mj,−(ξ
a
−)
]
,

ρ(δa, δb) =
∆

2σ0b(δa, δb)

∑
j

[
(1− πj)βjΛ

b(δb)mj,+(ξ
b
+)− (1 + πj)βjΛ

b(δb)mj,−(ξ
b
−)

− (1 + πj)βjΛ
a(δa)mj,+(ξ

a
+) + (1− πj)βjΛ

a(δa)mj,−(ξ
a
−)
]
.

Note that most of these expressions can be rewritten in terms of the controls in

the form

c1Λ
a(δa) + c2Λ

b(δb).

We note also that the plots we have presented in this section have been computed

under a fixed control that we have chosen fairly arbitrarily. We expect that if we

were to apply something closer to an optimal control that the inventory should

be mean reverting to 0 and so we would expect to see more fluctuations in some

of the plots.
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The conclusion that we are encouraged by is that the model appears to be quite

suitable for analysis in a similar way to the continuous model of Chapter 4. We

leave a fuller exploration of this for future work, but we hope to be able to extend

the work of Chapter 4 to this case, by providing a result similar to Proposition

4.4.1 that allows for this correlation between inventory and wealth process to

be incorporated. Also we would like to use the work of Section 4.5 and the

large deviation framework to be able to optimise over various parameters and

understand sensitivity to the parameters chosen for the last look criteria and

defining the toxicity of order flow.

5.4 Summary

In this chapter we have successfully adapted some of the major existing models

of market making, as well as our own models to the last look case, finding natural

adaptations of the optimal strategies and to the long run value of market making.

In the final section we have also been able to propose a new model for market

making with last look that can capture well situations where the market maker

may be trading at an informational disadvantage. The way in which this model

has been set up allows it to be analysed via the numerics of Chapter 4 and

so provides a setting that could be very useful for optimising over the many

parameters involved.
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Appendix A

The Truncated Normal

Distribution

In Chapter 5 we consider last look mechanisms which cancel trades when the

normally distributed increments exceed certain levels. Many of the results that

follow then naturally involve properties of the the truncated normal distribution.

We collect below for easy reference the most important results we make use

of.

Suppose that X is a normally distributed random variable with mean µ and

variance σ2 and −∞ ≤ a < b ≤ ∞. Then conditioning X on a < X < b results

in a truncated normal distribution. Below we set out separately results in the case

of ‘two-sided truncation’ where −∞ < a < b < ∞ and of ‘one-sided truncation’

where either = −∞ or b = ∞.

Two sided truncation

If X ∼ N(µ, σ2) we have that

E(X|a < X < b) = µ+ σ
ϕ
(
a−µ
σ

)
− ϕ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) .
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We also make extensive use of the moment generating function

E(etX |a < X < b) = exp

(
µt+

σ2t2

2

)[
Φ
(
b−µ
σ

− σt
)
− Φ

(
a−µ
σ

− σt
)

Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) ]

where Φ and ϕ are the standard normal c.d.f. and p.d.f. respectively.

One sided truncation

If X ∼ N(µ, σ2) we have that

E(X|a < X) = µ+ σ
ϕ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

)
and

E(X|X < b) = µ− σ
ϕ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
as well as the moment generating functions

E(etX |a < X) = exp

(
µt+

σ2t2

2

)[
1− Φ

(
a−µ
σ

− σt
)

1− Φ
(
a−µ
σ

) ]

and

E(etX |X < b) = exp

(
µt+

σ2t2

2

)[
Φ
(
b−µ
σ

− σt
)

Φ
(
b−µ
σ

) ]
.
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Appendix B

The Quantum Harmonic

Oscillator

Some of the problems we will look at later will require us to consider eigenvalue

problems for linear operators, and one that will appear frequently is that of the

quantum harmonic oscillator LQHOg : L2(R) → L2(R), which we will define for

β ∈ R as

LQHOg := g′′(x)− βx2g(x).

The full spectral theory of such operators is well studied. The full list of eigen-

functions and corresponding eigenvalues can be specified, for example in terms

of the Hermite polynomials (see e.g. [89] or [38]), but we will only make use of

the principal eigenfunction and eigenvalue in the work that follows, so we state

here for reference the following proposition.

Proposition B.0.1 The leading (normalised) eigenfunction and eigenvalue pair

(f, λ) of the operator LQHO defined above are given by

f(x) =

(
β

π

) 1
4

e−
√
β
2

x2

, λ = −
√

β.

We do not prove this standard result but it is easy to verify that

f ′′(x)− βx2g(x) = λf(x), ||f(x)||L2 = 1.
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In fact, we will be working with operators of the form

Lg := αg′′(x)− (κ+ βx2)g(x)

and so for convenience later we also state the following slightly more general

result that is an immediate consequence of Proposition B.0.1.

Proposition B.0.2 The leading (normalised) eigenfunction and eigenvalue pair

(f, λ) of the operator Lg := (κ+ βx2)g(x)− αg′′(x) are given by

f(x) =

(
β

απ

) 1
4

e−
1
2

√
β
α
x2

, λ = κ−
√

αβ.

In particular this pair satisfies

(κ+ βx2)f(x)− αf ′′(x) = λf(x) ||f(x)||L2 = 1.

and a proof of this proposition requires little more than matching terms to Propo-

sition B.0.1.
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high-frequency trading. Cambridge University Press, 2015.
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[26] Umut Çetin and Albina Danilova. “Markovian Nash equilibrium in finan-

cial markets with asymmetric information and related forward–backward

systems”. In: (2016).
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Springer. 2015, pp. 2005–2057.

[28] Kyung-Ha Cho. “Continuous auctions and insider trading: uniqueness and

risk aversion”. In: Finance and Stochastics 7 (2003), pp. 47–71.

[29] Pierre Collin-Dufresne and Vyacheslav Fos. “Insider trading, stochastic liq-

uidity and equilibrium prices”. In: (2014).

[30] Global Foreign Exchange Committee. FX Global Code 2018. accessed 18th

August 2022. url: https://www.globalfxc.org/docs/fx_global.pdf.
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Chapter 6

Publication (Alternative Format

Thesis Section)

This final Chapter 6 is presented ‘by publication’. The full text of the paper [56]

is included, which is a joint work with Hart, A.G., Cox, A.M.G., Isupova, O. and

Dawes, J.H.P, and to which the author of this thesis contributed around 20% of

the work. A further statement of authorship is included after these introductory

remarks and before the paper.

At the time of publication this paper is under review. The paper involves some

novel results about Echo State Networks, which are a type of single-layer recurrent

neural network with randomly chosen internal weights and a trainable output

layer. The results about the theory of ESNs are primarily attributable to other

authors.

The paper also includes some applications of Echo State Networks, and in partic-

ular the author of this thesis contributed most significantly to the development

of and application to the market making problem presented as well as to the

overall idea for the collaboration and the organisation and preparation of the

paper.

This PhD thesis as well as that of the co-author Allen Hart, was undertaken

with funding the EPSRC Centre for Doctoral Training in Statistical Applied

Mathematics at Bath (SAMBa), grant number EP/L015684/1. The paper in this
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chapter was also born out of the collaborative environment of SAMBa. Hart had

been working on mathematical results about Echo State Networks and had an idea

in mind of a deterministic system to which they could be applied. The author

of this thesis had begun to think about market making models and suggested

adapting the results to include a stochastic case, and then the collaborative work

began along with their supervisors in applying the results and adapting the ESN

theory to suit the stochastic case.

The technical results surrounding the ESNs in the paper are primarily those of

Hart, building on his previous work in [54] and [55] although there was also joint

work in extending these to the stochastic case. The author’s main contribution to

the paper however is in Section 5, providing a simplified mathematical framework

driven by the market making problem and applying and interpreting the outputs

of the ESN in this case. At the time of writing that paper, much of the work

in this thesis was only partly formed and so the model there was driven by the

intuition about the market making problem, but since then we have now also

been able to given further justification that this intuition was sound.
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An Echo State Network (ESN) is a type of single-layer recurrent neural network with 
randomly-chosen internal weights and a trainable output layer. We prove under mild con-
ditions that a sufficiently large Echo State Network can approximate the value function of 
a broad class of stochastic and deterministic control problems. Such control problems are 
generally non-Markovian.
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Keywords: Liquid State Machines, Reservoir Computing, Stochastic Optimal Control, 
Mathematical Finance, Reinforcement Learning

http://arxiv.org/abs/2102.06258v2


1. Introduction

An Echo State Network (ESN) is a special type of single-layer recurrent neural network
introduced at the turn of the millennium by [1] and [2] to study time series. Training is
fast because the training step involves only the selection of weights in the output layer
rather than updating the internal weights in the recurrent layer. Furthermore, the simple
formulation of ESNs renders them amenable to mathematical analysis. Given a time series
zk (where k is the discrete time index) of d-dimensional data points, an ESN is set up as
follows. We randomly generate a n × n reservoir matrix A, a n × d input matrix C and
a n × 1 bias vector ζ. Then we iteratively generate a sequence of n-dimensional reservoir
state vectors xk according to

xk+1 = σ(Axk +Czk + ζ)

where σ(x)i = max(0, xi) is the rectified linear unit (ReLU) activation function applied
component-wise to the n-dimensional vector x. Observe that the kth reservoir state xk de-
pends on all past data-points . . . , zk−2, zk−1 and therefore captures non-Markovian temporal
correlations in the data. If the 2-norm of the reservoir matrix satisfies ‖A‖2< 1 then as n
tends to infinity, the influence on the reservoir state xk+n of the data points . . . , zk−2, zk−1 in
the distant past becomes arbitrarily small. This is called the fading memory property and
is closely related to the echo state property (ESP) introduced in the context of ESNs by [1].
The ESP is the statement that the sequence of reservoir states (xk)k∈Z is, for a given input
data sequence (zk)k∈Z, uniquely determined. We can interpret the reservoir state vectors as
the latent vectors which encode the infinite past observations in lower dimensional form.

When an ESN has the ESP, it can be applied to a class of supervised learning problems
where we have a time series of d dimensional data points rk, called targets, that depend on
all previous input time series data . . . , zk−3, zk−2, zk−1 and we seek to learn the relationship
between the sequence of past states and the target for each k. We can train an ESN to solve
this problem by finding the m× d matrix W that minimises

ℓ−1
∑

k=0

‖W⊤xk − rk‖2 + λ‖W‖2,

where ℓ is the number of labelled data points, and λ > 0 is the Tikhonov regularisation
(a.k.a. ridge regression) parameter. Throughout this paper, ‖·‖ denotes the matrix 2-norm,
vector 2-norm or absolute value, depending on whether the input is a matrix, vector, or
scalar, respectively.

This minimisation problem can be solved using regularised linear least squares regression,
and hence we can both obtain W quickly, and guarantee that W is the global optimum. This
compares extremely favourably with training a (deep) neural network with stochastic gradi-
ent descent and backpropagation which takes considerably longer, and may not converge to
the global optimum [3].

Despite the training procedure being entirely linear, ESNs are universal approximators,
and can therefore model arbitrarily complex relationships between the sequence of past data
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points and the targets. This is made formal in a recent result by [4] that we review here
and then build on. We emphasise that not only are ESNs theoretically very promising, they
have performed remarkably well in practice on problems ranging from seizure detection,
to robot control, handwriting recognition, and financial forecasting, where ESNs have won
competitions [5], [6], [7], [8]. Impressively, ESNs outperformed RNNs and LSTMs at a
chaotic time series prediction task by a factor of over 2400 [9]. ESNs have also proved
themselves competitive in various tasks in reinforcement learning [10] and control [11].

Even in cases where practitioners prefer to use other recurrent neural networks (RNNs),
such as Long Short Term Memory networks (LSTMs), the rigorous theory of ESNs should
prove useful in architecture design. In [12], it is shown that different deep neural network
architectures can be ranked by randomly initialising the internal weights and training only
the outer weights by linear regression. Once the best performing architecture (with random
internal weights) has been identified, the authors then train the internal weights of the
highest ranking architecture. This is much faster than training the internal weights (a
nonlinear problem) for every architecture. The ranking of architectures with random internal
weights closely approximates the ranking of architectures with optimised internal weights.
From our point of view, the authors are essentially approximating fully trained networks
with (non-recurrent) ESNs.

In a sequence of papers, [13], [14], and [4] recently analysed ESNs in the context of
nonlinear filters and functionals. Roughly speaking, a filter U is a map from a bi-infinite se-
quence . . . , z−2, z−1, z0, z1, z2, . . . of real vectors to another bi-infinite sequence of real vectors
. . . , x−2, x−1, x0, x1, x2, . . ., and a functional H maps a bi-infinite sequence . . . , z−2, z−1, z0, z1, z2, . . .
of real vectors to a single real vector or number. We can view an ESN as a filter that maps
an input sequence . . . , z−2, z1, z0, z1, z2, . . . to a reservoir sequence . . . , x−2, x−1, x0, x1, x2, . . .,
or a funtional that maps . . . , z−2, z1, z0, z1, z2, . . . to the lone reservoir state x0. The theory
of filters and functionals is therefore a natural theoretical setting for ESNs. Within this
theory, this paper presents three novel results.

Our first result assumes that we have a time series of data zk and a set of targets rk that
depend on all previous data points . . . , zk−2, zk−1 via a functional R which sends infinite
sequences of data points to targets. We then have a supervised learning problem of finding
the relationship between the data and targets. In the special case that zk = rk, this problem
is time series forecasting. Our first novel result states that if we have sufficiently many data
points zk, drawn from a stationary, ergodic, and bounded process Z, which need not be
Markovian, and we obtain W using regularised linear least squares, then a sufficiently large
ESN will approximate, as closely as required, the functional R sending inputs . . . , zk−2, zk−1

to the targets rk.
This result has applications in the statistical inference of dynamical systems, which was

recently reviewed by [15]. This area of research is especially focused on statistical inference
(i.e learning) of stationary ergodic processes. Furthermore, we can use this result in the
context of reinforcement learning (RL) and optimal control. We envisage an agent operating
under a given policy in the parlance of reinforcement learning or control in the parlance
of control theory that generates a sequence of (reward, action, observation) triples zk =
(rk, ak, ωk). Then the functional V that maps previous (reward, action, observation) triples
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. . . , zk−2, zk−1 to rewards zk models the reward functional arbitrarily well. The set up does
not assume the RL problem is Markovian, and allows for a continuous state space.

Our second novel result generalises the first, and encompasses the case where the func-
tional V is the value functional of a stochastic control process, or Partially Observed Markov
Decision Process (POMDP). By training an ESN to approximate the value functional, we
establish a stepping stone toward developing an offline reinforcement learning algorithm sup-
ported by an ESN that can solve a large class of control problems. Moreover, since ESNs
are recurrent, they can be used for non-Markovian problems, where a reinforcement learning
agent must exploit its memory of past observations, actions and rewards. Our third result
is presented in the context of building an online reinforcement algorithm that can, under
certain conditions, determine the optimal value function for a given policy.

These results are part of a general push to take machine learning ideas typically applied to
(partially observed) Markov processes and generalising them to hold on stationary ergodic
processes. We can see for example [16] consider to clustering problems typically defined
Markov processes applied to stationary ergodic processes.

We demonstrate some of these theoretical results numerically on two examples. The
first is a deterministic game which we call ‘Bee World’. The goal of the game for the bee
is to navigate a time varying distribution of nectar in order to maximise the total future
discounted value of the nectar acquired over all future time. The optimal trajectory can be
found explicitly via the calculus of variations but the constraint that the bee has a maximum
speed of flight leads to unexpectedly complicated solution paths; it therefore provides a
straightforward but not entirely trivial control problem. Since the bee does not have access
to the entire state space, and only observes the nectar it collects at each moment in time, the
problem is therefore a partially observed Markov Decision Process which requires memory
of the past to solve. We demonstrate how a simple and easily-configurable reinforcement
learning algorithm supported by an ESN can learn to play Bee World with respectable skill.

The second numerical example is inspired by a market making problem in mathematical
finance. The mathematical formulation of this problem reduces to a seeking to control a
one dimensional Brownian motion so that it stays near the origin. The cost of straying
from the origin is quadratic in the distance from the origin, and the cost of applying a push
toward the origin is quadratic in the strength of the push. The market maker must therefore
balance the cost of applying the control against the cost of allowing the motion to drift
too far from the origin. We briefly discuss the financial motivation for this problem, then
solve it analytically in continuous and discrete time. The set up most commonly seen in the
literature is continuous time, but only in discrete time is the problem suitable for an ESN.
We then compare the optimal discrete time solution to a solution learned by a reinforcement
learning agent supported by an ESN.

Finally, we note that our approach to the Market making problem is loosely related
to the recent paper by [11] who introduce QuaSiModO: Quantization-Simulation-Modeling-
Optimization. These authors analyse the interplay between the following four aspects:

1. Quantising the action space A.

2. Simulating a system under a given control/policy.
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3. Modelling the full system given a partial/full observation of the state space.

4. Optimising the control/policy.

The structure of the remainder of the paper closely follows the summary of results pre-
sented above. In section 2 we set up the mathematical formalism for ESNs that we wish then
to approximate. Section 3 introduces our novel theoretical results, while sections 4 and 5
respectively present applications to the deterministic (‘Bee World’), and then the stochastic
(‘market maker’) optimal control problems. We conclude in section 6.

2. Background

In this section, we introduce the theory and notation of nonlinear filters (in relation to
ESNs) developed by [13], [14], and [4]. First, we denote by (Rd)Z the set of maps with
domain Z and codomain R

d. This is the set of bi-infinite R
d–valued real sequences.

A filter is a map U : (Rd)Z → (Rn)Z. A filter U is called causal if inputs from the past
and present . . . , z−2, z−1, z0 contribute to U(z) but states in the future z1, z2 . . . do not. More
formally U is casual if ∀ z, y ∈ (Rd)Z that satisfy zk = yk ∀ k ≤ 0 it follows that U(z) = U(y).
We define the time shift filter T : (Rd)Z → (Rn)Z by T (z)k = T (z)k+1 which we interpret
as the map that steps forward one unit of time. A filter U is called time invariant if U
commutes with the time shift operator T . If U is causal and time invariant filter then we
call U a causal time invariant (CTI) filter.

A functional is a map H : (Rd)Z → R
n. In [14] it is shown that there is a bijection

between the space of CTI filters and the space of functionals. To see this, take a functional
H and define the kth term of the associated filter U via U(z)k = HT k(z). Conversely, given
a filter U , the associated functional H is given by H(z) = U(z)0

We can view an ESN as a CTI filter from the space of input sequences . . . , z−1, z0, z1, . . .
to the space of reservoir sequences . . . , x−1, x0, x1, . . .. To make this connection between
ESNs and filters formal, we will first present a generalisation of an Echo State Network
called a reservoir system.

Definition 2.1. (Reservoir system) Let F : Rn × R
d → R

n and h : Rn → R
s. Then we call

the following system of equations

xk+1 = F (xk, zk) (1)

rk = h(xk)

a reservoir system.

Remark 2.2. We can see that if

F (x, z) = σ(Ax+Cz + ζ)

h(x) = W⊤x

then we retrieve an ESN with n× n reservoir matrix A, n× d input matrix C, bias vector
ζ ∈ R

n, linear output layer W ∈ R
n, and activation function σ = ReLU, defined in the

introduction.
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We require that the reservoir system induces a unique filter from the input sequence to
the reservoir sequence. This property is the Echo State Property that we briefly mentioned
in the introduction.

Definition 2.3. (Echo State Property [1]) A reservoir system has the Echo State Property
(ESP) if for any (zk)k∈Z ∈ (Rd)Z there exists a unique (xk)k∈Z ∈ (Rn)Z that satisfy the
equations of the reservoir system (1).

To any reservoir system with the Echo State property we can associate a unique CTI
reservoir filter U : (Rd)Z → (Rn)Z defined by U(z) = x. To this reservoir filter, we may
assign a CTI reservoir functional H : (Rm)Z → R

d defined by H(z) = x0. In a supervised
learning context, we have a time series of data points . . . , z−2, z−1, z0 and a time series of
targets . . . , r−1, r0 that each depend on all previous data points. The output functional
h ◦ H : (Rd)Z → R is the map we use to approximate the relationship between the data
and the targets, so h ◦H(. . . , z−2, z−1, z0, z1, z2, . . .) ≈ rk. Note that h ◦H is causal, so does
not peer into the future and use data z1, z2, . . . that have not yet been revealed. When the
reservoir system is an ESN, the map h is the linear map W⊤ obtained by least squares ridge
regression, so that W⊤H(. . . , z−2, z−1, z0, z1, . . .) ≈ rk. We assume there exists a true map
from the data to the targets that we label R : RZ → R so that R(. . . , z−2, z−1, z0, z1, . . .) = rk.
Our goal is to find W such that W⊤H ≈ R.

Definition 2.4. (ESN filter and functional) If an ESN has the ESP then we will write
HA,C,ζ to denote the reservoir functional associated to an ESN with parameters A,C and
ζ. We will also write HA,C,ζ

W to denote the output functional W⊤HA,C,ζ (defined by left
multiplication of HA,C,ζ by the linear readout layer)

Next, we will present a procedure, introduced by [4], for randomly generating the ESN’s
internal weights A,C and biases ζ, which ensures the ESN has ESP and allows for the
universal approximation of target functionals R. The procedure differs from the procedure
commonly seen in the literature, where A,C, ζ are populated with i.i.d Gaussians, or i.i.d
uniform deviates, and then A is rescaled so that its 2-norm (or spectral radius) is less than 1.
Furthermore, the procedure introduced by [4] depends on some details of the input process,
which must satisfy mild conditions stated below.

Definition 2.5. (Admissible input process) A (Rd)Z valued random variable Z is called an
admissible process if for any T ∈ N there exists MT > 0 such that for all k ∈ Z

‖Zk−T ,Zk−T+1, . . . ,Zk‖ ≤ MT (2)

Lebesgue-almost surely.
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We will now present a procedure by which the matrices A,C, ζ are randomly generated.

Procedure: Initialising the random weights of an ESN.

Let N ∈ N, R > 0 be the input parameters for the procedure. Suppose that Z is an
admissible input process. Consequently, for any T0 ∈ N there exists MT0 such that
(for k = 0 in (2))

‖Z−T0 ,Z−T0+1, . . . ,Z0‖ ≤ MT

Lebesgue-almost surely. Then, for a given T0, we initialise the ESN reservoir
matrix A, input matrix C, and biases ζ according to the following procedure.

1. Draw N i.i.d. samples A1, . . . ,AN from the uniform distribution on BR ⊂ R
d(T)+1)

where BR is the ball of radius R and centre 0, and draw N i.i.d. samples ζ1, . . . ζN

from the uniform distribution on [−max(MT0R, 1),max(MT0R, 1)].

2. Let S and c be shift matrices defined

S =

[

0d,dT0 0d,d
IdT0 0dT0,d

]

c =

[

Id
0dT0,d

]

and set

a =











A⊤
1

A⊤
2
...

A⊤
N











Ā =

[

S 0d(T0+1),N

aS 0N,N

]

C̄ =

[

c
ac

]

ζ̄ =











0d(T0+1)

ζ1
...
ζN











so that

A =

[

Ā −Ā

−Ā Ā

]

C =

[

C̄

−C̄

]

ζ =

[

ζ̄

−ζ̄

]

.

We are now ready to present the key result by [4], (which generalises a result by [17]) and
which holds in the following supervised learning context. Given time series data zk (from
an admissible process Z) and a time series of targets rk depending on all previous data
. . . , zk−2, zk−1 we wish to approximate the functional that sends . . . , zk−2, zk−1 to rk. We
will denote this functional R. The problem of approximating R given the data and targets
is a supervised learning problem. The result can be summarised as follows. Suppose we
have an ESN with weights A,C and biases ζ randomly generated by procedure 1. Then,
the ESN admits a linear readout matrix W for which the ESN equipped with the matrix W
(denoted HA,C,ζ

W ) approximates the relationship R between data points . . . , zk−2, zk−1 and
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targets rk as closely as is required.

Theorem 2.6 ([4]). Suppose that Z is an admissible input process. Let R : (Dn)
Z → R

(where Dn is a compact subset of Rn) be CTI and measurable with respect to some measure
µ such that Eµ[|R(Z)|2] < ∞.

Then for any ǫ > 0 and δ ∈ (0, 1) there exists N, T0 ∈ N, R > 0 such that, with probability
(1 − δ), the ESN with parameters A,C, ζ generated by the procedure in definition 1 (with
inputs N, T0, R) has the ESP and admits a readout layer W ∈ R

2(d(T0+1)+N) such that

(

Eµ

[

∥

∥

∥
HA,C,ζ

W (Z)−R(Z)
∥

∥

∥

2
∣

∣

∣

∣

A,C, ζ

])1/2

:=

(
∫

(Rd)Z

∥

∥

∥
HA,C,ζ

W (z)−R(z)
∥

∥

∥

2

dµ(z)

)1/2

< ǫ.

3. Novel results for ESNs

Theorem 2.6 is an existence result stating that there exists a linear readout layer W
yielding an arbitrarily good approximation. Our first novel contribution is to strengthen
the result under additional assumptions. The new result states that, given a sufficiently
large ESN and sufficiently many training data zk drawn from a stationary, ergodic and
bounded process Z, if we train an ESN using regularised least squares then the arbitrarily
good readout layer W will be attained (with probability as close to 1 as desired). This
result is analogous to the main result by [18] who prove a similar theorem for ESNs trained
on deterministic inputs. Before we introduce the result we will present the definition of a
stationary process, an ergodic process, and the ergodic theorem.

Definition 3.1. (Stationary Process [15]) A stochastic process (Zk)k∈Z ≡ Z is stationary
if for any ℓ ∈ N and finite subset I ⊂ Z the joint distribution (Zi)i∈I is equal to the joint
distribution (Zi+ℓ)i∈I .

Definition 3.2. (Stationary Ergodic Process [15]) A stationary stochastic process (Zk)k∈Z ≡
Z is called ergodic if for every ℓ ∈ N and every pair of Borel sets A,B

lim
ℓ→∞

1

ℓ

ℓ−1
∑

k=0

P

(

(Z1, . . . ,Zℓ) ∈ A, (Zk, . . . ,Zk+ℓ) ∈ B

)

=P

(

(Z1, . . . ,Zℓ) ∈ A

)

P

(

(Z1, . . . ,Zℓ) ∈ B

)

.

Every stationary ergodic processes Z satisfies the celebrated Ergodic Theorem.

Theorem 3.3. (Ergodic Theorem) If (Zk)k∈Z ≡ Z is a stationary ergodic process then for
any i ∈ Z

Eµ[Zi] = lim
ℓ→∞

1

ℓ

ℓ−1
∑

k=0

Zi+k

almost surely.
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Our result holds in the following supervised learning context. Given time series data zk
(from an admissible, stationary, ergodic, bounded process Z) and a time series of targets
rk depending on all previous data . . . , zk−2, zk−1 we wish to approximate the mapping from
. . . , zk−2, zk−1 to rk. This mapping is denoted R. Our result states that an ESN with weights
A,C and biases ζ randomly generated by the procedure in definition 1, which is fed the
training data zk, and then trained by regularised least squares, will yield a matrix W . This
ESN equipped with the matrix W (denoted HA,C,ζ

W ) will approximate the relationship R
between data points . . . , zk−2, zk−1 and targets rk as closely as required.

Theorem 3.4. Suppose that Z is an admissible input process, that is also stationary and
ergodic, with invariant measure µ. Let R : (Dn)

Z → R (where Dn is a compact subset of
R

n) be CTI, µ-measurable, and satisfy Eµ[|R(Z)|2] < ∞. Let z be an arbitrary realisation
of Z

Then for any ǫ > 0 and δ ∈ (0, 1) there exist N, T0 ∈ N, R > 0, λ∗ > 0 and ℓ ∈ N

such that the ESN with parameters A,C, ζ generated by the procedure in Definition 1 (with
inputs N, T0, R), and W ∗

ℓ ∈ R
2(d(T0+1)+N) which minimises (over W ∈ R

2(d(T0+1)+N)) the
least squares problem

1

ℓ

ℓ−1
∑

k=0

∥

∥

∥
HA,C,ζ

W T−k(z)−RT−k(z)
∥

∥

∥

2

+ λ ‖W‖2 ,

(where λ ∈ (0, λ∗)) satisfies with probability (1− δ) the inequality

Eµ

[

∥

∥

∥
HA,C,ζ

W ∗

ℓ
(Z)−R(Z)

∥

∥

∥

2
∣

∣

∣

∣

A,C, ζ

]

< ǫ.

Proof. Later in this paper, we state and prove a more general result (Theorem 3.6) which
reduces to this result in the special case γ = 0.

In summary, we have stated that for any ǫ > 0 and δ ∈ (0, 1) there exists an ESN of
dimension n = 2(d(T0 + 1) +N) with output layer W trained by the Tikhonov-regularised
least squares procedure against ℓ training points, whose output functional approximates
the target arbitrarily closely with arbitrarily high probability. The theorem is (sadly) non
constructive in the sense that the number of neurons n, number of training points ℓ and
regularisation parameter λ∗ are not computed for a given ǫ and δ. Ideally, we would establish
uniform bounds on the number of number of neurons n and data points ℓ required for an
approximation with tolerance ǫ to hold with probability δ. Though less ideal, one could
establish an asymptotic order of convergence using the central limit theorem (CLT). The
CLT (roughly) states that the error between the time average and the space average of a
stationary ergodic process converges in law to a normal distribution with standard deviation
of the order 1/

√
ℓ as the number of data points ℓ grows to infinity. The CLT is stated below.

Theorem 3.5. (Central Limit Theorem [15]) If (Zk)k∈Z is a stationary ergodic process then
there exists a covariance matrix Σ such that for any i ∈ Z and Borel set A

lim
ℓ→∞

P

(

1√
ℓ

ℓ−1
∑

k=0

(Zi+k − Eµ[Zi])

)

= P
(

N (0,Σ) ∈ A
)

.
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In other words, the random variables

1√
ℓ

ℓ−1
∑

k=0

(Zi+k − Eµ[Zi])

converge in distribution to the multivariate normal N (0,Σ) as ℓ → ∞.

This suggests that the approximation of the target functional R also converges with order
1/
√
ℓ as the number of data points increases. Furthermore, related results by [4] use the

CLT to establish uniform bounds on the number of neurons n = 2(d(T + 1) +N) required
for a given approximation. This strongly suggests that the approximation in Theorem 3.4
converges with order 1/

√
N .

We will now pivot towards our second novel result, which generalises the first. Suppose
that we have a contraction mapping Φ on the space of functionals, and we seek a W ∗ such that
the ESN functional HA,C,ζ

W ∗ approximates the unique fixed point of Φ. The existence of the
unique fixed point is guaranteed by Banach’s fixed point theorem. Finding the fixed point of
a contraction mapping has applications in reinforcement learning because the optimal value
function (and optimal quality function) of a Markov Decision Process (MDP) is a fixed point
of a Bellman operator. The theory we are presenting here can be viewed as a generalisation
of an MDP because the input processes we are considering may have long time correlations
(violating the Markov property) which can only be recognised by filters with sufficiently long
and robust memories; like Echo State Networks.

We can observe first of all if Φ is the constant map Φ(H) = R, then Φ is clearly a
contraction mapping with fixed point R. In this case, the problem is exactly the same as
that solved by Theorem 3.4. We are especially interested in the case of Φ taking the form
of the Bellman Value operator. To make this formal, we will consider a stationary ergodic
process Z with invariant measure µ. Then we define the map TZ as a CTI filter on the
bi-infinite sequences (DN)

Z, which returns the random variable:

TZ(z)k =

{

TZ(z)k+1 if k < 0

Zk+1 | Zj = zj ∀j ≤ 0 if k ≥ 0.

Next, we introduce R : (DN)
Z → R as the CTI reward functional, giving a reward (or

expectation over a distribution of rewards) to an agent that has observed a given sequence
of (reward, action, observation) triples. We let γ ∈ [0, 1) denote the discount factor, and
define the operator

Φ(H)(z) := R(z) + γEµ[HTZ(z)]. (3)

In this case, Φ is a contraction mapping with Lipschitz constant γ. With this, we will
define the CTI value functional V : (DN)

Z → R (with respect to the process Z) as

V (z) := Eµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

.

10



The value functional V takes a sequence of (reward, action, observation) triples and returns
the expected discounted sum of future rewards. Furthermore, the value function V is the
unique fixed point of the Bellman operator Φ. Re-arranging the definition of V (z) above,
we have that:

V (z) = Eµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

= Eµ

[ ∞
∑

k=1

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

+R(z)

= γEµ

[ ∞
∑

k=0

γkRT k+1(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

+R(z)

= γEµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j < 0

]

+R(z)

where we have carried out straightforward relabellings of the indexing of terms in the sum
by k. Then by the law of total expectation we may write this last expression as

V (z) = γEµ

[

Eµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = TZ(z)j ∀j ≤ 0

]]

+R(z)

= γEµ[V TZ(z)] +R(z) = Φ(V )(z),

which shows that V is indeed a fixed point of Φ, and so is the unique such, since Φ is a
contraction.

Our goal is now to seek a W ∗ such that the ESN functional HA,C,ζ
W ∗ closely approximates

the unique fixed point V of Φ. One approach is to collect a dataset from a single training
trajectory, and then perform least squares regression to find W ∗. This is an example of
offline learning (in the reinforcement learning parlance) because the training occurs after
the data has been collected. This is in contrast to online learning where training takes place
dynamically as new data becomes available. We will make this offline approach formal in
the following theorem.

Theorem 3.6. Suppose that Z is an admissible input process, that is also stationary and er-
godic with invariant measure µ. Let R : (DN)

Z → R be µ-measurable and satisfy E[|R(Z)|2] <
∞ and define Φ using (3) on the µ-measurable functionals H that satisfy Eµ[|H(Z)|2] < ∞.
Let γ ∈ [0, 1). Let z be an arbitrary realisation of Z

Then for any ǫ > 0, δ ∈ (0, 1) there exists N, T0 ∈ N, R, λ∗ > 0 and ℓ ∈ N such
that the ESN with parameters A,C, ζ generated by procedure 1 (with inputs N, T0, R), and
W ∗

ℓ ∈ R
2(d(T0+1)+N) minimising (over W ∈ R

2(d(T0+1)+N)) the least squares problem

1

ℓ

ℓ−1
∑

k=0

∥

∥W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)
∥

∥

2
+ λ‖W‖2

11



where λ ∈ (0, λ∗), then with probability (1− δ)

Eµ

[

∥

∥

∥
HA,C,ζ

W ∗

ℓ
(Z)− ΦHA,C,ζ

W ∗

ℓ
(Z)

∥

∥

∥

2
∣

∣

∣

∣

A,C, ζ

]

< ǫ.

Proof. First let V be the unique fixed point of the contraction mapping Φ whose existence
and uniqueness is guaranteed by Banach’s fixed point theorem. Denote the Lipschitz con-
stant of Φ with the symbol τ . Then we fix ǫ > 0 and δ ∈ (0, 1), then by Theorem 2.6 there
exists with probability (1− δ) a linear readout W ∈ R

2(d(T0+1)+N) such that

Eµ

[

∥

∥

∥
HA,C,ζ

W (Z)− V (Z)
∥

∥

∥

2
∣

∣

∣

∣

A,C, ζ

]

<
ǫ

5(1 + τ)
. (4)

Then it follows that

Eµ

[

∥

∥

∥
HA,C,ζ

W − ΦHA,C,ζ
W

∥

∥

∥

2

|A,C, ζ

]

= Eµ

[

∥

∥

∥
HA,C,ζ

W (Z)− ΦHA,C,ζ
W (Z) + V (Z)− V (Z)

∥

∥

∥

2

|A,C, ζ

]

≤ Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + Eµ[‖V (Z)− ΦHA,C,ζ

W (Z)‖2|A,C, ζ]

= Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + Eµ[‖ΦV (Z)− ΦHA,C,ζ

W (Z)‖2|A,C, ζ]

≤ Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + τEµ[‖V (Z)−HA,C,ζ

W (Z)‖2|A,C, ζ]

= (1 + τ)Eµ[‖V (Z)−HA,C,ζ
W (Z)‖2|A,C, ζ]

< (1 + τ)
ǫ

5(1 + τ)
by (4)

<
ǫ

5

which yields the estimate

Eµ[‖HA,C,ζ
W − ΦHA,C,ζ

W ‖2|A,C, ζ] <
ǫ

5
. (5)

Now, we can choose λ∗ such that for any λ ∈ (0, λ∗)

λ‖W‖2 < ǫ

5
. (6)

Next we define a sequence of vectors (W ∗
j )j∈N by

W ∗
j = argmin

U∈R2(d(T0+1)+N)

(

1

j

j−1
∑

k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k(z)−RT−k(z)‖2 + λ‖U‖2
)

.

We may view argmin as continuous map on the space of strictly convex C1 functions that
returns their unique minimiser. The regularised linear least squares problem is a strictly

12



convex C1 problem, so we may define W ∗
∞ ∈ R

2d(T0+1)+N by

W ∗
∞ := argmin

U

(

Eµ[‖HA,C,ζ
U (Z)− γHA,C,ζ

U T (Z)−R(Z)‖2|A,C, ζ] + λ‖U‖2
)

= argmin
U

lim
j→∞

(

1

j

j−1
∑

k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

argmin
U

(

1

j

j−1
∑

k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

W ∗
j

where the second and third equalities hold by the Ergodic Theorem and continuity of argmin
respectively. Now, we may choose ℓ ∈ N sufficiently large that

∣

∣Eµ[‖W ∗⊤
ℓ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ]

− Eµ[‖W ∗⊤
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ]

∣

∣ <
ǫ

5
, (7)

and
∣

∣

∣

∣

∣

lim
j→∞

(

1

j

j−1
∑

k=0

‖W ∗⊤
j (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

j ‖2
)

− 1

ℓ

ℓ−1
∑

k=0

‖W ∗⊤
ℓ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

ℓ ‖2
∣

∣

∣

∣

∣

<
ǫ

5
, (8)

and by the Ergodic Theorem

∣

∣

∣

∣

∣

1

ℓ

ℓ−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2

− lim
j→∞

1

j

j−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2
∣

∣

∣

∣

∣

<
ǫ

5
. (9)

Now the proof proceeds directly

Eµ[‖HA,C,ζ
W ∗

ℓ
(Z)− ΦHA,C,ζ

W ∗

ℓ
(Z)‖2|A,C, ζ]

= Eµ[‖HA,C,ζ
W ∗

ℓ
(Z)− γHA,C,ζ

W ∗

ℓ
T (Z)−R(Z)‖2|A,C, ζ]

= Eµ[‖W ∗⊤
ℓ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ].

Then we apply (7) which yields

Eµ[‖HA,C,ζ
W ∗

ℓ
(Z)− ΦHA,C,ζ

W ∗

ℓ
(Z)‖2|A,C, ζ]

< Eµ[‖W ∗⊤
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ] +

ǫ

5
.

13



Then we apply the Ergodic Theorem

Eµ[‖W ∗⊤
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ] +

ǫ

5

= lim
j→∞

(

1

j

j−1
∑

k=0

‖W ∗⊤
∞ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2

)

+
ǫ

5

≤ lim
j→∞

(

1

j

j−1
∑

k=0

‖W ∗⊤
∞ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2

)

+ λ‖W ∗
∞‖2 + ǫ

5

= lim
j→∞

(

1

j

j−1
∑

k=0

‖W ∗⊤
j (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

j ‖2
)

+
ǫ

5

then apply (8)

<
1

ℓ

ℓ−1
∑

k=0

‖W ∗⊤
ℓ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

ℓ ‖2 +
2ǫ

5

≤ 1

ℓ

ℓ−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W‖2 + 2ǫ

5

then apply (9)

< lim
j→∞

(

1

j

j−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2
)

+ λ‖W‖2 + 3ǫ

5

then apply (6)

< lim
j→∞

(

1

j

j−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2
)

+
4ǫ

5

Then apply the Ergodic Theorem again

= Eµ[‖W⊤(HA,C,ζ(Z)− γHA,C,ζT (Z)−R(Z))‖2|A,C, ζ] +
4ǫ

5

= Eµ[‖HA,C,ζ
W − ΦHA,C,ζ

W ‖2|A,C, ζ] +
4ǫ

5
then apply (5)

< ǫ

3.1. Connection to Partially Observed Markov Decision Processes

Theorem 3.6 applies to a reinforcement learning scenario where the observations are a
stationary and ergodic process. This includes the case where observations emerge from a
partially observed, stationary and ergodic Markov decision process. These are themselves a
special case of a partially observed Markov decision process (POMDP) which are a common
scenario studied in the reinforcement learning community. In particular, the results in this
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paper apply to POMDPs in the special case that the underlying Markov process is stationary
and ergodic. However, there exist stationary ergodic processes, which satisfy the conditions
of Theorem 3.6, which are not the output of any partially observed decision Markov process.

The approach that we set out in this paper has a lot in common with POMDPs, but
there are some subtle differences which we will clarify here. First of all, the value function
in this paper is defined in terms of the complete sequence of (reward, action, observation)
triples, rather than the current belief state. One advantage of our approach is that a belief
state does not need to be computed explicitly, nor do any assumptions need to made about
the relationship between the hidden state of the environment and the observations. In the
setting of this paper, the reservoir states xk (which are explicitly computed by evaluating
HA,C,ζT k(z) can be interpreted as latent states, very much like the latent states for POMDPs.
We also stress that the value function V and reservoir functionals HA,C,ζ and HA,C,ζ

W ∗

ℓ
are

causal and time invariant (CTI) so we are never using future information that is unavailable
in the present, despite the input sequences being bi-infinite. Indeed, one of the strengths
of our approach is that the learning procedure will be able to learn the impact of any
unobserved or hidden states via the latent states xk and linear regression.

3.2. Training ESNs with online learning

In some reinforcement learning applications, it is useful - or even essential - for the
optimisation of W to occur dynamically as new data comes in; such algorithms are called
online learning algorithms. In this section, we will present and discuss some preliminary
novel results surrounding online learning algorithms that use ESNs. We will first introduce
a lemma, stating that, under reasonable conditions, the ODE

d

dt
W = −h(W ) := −Eµ

[

HA,C,ζ(Z)
(

HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
)

]

(10)

converges exponentially quickly to a globally asymptotic fixed point W ∗, for which the
associated ESN functional HA,C,ζ

W ∗ is close to the unique fixed point of Φ. By close we
mean that the orthogonal projection of ΦHA,C,ζ

W ∗ onto the finite dimensional vector space of
functionals {HA,C,ζ

W | W ∈ R
d} is HA,C,ζ

W ∗ . Unlike the previous result (Theorem 3.6) we do
not need to assume that the contraction mapping satisfies Φ(H) = R+ γE[HTZ ]. We could
choose for example Φ(H) = R + γ supπ E[HTZ(π)] where Z(π) is a process under a control
π. The fixed point of this operator is the optimal value function V ∗.

Lemma 3.7. Let Z be an admissible input process. Let A,C, ζ be a n×n, n×d, and n×1
dimensional random reservoir matrix, input matrix and bias vector. Let HA,C,ζ and HA,C,ζ

W

denote the associated ESN functionals. Let Φ be a contraction mapping, with Lipschitz
constant 0 ≤ τ < 1, on the space of CTI filters H : (DN )

Z → R that are µ-measurable and
satisfy E[H(Z)2] < ∞. Suppose further that 0 ≤ τ < κ−1 where κ is the condition number
of the autocorrelation matrix

Σ = Eµ

[

HA,C,ζ(Z)HA,C,ζ⊤(Z)
∣

∣ A,C, ζ
]

.
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Then there exists a δ > 0 such that the ODE

d

dt
W = −h(W ) := −Eµ

[

HA,C,ζ(Z)
(

HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
)

∣

∣

∣

∣

A,C, ζ

]

satisfies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖ (11)

where W ∗ is a globally asymptotic fixed point. W ∗ enjoys the further property that

HA,C,ζ
W ∗ = PΦHA,C,ζ

W ∗

where P denotes the L2(µ) orthogonal projection operator on the µ-measurable filters H
satisfying E[H(Z)2] < ∞ and is defined

PH(z) := HA,C,ζ⊤(z)Σ−1
Eµ

[

HA,C,ζ(Z)H(Z)
∣

∣ A,C, ζ
]

.

Proof. To show that W ∗ is a globally asymptotic fixed point it suffices to show that there
exists a δ > 0 such that

(W −W ∗) · (h(W ∗)− h(W )) ≤ −δ‖(W −W ∗)‖2

as this implies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖.

To construct this δ, we first note that

h(W ) = ΣW − Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W (Z)

)

∣

∣

∣

∣

A,C, ζ

]

16



so, by a direct computation we have

(W −W ∗) · (h(W ∗)− h(W ))

= (W −W ∗) ·
(

Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W (Z)

)

∣

∣

∣

∣

A,C, ζ

]

− Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

)

∣

∣

∣

∣

A,C, ζ

])

− (W −W ∗) ·
(

ΣW − ΣW ∗

)

= (W −W ∗) ·
(

Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W (Z)

)

∣

∣

∣

∣

A,C, ζ

]

− Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

)

∣

∣

∣

∣

A,C, ζ

])

− (W −W ∗)⊤Σ
(

W −W ∗
)

≤ (W −W ∗) ·
(

Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W (Z)

)

∣

∣

∣

∣

A,C, ζ

]

− Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

)

∣

∣

∣

∣

A,C, ζ

])

− σ‖W −W ∗‖2 where σ is the smallest eigenvalue of Σ

= (W −W ∗) ·
(

Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W (Z)

)

−HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

)

∣

∣

∣

∣

A,C, ζ

])

− σ‖W −W ∗‖2

≤ (W −W ∗) ·
(

Eµ

[

HA,C,ζ(Z)HA,C,ζ
W (Z)

)

−HA,C,ζ(Z)HA,C,ζ
W ∗ (Z)

)

∣

∣

∣

∣

A,C, ζ

])

τ

− σ‖W −W ∗‖2 because τ is the Lipschitz constant for Φ

= τ(W −W ∗)⊤Σ(W −W ∗)− σ‖W −W ∗‖2
≤ τρ‖W −W ∗‖2 − σ‖W −W ∗‖2 where ρ is the largest eigenvalue of Σ

= −(σ − τρ)‖W −W ∗‖2,

so we can set δ := σ − τρ and notice δ > 0 because 0 ≤ τ < κ−1 = σ/ρ. Next, to show that

HA,C,ζ
W ∗ = PΦHA,C,ζ

W ∗

we observe that since W ∗ is an equilibrium point of the ODE

Ẇ = −h(W )
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it follows that h(W ∗) = 0 and therefore

0 = Eµ

[

HA,C,ζ(Z)
(

HA,C,ζ
W ∗ (Z)− ΦHA,C,ζ

W ∗ (Z)
)

∣

∣

∣

∣

A,C, ζ

]

=⇒ 0 = Eµ

[

HA,C,ζ(Z)HA,C,ζ⊤(Z)

∣

∣

∣

∣

A,C, ζ

]

W ∗ − Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

∣

∣

∣

∣

A,C, ζ

]

=⇒ 0 = ΣW ∗ − Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

∣

∣

∣

∣

A,C, ζ

]

so, ΣW ∗ = Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

∣

∣

∣

∣

A,C, ζ

]

so, W ∗ = Σ−1
Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

∣

∣

∣

∣

A,C, ζ

]

so, HA,C,ζ
W ∗ = HA,C,ζ⊤Σ−1

Eµ

[

HA,C,ζ(Z)ΦHA,C,ζ
W ∗ (Z)

∣

∣

∣

∣

A,C, ζ

]

= PΦ(HA,C,ζ
W ∗ ).

One rather restrictive condition of this lemma is that the Lipschitz constant τ of the
contraction Φ must be less than the reciprocal condition number κ−1. κ is a measure of how
orthonormal the columns of the autocorrelation matrix Σ are. In particular, if the columns
are indeed orthonormal, then κ = 1 and this condition ceases to be restrictive at all. If the
columns are close to being linearly dependant, then κ is large so the requirement that κ−1

is small becomes troublesome. If indeed there is a linear dependence, the matrix Σ is not
even invertible and the theorem breaks down completely. If we interpret HA,C,ζ(Z) as a
vector of features, then κ grows with the correlation between features. Higher correlation
between the features imposes a greater constraint on the Lipschitz constant τ . If we have
no inter-feature correlation then κ = 1 and we have no restriction at all on τ .

To actually solve ODE (10) we may need to compute

h(W ) := Eµ

[

HA,C,ζ(Z)
(

HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
)

∣

∣

∣

∣

A,C, ζ

]

(12)

which may, or may not, be practical. For example, if the process Z is ergodic, we can
approximate (12) by taking a sufficiently long time average of

HA,C,ζT k(z)
(

HA,C,ζ
W T k(z)− ΦHA,C,ζ

W T k(z)
)

.

Alternatively, we may approach the problem of solving (10) by first considering the explicit
Euler method (with time-steps αk > 0)

Wk+1 = Wk − αkh(Wk)

= Wk − αkEµ

[

HA,C,ζ(Z)
(

HA,C,ζ
Wk

(Z)− ΦHA,C,ζ
Wk

(Z)
)

∣

∣

∣

∣

A,C, ζ

]

,
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then we might (heuristically) expect the algorithm

Wk+1 = Wk − αkH
A,C,ζT k(z)

(

HA,C,ζ
Wk

T k(z)− ΦHA,C,ζ
Wk

T k(z)
)

(13)

to converge to W ∗, where αk are positive definite real numbers that satisfy

∞
∑

k=1

αk = ∞
∞
∑

k=1

α2
k < ∞.

We believe this heuristic could be made rigorous under mild assumptions, because algorithm
(13) closely resembles the major algorithm extensively studied in [19] and [20] for which
similar results hold. Theorems 17 and 2.1.1. appearing in [19] and [20] respectively suggest
that an algorithm much like (13) converges almost surely to W ∗ if its associated ODE
(reminiscent of (10)) satisfies condition (11), and the input process Z is strongly mixing.
The conjecture that algorithm (13) converges to W ∗ is also reminiscent of Theorem 3.1 by
[21], and related results by [22]. These results are closely related to Q-learning and stochastic
gradient descent. We note that (sadly) finding the fixed point of the general contraction
mapping Φ renders the estimation of W a nonlinear problem.

The theory yields an online reinforcement learning algorithm which we state below. We
envision that the agent chooses a fixed policy π and continues executing the policy for ℓ− 1
time steps. Under this policy, the agent makes observations zk and receives rewards rk. We
define zk(a) as the input to the ESN at time k if the agent had instead executed action
a ∈ A at time k.

Algorithm 2: Online Learning

1: Choose initial output layer W0 and reservoir state x0

2: Randomly generate A,C, ζ according to procedure 1
3: for each k from 0 to ℓ− 1

4: Compute Wk+1 = Wk − αkxk

(

W⊤
k xk − rk −maxa{W⊤

k σ(Axk +Czk(a) + ζ)}
)

5: Compute xk+1 = σ(Axk +Czk + ζ)

4. Bee World

To demonstrate the theory presented in section 3, we created a game called Bee World
and show that a simple reinforcement learning algorithm supported by an ESN can learn to
play Bee World with respectable skill. The game is designed so that the theory presented
previously is easy to visualise, rather than because the game is hard to master.

Bee World is set on the circle of unit circumference, which we denote by S1, and represent
as an interval with edges identified. At every point y on the circle, there is a non-negative
quantity of nectar which may be enjoyed by the bee without depletion. ‘Without depletion’
means that the bee takes a negligible amount of nectar from the point y, so the bee occupying
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point y does not cause the amount of nectar at y to change. Furthermore, the nectar at
every point y varies with time t according to the prescribed function

n(y, t) = 1 + cos(ωt) sin(2πy) (14)

(which we chose somewhat arbitrarily) that is unknown to the bee. Thus, the amount of
nectar enjoyed by the bee at time t is a value that lies in the interval [0, 2], which we will
denote N . Time advances in discrete integer steps t = 0, 1, 2, . . ., and at any time point t a
bee at point y observes the quantity of nectar r ∈ N at point y and nothing else. Having
made this observation, the bee may choose to move anywhere in the interval (y − c, y + c)
for some fixed 0 < c < 1 and arrive at its chosen destination at time t + 1. The interval
of possible moves (−c, c) is called the action space and is denoted A. The goal of the bee
is to devise a policy whereby, given all its previous observations, the bee makes a decision
as to where to move next, such that the discounted sum over all future nectar is as great
as possible. The space of all previous (reward, action) pairs (N ×A)Z− is contained by the
space of bi-infinite sequences (R2)Z. The agent playing Bee World makes no observations
beyond the rewards (nectar) and actions, but we could easily envision a more general game
where the agent makes observations from a set Ω and therefore makes its decisions based on
a left sequence of (reward, action, observation) triples.

The policy adopted by the bee may be realised as a deterministic policy π : (N×A)Z → A
(a CTI functional) for which the bee executes an action a ∈ A determined by the history of
(reward, action) pairs. Alternatively, the bee may adopt a stochastic policy, for which every
state history of (reward, action) pairs admits a distribution over actions A from which the
bee makes a random choice.

Though the evolution of Bee World is Markovian (and deterministic), the bee makes only
a partial observation of the state of Bee World (i.e the amount of nectar the bee observes at
time t) so the bee must take advantage of its memory to reconstruct the true state and find
an optimal policy. This need for memory renders the problem suitable for an ESN, while
ruling out the conventional theory of Markov Decision Processes. The problem of playing
Bee World can therefore be formulated as a Partially Observed Markov Decision Process.

4.1. Approximating the value functional

Under a policy π, the nectar-action pairs experienced by the bee yield a realisation of the
(N ,A)Z-valued random variable Z. It therefore makes sense to define the value functional
V : (N ×A)Z → R associated to Z by

V (z) = Eµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

(15)

where R : (N × A)Z → R is the reward functional defined by R(z) = r0, where r0 is the
nectar collected at time 0, T is the shift operator, and γ ∈ [0, 1) is the discount factor
representing the relative importance of near and long term nectar consumption. We can see
after a simple rearrangement of (15) that

V (z) = R(z) + γEµ[V TZ(z)]
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so V is the unique fixed point of the contraction mapping Φ defined by

Φ(H)(z) := R(z) + γEµ[HTZ(z)]

as discussed in Section 3. Thus, by Theorem 3.6, we can approximate the value function
V using an ESN trained by regularised least squares as long as the nectar-action pairs
z ∈ (N ×A)Z are drawn from a suitable ergodic process Z. Therefore, we chose an initial
policy π0 such that Z is ergodic. In particular, we chose a stochastic policy π0(z) ∼ U(−c, c)
for all histories of (reward, action) pairs z ∈ (N × A)Z so that the bee takes a uniform
sample from the action space A = (−c, c) at any point y ∈ S1. For the purpose of playing a
game, we set c = 0.1 and γ = 0.5. We allowed the bee to execute this policy for 2000 time
steps and recorded the observed nectar at every time. The first 250 time steps are plotted
in Figure 1.

Next, we set up an ESN of dimension n = 300, with reservoir matrix, input matrix, and
bias A,C, ζ populated with i.i.d uniform random variables U(−0.05, 0.05). A was then
multiplied by a scaling factor such that the 2-norm of A satisfies ‖A‖2 = 1. We choose an
activation function σ(x) := max(0, x). We should pause here and note that ESN described
here differs slightly from the ESN described in procedure 1. We instead generated A,C, ζ
in a traditional way, which is empirically observed to be highly successful, as demonstrated
in the literature, rather than the more cumbersome method described in procedure 1. These
numerical results suggest that procedure 1 can be simplified.

We then computed a sequence of reservoir states xk ∈ R
300 for the ESN using the iteration

xk+1 = σ(Axk +Czk + ζ)

where x0 = 0 and each zk ∈ (N ×A) comprises 2 components: the first is the quantity of
nectar observed by the bee at time k, and the second is the action a ∈ (−c, c) executed at
time k under policy π0. Now we return our attention to Theorem 3.6, and see that the W ∗

ℓ

minimising (over W )

1

ℓ

ℓ−1
∑

k=0

‖W⊤(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2 + λ‖W‖2

converges to W minimising

‖W⊤(xk − γxk+1)− rk‖2 + λ‖W‖2 (16)

so we can immediately reformulate (16) as the least squares problem

W = (Ξ⊤Ξ + λI)−1Ξ⊤U

where Ξ is the matrix with kth column

Ξk := xk − γxk+1
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(a) The nectar collected (blue) and the approximate value function under the initial policy π0 (red) is plotted for the first 250
time steps (x-axis).
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(b) The nectar function n(y, t) (14) at every point represented as a heat map in the (t, y) plane, with the position of the bee
at time t under the initial policy indicated by the overlaid white circles.

Figure 1: Dynamics of Bee World where the bee executes the initial policy π0(z) ∼ U(−0.1, 0.1) for the first
250 time steps.

and U has kth entry rk the kth quantity of nectar, and λ is the regularisation parameter
which we set to 10−9. We solved this linear system using the SVD. Now

V (z) ≈ HA,C,ζ
W ∗

ℓ
(z) ≡ (W ∗

ℓ )
⊤HA,C,ζ(z) ≡ W⊤x

where x is the reservoir state associated to the left infinite input sequence z. Furthermore,
the map (W⊤·) therefore approximates the unique fixed point of Φ (by Theorem 3.6) and
this fixed point is exactly the value functional we are looking for. Thus, we can easily
compute the approximate value of an arbitrary reservoir state x under the initial policy π
by computing the inner product W⊤x. We illustrate this in Figure 1a by plotting, at each
time k = 1, . . . , 250, the value of every observed state to accompany the observed nectar.

4.2. Updating the policy

Having computed an approximate value function under the initial policy π0(z) ∼ U(−0.1, 0.1),
we were faced with the problem of how to improve upon this policy. Exploring efficient and
effective algorithms for iteratively improving a policy is a rich area of reinforcement learn-
ing research, but outside the scope of this section. Instead, we implemented a simple and
greedy approach. For a given reservoir state x we consider 100 actions a1, a2, . . . a100 uni-
formly sampled over A = (−0.1, 0.1), then for each action we consider the nectar-action
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(a) The nectar collected (blue) and the approximate value function (red) is plotted for the first 250 time steps (y-axis) under
the improved policy π1.
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(b) The nectar function n(y, t) (14) at every point represented as a heat map in the (t, y) plane, with the position of the bee
at time t under the improved policy is indicated by the overlaid white circles.

Figure 2: Dynamics of Bee World where the bee executes the improved policy π1 for the first 250 time steps.

pairs z(1), . . . , z(100) ∈ N × A where the nectar for each pair is the current nectar; and is
therefore the same in every pair. Then we compute the next reservoir states for each pair

x
(i)
k+1 = σ(Axk +Cz

(i)
k + ζ)

and estimate the value of executing the ith action by computing W⊤x
(i)
k+1. Then we choose to

execute the action a∗ with the greatest estimated value - which determines our new policy π1

- which yields a significant improvement over the initial policy π0, as illustrated in Figure 2.
Under the initial policy π0 the bee collected an average of approximately 1.05 nectar per unit
time, in comparison to 1.52 nectar under the improved policy π1. This is much closer to the
optimal value of approximately 1.60, which we obtain in the next section. The algorithm
which first approximates the value function, and then updates the policy is described in
Algorithm 3.

4.3. An Analytic Solution for Bee World

In this section, we will analyse Bee World so that we can compare the ESN solution to
results that we can prove. To make our own lives easier, we consider a smooth version of Bee
World, rather than the discrete time version solved by the ESN, so that we can formulate
Bee World as a control problem that admits a solution via the Euler-Lagrange equation. We
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Algorithm 3: One Step Offline Learning Algorithm (Bee World)

1: Choose initial reservoir state x0

2: Randomly generate A,C, ζ
3: for each k from 0 to ℓ− 1

4: Compute xk+1 = σ(Axk +C(rk, ak) + ζ)

5: Find W that minimises
∑ℓ−1

k=0‖W⊤(xk − γxk+1)− rk‖2 + λ‖W‖2
6: for each k from ℓ to L− 1

7: Compute a∗ = maxa{W⊤σ(Axk +C(rk, a) + ζ)}
8: Compute xk+1 = σ(Axk +C(rk, a

∗) + ζ)

have the control system

τ̇ = 1

ẏ = u(y, τ)

where u is the controller dependant on y and τ . Then we have a cost function

C(x, τ, u) = f(u)− n(y, τ)

where f(x) is the penalty term for using the control u and n(y, τ) is the nectar function. In
the above formulation of Bee World

f(u) =

{

0 if − c ≤ u ≤ c

∞ otherwise

where c = 0.1. Then the objective is to find

u∗ = argmin
u

{
∫ ∞

0

γtC(y, τ, u) dt
}

.

We can see that f is not a well defined function so we will introduce the family of functions

fǫ(u) = −ǫ log(cos(πu/(2c)))

where ǫ > 0, and notice that fǫ approaches f pointwise as ǫ → 0. Next, we recall that the
stationary points (including the minimum) of the integral functional

I[y] =
∫ ∞

0

F(t, y, ẏ) dt

all satisfy the Euler-Lagrange equation

d

dt

∂F
∂ẏ

− ∂F
∂y

= 0.
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So, we let

F(t, y, ẏ) = γtC(t, y, ẏ)
= γt(−ǫ log(cos(πẏ/(2c)))− cos(ωt) sin(2πy)− 1)

then

0 =
d

dt

∂F
∂ẏ

− ∂F
∂y

=
d

dt

(

γt d

dẏ
(−ǫ log(cos(πẏ/(2c))))

)

+ 2πγt cos(ωt) cos(2πy)

=
πǫ

2c

d

dt

(

γt tan(πẏ/(2c))

)

+ 2πγt cos(ωt) cos(2πy)

=
πǫ

(2c)

(

log(γ)γt tan(πẏ/(2c)) + γtπÿ

2c
sec2(πẏ/(2c))

)

+ 2πγt cos(ωt) cos(2πy)

=
πǫ

2c

(

log(γ) tan(πẏ/(2c)) +
πÿ

2c
sec2(πẏ/(2c))

)

+ 2π cos(ωt) cos(2πy),

which we can reformulate as a dynamical system

v̇ = −2c cos2(πv/(2c))

π

(

4c cos(ωτ) cos(2πy)

ǫ
+ log(γ) tan(πv/(2c))

)

ẏ = v

τ̇ = 1 (17)

whose solutions are stationary points of the integral functional. For small ǫ, we approach the
Bee World problem. We took ǫ = 10−5, γ = 1/2, initial position y = 0, and initial velocity
v = 0 then simulated a trajectory of the ODE using scipy.integrate.odeint. We plotted
this in Figure 3. The average nectar collected by under this policy was approximately 1.60.

5. Application to Stochastic Control

ESNs have shown remarkable promise in solving problems in mathematical finance -
including by [23], [24], and [25] who used an ESN to predict the future values of stock prices.
[26] used an ESN to learn the solution to a credit rating problem and [27] used an ESN
to forecast exchange rates, comparing the results to forecasts made with an ARMA model.
In this section we will introduce a stochastic optimal control problem arising in the market
making problem. We will solve this problem analytically, and compare this to the solution
obtained by a reinforcement learning agent supported by an ESN.

5.1. A Market Making Problem

We consider a stochastic control problem inspired by the motivations of a market maker
acting in a general financial market. In practice the specific role of a market maker depends
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Figure 3: A numerical solution to the ODE (17) with ǫ = 10−5 (white line) superposed on the heat map of
the nectar function n(y, t) given in (14). Dark colours indicate regions of low nectar, light regions indicate
high values of the nectar function. We observe that the solution trajectory spends much more time near
local maxima of the nectar function but has complicated oscillatory fluctuations during transitions between
local maxima. The oscillations are likely due to approaching a sort of singularity as ǫ → 0.

on the particular market, but we consider a market maker who provides liquidity to other
market participants by quoting prices at which they are willing to sell (ask) and buy (bid)
an asset. By setting the ask price higher than the bid price in general they can profit from
the difference when they receive both a buy and sell order at these prices. However, the
market maker faces risk, since if they buy a quantity of the asset the market price might
move against them before they are able to find a seller.

The market making problem is a complex one, and has been studied extensively since
the publication of the paper by [28]. The paper of [29] gives a good overview of much of this
work. We consider a stylised version of this problem that focuses on inventory management
without considering explicit optimal quoting strategies. We consider that a market maker
acting relatively passively around the market price in ordinary conditions would expect to
observe a random demand for buy and sell orders. If as a result of random fluctuations they
find their inventory has drifted away from zero, they would set prices more competitively
on either the ask or bid side to encourage trades to balance their position. Very broadly the
conclusions of work on the market making problem are that there is a price to be paid to
exert control over the inventory process and bring inventories closer to zero.

Motivated by this insight, we consider the market maker’s inventory to be a stochastic
process (Y t)t≥0 with dynamics

dY t = πtdt+ σdW t

where (W t)t≥0 is a standard Brownian motion.
The parameter σ measures the volatility of the incoming order flow, and (πt)t≥0 is the

control process by which the market maker adds drift into their order flow by moving their
bid and ask quotes. Naturally, there is a cost involved in applying the control, and a further
cost to holding inventory away from zero. We introduce parameters α and β to quantify
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these effects and model the market maker’s profit as a stochastic process solving

dZt = (r − απ2
t − βY 2

t )dt

where r is the rate of profit the market maker would achieve from the bid-ask spread if they
did not have concerns about the asset price movements. We consider the case where the
market maker seeks to maximise their long run discounted profit

v(y) = max
π

E
y
[

∫ ∞

0

e−δtdZt

]

,

where E
y is the expectation with the process started at Y0 = y. We can show that the

market maker’s value function and optimal control are

v(y) = −αhy2 +
r − αhσ2

δ
, π∗(y) = −hy, (18)

where

h :=
−αδ +

√

α2δ2 + 4β

2α

Further, the inventory process Y t≥0, when controlled by the optimal control π∗(y) = −hy
is given by the Ornstein-Uhlenbeck process

dY t = −hY tdt+ σdW t

whose stationary distribution is a Gaussian N
(

0, σ
2

2h

)

.

We observe that this is an infinite horizon, Linear-Quadratic regulator (LQR) type prob-
lem, a class of problems which have a long history in the control literature, and more recently
have been systematically studied in the reinforcement learning literature. Recent work on
online learning for the LQR problem (e.g. [30, 31, 32]) has considered a range of variants
of the LQR problem, including cases with uncertainty on the both the dynamics and the
reward, and where the state variable may only be partially observed. However most of these
approaches work in the setting of model-based learning approaches: that is, they attempt to
learn a “model” of the world, and therefore exploit the fact that the LQR structure is known
and can be learned from the data; in comparison, [30] still rely on the LQR structure, but
do not directly try to learn the “model” of the world. The paper [33] analyses the difference
between model-based and model-free approaches to the LQR problem, showing that one
should expect an exponential separation between model-based and model-free approaches.
In this context, our approach, which does not assume the LQR structure, can also be com-
pared to model-free approaches, such as the classical work of [34], which takes a Q-learning
approach.

5.2. Discretised problem

To turn this into a problem into one that can be used to train an Echo State Network
we reformulate it in discrete time; we consider a process Y 0,Y 1,Y 2, . . . such that

Y k+1 − Y k = ǫπk + σ
√
ǫNk
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where (Nk)k∈N are a sequence of i.i.d. random variables Nk ∼ N (0, 1) for each k ∈ N, and
ǫ > 0 is the time increment. The control is now a sequence π = (πk)k∈N. The profit function
satisfies Z0 = 0 and

dZk := Zk+1 −Zk = ǫ(r − απ2
k − βY 2

k).

and the market maker seeks to maximise the value function

v(y) = max
π

E
y
[

∞
∑

k=0

e−δǫkdZk

]

,

over choices of the control π where E
y is the expectation with the process started at Y 0 = y.

It can be shown that in the limit as ǫ → 0, the optimal control and value function for
this problem converge precisely to the optimal control and value function in the continuous
case.

We state here the results in the case ǫ = 1, the value we will use for the application of
the Echo State Network below. Writing γ = e−δ, we find in this case that the value function
and optimal control are given by

v(y) = −αpy2 +
r − γαpσ2

1− γ
, π∗ = −py

where

p :=
(α(γ − 1) + γβ) +

√

(α(γ − 1) + γβ)2 + 4αβγ

2γα
.

The process Y controlled by π∗ is Markovian, and has transition operator

(T s)(y) =

∫ ∞

−∞

P(Y k+1 = y | Y k = x)s(x) dx

=
1√
2πσ

∫ ∞

−∞

e−
(y−(1−px))2

2σ2 s(x) dx.

It is straightforward to verify that the Gaussian probability density function

s∗(y) =

√

p(2− p)√
2πσ

e−
y2p(2−p)

2σ2 , (19)

is a fixed point of T and hence that the controlled process has stationary distribution

N
(

0, σ2

p(2−p)

)

.

5.3. Solving the Market Making Problem with an ESN

In this section, we seek to solve the the market making problem with a reinforcement
learning algorithm supported by an ESN. In this set up, we assume the market maker has no
knowledge of the cost function, and no knowledge of the effect of executing an action. The
agent must execute a variety of actions in a variety of states to learn about the environment
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and the effect of its actions. Then, the market maker makes reasonable changes to its policy
to arrive at a policy that reduces the long term costs of operation. The policy obtained
by the reinforcement learning approach is compared to the optimal policy derived with full
knowledge of the system.

5.3.1. Approximating the value functional

For the purpose of running the simulation, we let the cost of operating the control α = 1,
the cost of straying from the origin β = 1, the timestep ǫ = 1, and the volatility parameter
σ = 1. We take the baseline profit parameter r = 0. The inventory held, and action
taken, by the market maker at time k will be denoted yk and ak respectively. A sequence of
(inventory, action) pairs will be denoted z ∈ (R2)Z with zk = (yk, ak). The value functional
for the market maker problem is defined

V (z) = Eµ

[ ∞
∑

k=0

γkRT k(Z)

∣

∣

∣

∣

Zj = zj ∀j ≤ 0

]

where R : (R2)Z → R is the reward functional

R(z) = −(αa2−1 + βy20),

T is the shift operator, and γ ∈ [0, 1) is the discount factor representing the relative impor-
tance of near and long term costs. We can see after a simple rearrangement that

V (z) = R(z) + γEµ[V TZ(z)]

so V is the unique fixed point of the contraction mapping Φ defined by

Φ(H)(z) = R(z) + γEµ[HTZ(z)]

as discussed in Section 3. Thus, by Theorem 3.6, we can approximate the value function V
using an ESN trained by regularised least squares if the (inventory, action) pairs (yk, ak) are
the realisation of a stationary ergodic process. Consequently, we sought an initial policy π0

such that the process Z comprising the inventory-action pairs under policy π0 is stationary
and ergodic. In particular, we chose

π0(y) ∼ N (0, σ2
i )− ηy (20)

with η = 0.05 a constant representing the rate of exponential drift toward 0 and σ2
i = 1.

We ran this policy for 10000 time steps, and recorded the pairs zk along with the rewards
rk. Next, we set up an ESN of dimension n = 300, with reservoir matrix, input matrix,
and bias A,C, ζ populated with i.i.d uniform random variables U(−0.05, 0.05). A was
then multiplied by a scaling factor such that the 2-norm of A satisfies ‖A‖2 = 1. As in
the previous example we chose σ to be the ReLU activation function. We then computed
reservoir states

xk+1 = σ(Axk +Czk + ζ)
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starting with an initial reservoir state x0 = 0. An arbitrary reservoir state x then encodes
the left infinite sequence of (inventory,action) pairs z. We seek an expression for the value
of the reservoir state x by solving the least squares problem

W = (Ξ⊤Ξ + λI)−1Ξ⊤U

(using the singular value decomposition) where Ξ is the matrix with kth column is

Ξk := xk − γxk+1

and U is the vector of observations where the kth entry is the reward rk, and λ is the
regularisation parameter which we set to 1e-6. We also chose γ = e−1. In practice, the
discount factor is usually much larger. With this, we obtain an expression for value of the
reservoir state x given by W⊤x. The results of this policy are shown in Figures 4 and 5. The
procedure which estimates the value function and improves upon the policy is described in
Algorithm 4.

5.3.2. Updating the policy

We sought to create a new and improved policy based on the observations of under
the initial policy using a naïve approach. At each time step, we consider 100 trial actions
a(1), a(2), . . . , a(100) drawn from the standard normal distribution N (0, 1) and compute

x
(i)
k+1 = σ(Axk +Cz

(i)
k + ζ)

where z
(i)
k is the (inventory, action) pair (yk, a

(i)), and a(i) is trial action. For each i, we

compute W⊤x
(i)
k+1 to obtain the predicted value of executing action a(i). We then choose to

execute the action a∗ with the greatest predicted value, and update the reservoir state using
this (inventory, action) pair (yk, a

∗). This defines our new policy. We ran this new policy
for 10,000 time steps and illustrated the results in Figures 6a, and 6b.

Algorithm 4: One Step Offline Learning Algorithm (Market Making)

1: Choose initial reservoir state x0

2: Randomly generate A,C, ζ
3: for each k from 0 to ℓ− 1

4: Compute xk+1 = σ(Axk +C(yk, ak) + ζ)

5: Find W that minimises
∑ℓ−1

k=0‖W⊤(xk − γxk+1)− rk‖2 + λ‖W‖2
6: for each k from ℓ to L− 1

7: Compute a∗ = maxa{W⊤σ(Axk +C(yk, a) + ζ)}
8: Compute xk+1 = σ(Axk +C(yk, a

∗) + ζ)
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Figure 4: Under the initial policy, the value V (Y ) (y-axis) learned by the ESN at the inventory Y (x-axis)
at each of the 10000 timesteps is shown. The parabolic shape is consistent with the analytically derived
optimal value function (19) shown in red. We note that the value function under the initial policy π0 is not
expected to match the value function under the optimal policy π∗.
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Figure 5: Dynamics of the market maker over time executing (a) the initial policy π0 and (b) the improved
policy π1. For each plot, the inventory (y-axis) is shown evolving with time (x-axis).

5.4. Comparison between the analytic and learned solutions

The one step reinforcement learning algorithm did not perfectly replicate the analytically
derived optimal control, but has moved in a promising direction. We can see in Figure 6a
that the inventory process under the improved policy produces (inventory, action) pairs that
have some scatter relative to the optimal policy indicated by the red straight line. This
suggests that the market maker trained by reinforcement learning is behaving well in some
average sense, despite performing many sub-optimal actions. It also appears that the the
reinforcement learning algorithm uses the control more aggressively than is optimal. This
sub-optimal control results in greater costs than the optimal control. In particular the
average cost incurred under the improved policy π1 is 2.65, while the average cost under the
the analytically derived optimal policy is σ/

√

p(2− p) = 1.35.
Despite these sub-optimal moves, it seems that the inventory process learned by the

market maker has an invariant measure that closely matches the optimal invariant measure.
It is reassuring to see that an invariant measure appears, at least numerically, to exist,
because the controlled process is assumed to be stationary and ergodic (and therefore admits
an invariant measure) in Theorem 3.6.

It is also worth noting that the inventory process, controlled either by the ESN or the
optimal control, has support on R, which is not a compact space. Therefore, the conditions
of Theorem 3.6 don’t technically hold. However, the numerical results here suggest that the
ESN has learned the value functional adequately well, suggesting that Theorem 3.6 may hold
under relaxed conditions. Of course, realisations of the stochastic processes always explore
only bounded subsets of R.
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Figure 6: (a) Illustrates the (inventory, action) pairs (yk, ak) under the improved policy π1 are represented
as points on the scatter plot. The inventory is on the x-axis, and action is on the y-axis. The red line
represents the analytically derived optimal control (equation (18)). (b) Illustrates the invariant measure of
the inventory process under the improved policy π1 is approximated with a histogram. The histogram is
compared to the analytically derived invariant measure of the optimal control process N (0, 1.82) (equation
(19)).

6. Conclusions and future work

In this paper we have presented three novel mathematical results concerning Echo State
Networks trained on data drawn from a stationary ergodic process. The first applies to offline
supervised learning. The theorem states that, given a target function, enough training data
and a large enough ESN, the least squares training procedure will yield an arbitrarily good
approximation to the target function. The second result applies to an agent performing
a stochastic policy π. After the agent has collected enough training data, and given a
sufficiently large ESN, the least squares training procedure will yield an arbitrarily good
approximation to the value function associated to the policy π. The third result is relevant
to online reinforcement learning. Though the result is quite preliminary, the lemma is
introduced with the intention of developing online algorithms (inspired by Q-learning) to
learn the optimal policy for non-Markovian problems.

We demonstrated the second result (which generalises the first) on a deterministic control
problem (Bee World) and a stochastic control problem (the market making problem). We
chose these ‘toy model’ problems to understand the performance of the algorithm completely
in cases that are solvable analytically, although these optimal solutions themselves are not
entirely trivial. The reinforcement learning algorithm we use to improve the policy in both
Bee World and the market making problem is extremely simple. It is essentially one iteration
of an ǫ-greedy policy [35], with ǫ set to 0. Despite the simplicity of the algorithm, the single
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iteration considerably improved the policy, resulting in a reasonable approximation to the
optimal policy.

It therefore seems a natural direction of future work to develop more sophisticated learn-
ing algorithms. Notably the linear upper confidence bound (linUCB) algorithm [35] has a
linear structure that fits cleanly into the the linear training framework of the ESN. As this
work develops, it will become essential to have a rigorous framework describing the relation-
ship between filters, functionals, random processes and reinforcement learning. The theory
presented in this paper tentatively connects these objects using ideas from Markov Decision
Processes, but the theory is far from complete.
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